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Abstract

We provide a construction for a ¢ x (¢ + 1) Triple Array whenever ¢ is an
odd prime power.

1 Triple arrays

Agrawal [1] studied a class of designs for two-way elimination of heterogeneity. (One
small example was discussed earlier by Potthoff [8] and another was published by
Preece [9].) Such a design has three classes of constraints, called rows, columns
and symbols. Suppose there are r rows, ¢ columns and v symbols. If the design is
interpreted as an r X ¢ array in the natural way, it satisfies:

TA1 there are no repeated elements in any row or column;
and has positive integer parameters k, A, Aee and A, such that:

TA2 each symbol occurs in £ cells;

TA3 any two distinct rows contain A,, common symbols;
TAA4 any two distinct columns contain \.. common symbols;
TAS5 any row and column contain \,. common symbols.
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An example (taken from [1, p1157]) is

45610 1 2
183 47 6
924 75 8| (1)
839 56 10
1012 39 7

Such a design has a natural representation as a (binary) row-column design; if
a,b and c are respectively a row, column and symbol, the block abc is represented by
symbol ¢ in cell (a,b). The properties mean that the row-column design is equirepli-
cate, with every symbol appearing k times, it contains no empty cells, and if the
rows and columns are treated as sets then the intersection of any two rows has
size A, the intersection of any two columns has size A., and any row and col-
umn intersect in A,. elements. We shall call this array a triple array and denote it
TA(v, ky Arry Ace, A = 7 X ¢). The example above is a TA(10,3,3,2,3:5 x 6).

2 'Triple arrays and other designs

Triple arrays were studied by Preece [10], although he did not use that name. He
introduced them in the more general context of row-column designs. Triple arrays
arise as fully proper O:YY(Q,Q,T) designs: that is, the row and column constraints
are orthogonal, while the symbol constraints have overall total balance. In [10], there
is a list of small triple arrays, some taken from [1] and some newly constructed.

Any triple array gives rise, in a natural way, to two balanced incomplete block
designs. To construct them, suppose the rows of a TA(v, k, A\pr, Ace, A + 7 X €) are
labeled Ry, Rs,...,R, and the columns are labeled C;,Cs,...,C,. Then the row
design or BIBDpg has v blocks By, Bs, ..., B,, corresponding to the v elements of
V. if element z appears in rows Ry, Ry, ..., R, then B, = {a,b, ..., z}. Similarly the
column design or BIBD¢ is defined using the incidence of elements in columns. It
follows from the definition that

(i) the row design is a balanced incomplete block design with parameters
(ryv, ¢k, Apr).

(ii) the column design is a balanced incomplete block design with parameters
(c,v, 7k, Aec)-

From these facts and the standard results about balanced incomplete block de-
signs, it is easy to show that

vk = rc,
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Aelr=1) = e(k—1),
Aeelc—1) = r(k-1),

Apr(r = 1) = Aec(e —1).

Moreover, as was shown in [4], any triple array satisfies

Ape = k.

An alternative approach is to construct from a triple array a block design for
two sets of treatments, corresponding to rows and columns. The blocks of the new
design correspond to the symbols in the triple array, and the entry in block z is the
set of ordered pairs of row and column numbers of the cells containing entry x in the
array. Such a design was called a graeco-latin design in [10], and the word orthogonal
is used to describe the case where each possible ordered pair occurs exactly once in
the design. So property TA1 ensures that triple arrays are orthogonal graeco-latin
designs. Another generalization of the triple array is a pair of orthogonal balanced
incomplete block designs, as studied in [6].

3 The extremal case

In [4] we prove

Theorem 1 Any triple array with k # r and k # ¢ satisfies
v>r+c—1.

