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Abstract

In this paper, it is shown that necessary and sufficient conditions for the
existence of a Pr-factorization of the complete bipartite graph K, , are
(1) 4n > 3m,

(2) 4m > 3n,

(3) m+n=0 (mod 7), and

(4) Tmn/[6(m + n)] is an integer.

1 Introduction

Let P, be the path on k vertices and K, , be the complete bipartite graph with
partite sets V; and V3, where |Vi| = m and |Va| = n. A subgraph F of K, is
called a spanning subgraph of K,,, if F' contains all the vertices of K, ,. A Py-
factor of K, , is a spanning subgraph F' of K,,, such that every component of F’
is a P, and every pair of P,’s have no vertex in common. A Pj-factorization of
K, is a set of edge-disjoint Py-factors of K, , which is a partition of the set of
edges of K, ,. In paper [6], the Py-factorization of K,,, is defined as a resolvable
(m,n, k,1) bipartite Py-design. The graph K,,, is called Pj-factorizable whenever
it has a Pj-factorization. For graph theoretical terms, see [4].

When £ is an even number, the spectrum problem for a Pj-factorization of K, ,,
has been completely solved (see [3], [6] and [8]). When k is an odd number, the
spectrum problem for a Pg-factorization of K, , seems to be much less tractable. In
the early paper [5], Ushio gave a necessary and sufficient condition for the existence
of Ps-factorization of K, ,. Some further work was done by Ushio and Tsuruno in
[7] and Du in [1], [2] and the author and B. Du in [9]. In paper [6], Ushio gave the
following conjecture (Conjecture 5.3 in [6]).

Conjecture 1.1 Let m and n be positive integers and &k be odd. Then K, ,
has a Pj-factorization if and only if (1) (k+ 1)n > (k= 1)m, (2) (k+ 1)m >
(k=1n, (3) m+n=0 (mod k), and (4) kmn/[(k — 1)(m + n)] is an integer.
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Very recently, Du and the author [10] have shown that Ushio Conjecture is true
for £ = 5. In this paper we will show that Ushio Conjecture is true when k = 7.
That is, we shall prove

Theorem 1.2 Let m and n be positive integers. Then K, , has a P;-factorization
if and only if

(1) 4n > 3m,

(2) 4m > 3n,

(3) m+n=0(mod 7), and

(4) Tmn/[6(m +n)] is an integer.

2 Main result

Using simple computation, we have the following necessary condition for the existence
of a Pr-factorization of the complete bipartite graph K, ,.

Theorem 2.1 If K,,, has a P;-factorization, then (1) 4n > 3m, (2) 4m >
3n, (3) m+n=0 (mod 7), and (4) Tmn/[6(m + n)] is an integer.

In the remainder of the paper we prove the sufficiency of Theorem 1.2. For any
two integers z and y, we use ged(z,y) to denote the greatest common divisor of =
and y. The following lemma is obvious.

Lemma 2.2 Let a, b, p and g be positive integers, if gcd(ap,bg) = 1, then

ged(ap + bg, pg) = 1.

We first prove the following result, which is used later in this paper.

Theorem 2.3 If K,,, has a P;-factorization, then Ky s, has a P;-factorization
for every positive integer s.

Proof Let {F;:1 < i < s} be a 1-factorization of K, (which exists by [4]). For
each i € {1,2,---,s}, replace every edge of F; by a K,, , to get a factor G; of Ky, s,
such that the graph G; are pairwise edge-disjoint and their union is K,p . Since
K, » has a Pr-factorization, it is clear that the graph Gj, too, has a Pr-factorization.
Consequently, Kyp, sn has a Pr-factorization. This proves the theorem.

Now we start to prove our main result Theorem 1.2. There are three cases to
consider.

Case 4m = 3n: In this case, from Theorem 2.3, K, , has a Pr-factorization, since
K34 has a Pr-factorization:

Y121Y2L2Y3L3Y4, Y3L1YaL2y1L3Y2-
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Case 3m = 4n: Obviously, K, , has a Pr-factorization.

Case 4m > 3n and 4n > 3m: In this case, let @ = (4n — 3m)/7, b = (4dm —
3n)/7, t = (m+n)/7, and r = Tmn/[6(m + n)]. Then from Conditions (1)—(4) in
Theorem 1.2, a, b, t,r are integers and 0 < a < m and 0 < b < n. We have 3a+4b =m
and 4a 4 3b = n. Hence r = 2(a + b) + ab/[6(a + b)]. Let z = ab/[6(a + b)], which is
a positive integer. And let ged(3a,4b) = d, 3a = dp, 4b = dq, where gcd(p,q) = 1.
Then z = dpq/[6(4p + 3¢)]. These equalities imply the following equalities:

6(4p + 39)z
pg
6(p +¢)(4p + 3¢)2
Pq ’
(16p +9¢)(4p + 39)z
2pq
(p+q)(16p +99g)z
pq ’
2p(4p + 3q)=
pq ’
3q(4p + 3q)=
2pg

d=

b

b=

Now we can establish the following lemma.

Lemma 2.4

(1) If ged(p,9) = 1 and gcd(q, 16) = 1, then
m = 12(p + q)(4p + 3q)s, n = (16p +9¢)(4p + 3q)s,
a=4p(dp+3q)s, b=3q(4p+3q)s, r=2(p+q)(16p+ 9q)s,
for some positive integer s.
(2) If ged(p,9) = 1 and ged(q,16) = 2, let ¢ = 2¢;. Then
m = 6(p+ 2¢1)(2p + 3q1)s, n = (8p+9q1)(2p + 3q1)s,
a=2p(2p+3q)s, b=3q(2p+3q)s, = (p+2¢)8p+9q)s,
for some positive integer s.
(3) If ged(p,9) =1 and ged(q,16) =4, let ¢ = 4gs. Then
m = 6(p +4¢2)(p + 3¢2)s, n=2(4p +9¢2)(p + 3¢2)s,
a=2p(p+3q)s, b=06q(p+3a)s, 7= (p+4g)4p+9%)s,
for some positive integer s.