The extremal case v = 7 + ¢ — 1 (in which it is easy to show that A, = r — k)
is of special interest. Agrawal [1] gave a method that started from a symmetric
(v+1,r, A )-BIBD, where v = r+c—1, and constructed a TA(v, &, Apr, Acey Ape 1 7XC).
He could not prove his method, but had found it to work in every case that he tried,
provided 7 — A, > 2. (Not only does the method fail when » — .. = 2, but no triple
array exists in those cases.) It has not yet been shown that Agrawal’s construction
works for every symmetric BIBD, although no counterexample has yet been found.
However, the converse is true:

Theorem 2 [4] If there exists a triple array T A(v, k, Apry Acey Ave 2 7 X ) With k # 7,
kE #cand v=r+c— 1, then there exists a symmetric (v+ 1,7, A..)-BIBD.

In the 1970’s, Preece concocted, but did not prove or publish, some recipes for
the infinite family of triple arrays T A(2q, %, %, %, % 1 g% (g+1)) where ¢ is an
odd prime power. The underlying (v + 1,7, \..)-BIBDs of these arrays are the family
of Hadamard designs constructed by Paley [7], so the arrays will be called Paley
triple arrays. A construction subsequently appeared in [11], and some further partial

results appear in [2, Method 4.9]. Some of the results of [11] were rediscovered in [3].

In this paper we generalize Preece’s constructions and verify the generalizations.
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4 Paley triple arrays

For ¢ = p", an odd prime power, we let ) denote the set of non-zero squares of

elements of GF(q) and let N denote the set of non-squares of GF(q). Further, set

Qo = QU {0} and Ny = N U {0}. Let GF(q)* denote the multiplicative group of

non-zero elements of GF(q). The quadratic character n : GF(q)* — {%1}, defined
by

1 ifae@

“@_{—1ﬂaeM

is well known to be a surjective group homomorphism. In particular, Q-QQ = N-N =
@ and Q- N = N. Also well known is the fact that

1 if ¢ = 1(mod4)
“_”:{—1ﬂgzamm@.

We first record some equalities, some of which have appeared sporadically in the
literature.

Proposition 3 If ¢ = 1(mod 4) then for a # 0 in GF(q):
(1) (a+ Q)N Qo] =[(a+Q)NN|=|(a+Q)NQ[=][(a+N)NEC|
—J(a+N) N No| = [(a+ No) (VN| = (g — 1)/4,

(2) [(@+ Qo) N No| = |(a + No) N Qo| = (¢ +3)/4,

(3) [(a+ Qo) N N| = [(a+ N)NQo| = |(a+ No) N No| = (¢ - 2n(a) +1)/4,
(4) [(a+ Q)N No| = [(a + Qo) N Qo| = |(a + No) N Q| = (g +2n(a) +1)/4,
() [(a+Q)NQ| = (g - 2n(a) - 3)/4,

(6) |(a+ N) N N| = (q+2n(a) - 3)/4.

Proof. The proposition contains sixteen equalities. We prove four of them and
indicate how the remainder can be proven similarly.

By [5, Lemma 6.24], the quadratic equation x> — y?> = —a has ¢ — 1 solutions. If
(z0,Y0) # (0,0) is a solution of this equation then so are (o, £yo). This set of four
solutions gives one element in (a + Q) N Q since (x9)? = (—x0)? and (yo)? = (—yo)*.
Consequently, if all solutions satisfy (z,y) # (0,0), which is the case when a € N,
then |(a+ Q) N Q)| = l(a+ Q) N Qo = (a+ Q) N Q| = |(a+ Q) N Q)| = L2 1¢
a € @ then all solutions satisfy (z,y) # (0,0) except for (0,£+y/—a) and (£y/—a,0).
Hence, |[(a+ Q)N Q| =2, [(a+ Q)N Q| =2+ 1, [(a+ Qo) NQ| = 52 + 1 and
|(a+ Qo) N Qo| = &2 +2. This proves four of the equalities (two from (1), one from
(4), and (5)).

To evaluate |(a + Q) N N|,|(a + Q) N Nol,|(a + Qo) N N| and |(a + Qo) N No)|,
first select any element n € N. Then N = n@). Now consider the quadratic form
2?2 — ny? = —a and proceed as above. The remaining eight equalities are proven by
considering the quadratic forms nz? — y?> = —a and nz? — ny? = —a. O
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Proposition 4 If ¢ = 3(mod 4) then for a # 0 in GF(q):

(1) l(a+ Q) N Nol = |(a+ Qo) N Qo| = |(a+ Qo) N N|

= [(a+ N)N Q| = [(a+ No) N Q| = [(a + No) N No| = (g +1)/4,
+Q)NQ| = |(a+ N)NN| = (q—3)/4,

a+Q)NQol =lla+ N)NQ| =|(a+ No) N N| = (g —2n(a) —1)/4,
a+Q)NN|=|(a+Q)NQ[=|(a+N)N No| = (qg+2n(a) —1)/4,
a+ Qo) N No| = (g —2n(a) +3)/4,

(2) |(a
(3) I(
(4) |(
(5) I(
(6) [(a+ No) N Qol = (g + 2n(a) + 3)/4.

The proof is similar to the proof of Proposition 3. d

Order the elements of GF(q), say by {0 = wo,wy,ws,...,w,—1}, and write
GF(q)' = {0" = wg,w{,wy,...,w,_}, a duplicate copy. For non-zero elements a
and b in GF(q), define the ¢ x ¢ matrix Cy by:

Co(1,4) = { o

(wi +

Wi —Wj

ifwi—ijQ,
)’ ifwi—wj € Np.

W; —Wj
b

Let C be the ¢ x (¢ + 1) matrix obtained by appending (wg, w1, ..., ws—1) to Co

as column ¢, i.e. C(i,q) = w;, for i =0,1,...,q — 1. Notice that row 7 of C' consists
of
w; — w;j w; — w;
{wi—fzwi—ijQ}U{(wi—t— L)' w; — wj € Not U {w;}
Since .
Wi — W, a—
wi = ==y (w; — w;)
and b1
Wi — W
wi+ = = w + ——(wi — wy)
we see that for 0 < j < ¢, column j of C' consists of
a—1 b+1
{w; + (w; —wj) rw; —w; € QYU {(w; + ( 2 )(wi—wj))':wi—wj € Ny}

Proposition 5 C satisfies TA1 and TAZ2.

Proof. To see that there are no repetitions in a row notice that w; — (w; — w;)/a =
w; — (w; —wj)/a clearly implies that w; = wj, and w; + (w; —w;)/b = w;+ (w; —w,) /b
implies that w; = w]. Also, if w; — (w; —w;)/a = w; then w; —w; = 0 ¢ Q. Similarly,
there are no repetitions in a column. So TA1 is true.

For TA2, select ¢ € GF(q). For each w; € GF(q) there exists a unique wj, €
GF(q) such that w; — (w; — w;,)/a = c. It is wj, = ac — aw; + w;. Here w; — wj, =
a(w; — ¢) so as w; ranges over GF(q), so does w; — wj,. Hence |{(,7) : Co(i,j) =
c}| = |Q| = (¢ — 1)/2. Notice that c also appears in the last column of C, so ¢
appears (¢ —1)/2+ 1= (¢ + 1)/2 times in C. The case when ¢ € GF(q)’ is similar.
One arrives at |[{(i,7) : C(4,7) = c}| = |No| = (¢ + 1)/2. O
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Theorem 6 Suppose ¢ = 1(mod 4). Choose a and b such that ab € Q, (a —1) € Q
and (b+1) € N. Then C is a Paley triple array.

Proof. Here there are two types of triple arrays. From the above remarks we see
that if a € @ then row i and column j of C' consists of

row i (w; + Qo) U (w; + No)'
type 1
column j (w; 4+ Q) U (w; + Qo)’

for 0 < j < q. If a € N then row i and column j of C consists of

TOW 17 (w; + No) U (w; + Qo)’
type 2
column j (w; + N)U (w; + No)'

for 0 < j <gq.

The last column of C consists of @ U N U {0} in either case. If a € @ then two
different rows, say i; and i, intersect in |(w;, + Qo) N (ws, +Qo)| + | (w;, + No) N (ws, +
No)| = |[(wi, — wiy) + Qo] N Qo| + | [(wi, —wi, ) + No]NNp)| places. By Proposition 3(4)
and Proposition 3(3), this is (¢+2n(w;, —w;,)+1)/4+(q—2n(w;;, —w;,)+1)/4 = (¢+
1)/2 places. If a € N, the result also follows from Proposition 3(3) and Proposition
3(4) in a similar manner. For columns, if a € @ then two different columns, say j;
and j, with 71, j» < ¢, intersect in |(w;, +Q) N (wj, + Q)|+ |(wj, + Qo) N (wj, +Qo)| =
[[(wj, —wj,) + QN Q|+ |[(wj, — wj,) + Qo] N Q)| places. By Proposition 3(5) and
Proposition 3(4), this is (¢—2n(w;, —w,,) —3)/4+(¢+2n(wj, —wj,)+1)/4 = (¢—1)/2
places. If a € N, the result follows from Proposition 3(6) and Proposition 3(3) in a
similar way. The last column of C intersects column j, with j < ¢, at either w; + @
or w; + N. That is, in (¢ — 1)/2 places also. For i # j with j < ¢, we see that row ¢
intersects column j in (¢ — 1)/4 4 (¢ + 3)/4 = (¢ + 1)/4 places by Proposition 3(1)
and Proposition 3(2). If ¢ = j, row ¢ intersects column j in either |Q|+ 1 or |N|+1
places, that is, in (¢ + 1)/2 places also. The last column of C' intersects row i of C
at w; + Qo or at w; + No. Again, in (¢ + 1)/2 places. O

Example 7 Order GF(5) as GF(5) = {0,1,2,3,4}. Take a = b = 2. The type 2
T A(10,3,3,2,3: 5 x 6) obtained from Theorem 6 is

0" 3 4" 1" 2
3 1" 4 0 2
34 2" 0 1
27470 31
2 3 01 4

= W N = O
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Example 8 Let a be a root of the primitive polynomial x> + z + 2 over GF(3).
Order GF(9) by GF(9) = {0,a,0?,...,a%}. Take a = a* and b = a®. The type 1
TA(18,5,5,4,5 : 9 x 10) obtained from Theorem 6 is

T o™ o o' 1 o a2 o ot 0 ]
ot ol 01 ot a’ a® P oa
af 1 o ab AT a0 o ot a?
a1 a0 o a7 ot a Al
1 A ab a? at AT o df 0 at
1" o a3 o & o 0 at o o
a2 o 0 a1 ot o a P b
a? af 1 ot a A0

Lot a® & a 0 o o af 17 1 |

Corollary 9 Suppose ¢ = 1(mod4). There are (¢ — 5)(q — 1)/16 pairs (a,b) with
a € Q that satisfy the conditions of Theorem 6 and there are (q — 1)?/16 pairs (a,b)
with a € N that satisfy the conditions of Theorem 6. In particular, Paley triple
arrays of type 1 exist for every q > 5 and Paley triple arrays of type 2 exist for every
q25.

Proof. By Proposition 3(5), [(1 + Q)N Q| = (¢ —2n(1) — 3)/4 = (¢ — 5)/4 and by
Proposition 3(1), |(—14+N)NQ| = (¢—1)/4. Also, by Proposition 3(1), |(1+Q)NN| =
(¢—1)/4 and by Proposition 3(6), [(=1+ N)NN| = (¢+2n(-=1)—3)/4 = (¢—1)/4.
The result now follows. |

Theorem 10 Suppose ¢ = 3(mod 4). Choose a and b such that (a —1)(b+ 1) € Q
and ifa —1 € N then ab € Q. Then C s a Paley triple array.

Proof. Here we arrive at six different types of triple arrays. (i) Assume a € Q) and
be Q. If a—1 € Q then row i and column j of C consists of

TOW 1% (wz + Ng) @] (wz + No)’
type 1
column j (w; + Q) U (w; + No)'

for 0 < j<gq. Ifa—1€ N then row ¢ and column j of C consists of

Tow i (w; + No) U (w; + No)'
type 2
column j (w; +N) U (w; + @)’

for 0 < j < ¢. The last column of C' consists of @ U N U {0}. Two different rows,
say 71 and iy, intersect in |(w;, + No) N (wi, + No)| + |(wiy, + No) N (wi, + No)| =
2|[(wi, — wiy) + No] N No| places. By Proposition 4(1), this is (¢ + 1)/2 places. If
a—1 € @ then two different columns, say j; and jo with ji,js < ¢, intersect in
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|(wj, + @) N (wj, + Q) + |(wj, + No) N (w, + No)| = [[(wj, —wj,) + QN Q|+
[[(wj, —wj,) + No] N Ny)| places. By Proposition 4(2) and Proposition 4(1), this is
(g —3)/4+ (¢+1)/4 = (¢ — 1)/2 places. The last column of C intersects column
J, with j < ¢, at w; + Q. That is, in (¢ — 1)/2 places also. If a — 1 € N the result
also follows from Proposition 4(2) and Proposition 4(1). For i # j with j < ¢, if
a—1 € @ we see that row 7 intersects column j in (¢+1)/4+ (¢+1)/4=(g+1)/2
places by Proposition 4(1). If @ —1 € N the result follows from Proposition 4(3)
and Proposition 4(6). If i = j, row ¢ intersects column j in either |No| or |N| +1
places, that is, in (¢ + 1)/2 places also. The last column of C intersects row ¢ of C'
at w; + Ny. Again, in (¢ + 1)/2 places.

The proofs of the other cases are similar. Here are their descriptions: (ii) Assume
a€ Nandbe N. If a —1 € @ then row ¢ and column j of C consists of

row i (wi + Qo) U (w; + Qo)’
type 3
column j (w; + N)U (w; + Qo)’
for 0 < j<gq. Ifa—1€ N then row ¢ and column j of C consists of
Tow 1 (wi + Qo) U (w; + Qo)’
type 4
column j (w; + Q) U (w; + Ny)'

As before, the last column of C' consists of Q U N U {0}. (iii) Assume a € () and
b € N. Here, row i and column j are

row 4 (wi 4+ No) U (w; + Qo)’
type 5
column j (w; + Q) U (w; + Qp)’

for 0 < j < g. As before, the last column of C' consists of QU N U {0}. (iv) Assume
a € N and b € Q. Here, row ¢ and column j are

TOW 1 (w; + Qo) U (w; + No)'
type 6
column j (w; + N)U (w; + No)'

for 0 < j < q. As before, the last column of C consists of @ U N U {0}. O

Example 11 Order GF(7) as GF(7) = {0,1,2,3,4,5,6} and take a =4 and b = 2.

The type 2 TA(14,4,4,3,4 : 7 x 8) obtained from Theorem 10 is

[0 3" 6" 6 5 3 5 0]
6 1/ 4" 0 0 6 4 1
5 0 2" 5 1" 1 0
1 6 1 3 6" 2" 2
3 200 2 4 7 3
4" 4 3" 1 3 5 1/
25" 5 4" 2 4 6

DU W N
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Corollary 12 Suppose ¢ = 3(mod 4). The construction in Theorem 10 yields (q —
3)2/16 Paley triple arrays of type 1, type 4 and type 5 and (¢ — 3)(g + 1)/16 Paley
triple arrays of type 2, type 3 and type 6. In particular, there exist Paley triple arrays
of each type for every q > 3.

Proof. This is similar to Corollary 9 with Proposition 4 replacing Proposition 3. [

Proposition 13 If g is prime and GF(q) is ordered by {0,1,2,...,q — 1} then Cy
has cyclic transversals. That is,

(where row and column numbers are interpreted as integers modulo q, when additions

are involved).

Proof. First notice that (i+ k) — (j + %) = ¢ —j. Thus all elements on a transversal
of Cy are either in GF(q) or all are in GF(q)'. Wheni—j € Q, C(i + k,j+ k) =
(it+k)—(i—j)/a=C(i,7) + k. It is similar when ¢ — j € Np. O

See Example 7 and Example 11 for examples of Proposition 13.
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