(4) If gcd(p,9) = 1 and ged(q,16) =8, let ¢ = 8¢q3. Then
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m=3(p+8a¢s)(p+6g3)s, n=2(2p+9g3)(p+ 6gs)s,
a=p(p+6q¢s)s, b=06qs(p+6qs)s, 7= (p+8¢s)(2p+9g3)s,

for some positive integer s.

(5) If ged(p,9) = 1 and ged(g, 16) = 16, let ¢ = 16qs. Then

m = 3(p+ 16¢s)(p + 12q4)s, n =4(p +9q)(p + 12q4)s,
a=p(p+12q4)s, b=12q4(p+ 12q4)s, r=2(p+ 16¢4)(p + 9q4)s,

for some positive integer s.

(6) If ged(p,9) = 3 and ged(q,16) = 1, let p = 3p1. Then

m = 12(3p: + q)(4p1 +q)s, n =3(16p: + 3¢)(4p1 + q)s,
a=12p,(4py +q)s, b=3q(4pr +q)s, 1 =2(3p; + q)(16p: + 3q)s,

for some positive integer s.

(7) If ged(p,9) = 3 and ged(g, 16) = 2, let p = 3py and g = 2q,. Then

m = 6(3p1 +2¢:1)(2p1 + @1)s, 1 =3(8p1 + 3¢1)(2p1 + q1)s,
a=06pi(2p1+q1)s, b=3qu2p1 +aq)s, 7= (3p1+2q:)8p1+ 3aq1)s,

for some positive integer s.

(8) If ged(p,9) = 3 and ged(q,16) = 4, let p = 3py and ¢ = 4qs. Then

m = 6(3p1 + 4g2)(p1 + @2)s, 1 =6(4p1 + 3¢2)(p1 + @2)s,
a=06pi(p1+q)s, b=0q(pi+q)s, 7= (3p1+4q)4p: + 3¢)s,

for some positive integer s.

(9) If ged(p,9) = 3 and ged(g,16) = 8, let p = 3p; and g = 8q3. Then

m = 3(3p1 + 8g3)(p1 +2g3)s, 1 =6(2p1 + 3g3)(p1 + 23)s,
a=3pi(p1 +2g3)s, b=06qs(p1+2¢3)s, 7 =(3p1+8q3)(2p1+ 3q3)s,

for some positive integer s.

(10) If ged(p,9) = 3 and ged(q,16) = 16, let p = 3p; and ¢ = 16qs. Then

m = 3(3p1 + 16qs)(p1 + 4qs)s, n =12(p1 + 3qs)(p1 + 4qu)s,
a=3pi(p1 +4qa)s, b=12q(p1+ 4qs)s, 7 =2(3p1 + 16q4)(p1 + 3q4)s,
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for some positive integer s.

(11) If ged(p,9) =9 and ged(q,16) = 1, let p = 9py. Then

m = 4(9p2 + q)(12p; + q)s, n =3(16p; + q)(12p2 + q)s,
a=12py(12p; +q)s, b=q(12p; +q)s, r=2(9p2+ q)(16ps + q)s,

for some positive integer s.

(12) If ged(p,9) = 9 and ged(q,16) = 2, let p = 9py and ¢ = 2q;. Then

m = 2(9p2 + 2q1)(6p; + a1)s, n =3(8pz + q1)(6p: + q1)s,
a=06p:(6p+aq1)s, b=aq(bp2+aq1)s, =92+ 2q1)(8p2 + 3q1)s,

for some positive integer s.

(13) If ged(p,9) = 9 and ged(q, 16) =4, let p = 9py and ¢ = 4q>. Then

m = 2(9p2 + 4‘12)(3172 + Q2)57 n= 6(4p2 + Q2)(3p2 + CZ2)8,
a=06p:(3p2+q2)s, b=2¢(3p2+¢q2)s, 1= (9p2+4q:)(4p2 + @2)s,

for some positive integer s.

(14) If ged(p,9) = 9 and ged(q,16) = 8, let p = Ipy and ¢ = 8qs. Then

m = (9p2 + 8qs)(3p2 + 2¢3)s, 1 = 6(2p2 + q3)(3p2 + 2¢3)s,
a=3p2(3p2+ 2g3)s, b =2q3(3p2 +2q3)s, = (92 + 8¢3)(2p2 + g3)s,

for some positive integer s.

(15) If ged(p,9) = 9 and ged(q, 16) = 16, let p = 9py and ¢ = 16qs. Then

m = (9p2 + 16q4)(3p2 +4q4)s, n = 12(p2 + q4)(3p2 + 4q4)s,
a=3p2(3p2 +4qs)s, b=4qi(3p; +4qs)s, 1 =2(9p; + 16¢4)(p2 + q4)s,

for some positive integer s.

Proof We assume that gcd(p,¢) = 1, ged(p,9) = 1 and ged(g, 16) = 1 hold. Then
ged(16p + 9¢,2) = ged(4p + 3¢,2) = 1 and ged(16p, 9g) = ged(4p, 3¢) = 1 hold. It
is easy to see that n = (16p + 9¢)(4p + 3¢)2z/(2pq). By Lemma 2.2, we see that
ged(16p+9q,pq) = ged(4p+ 3¢, pq) = 1. Therefore, 2/(2pg) must be an integer. Let
s = z/(2pq). Then the equalities in (1) hold.

The proof of the equalities in (2)—(4), (6)—(10) and (12)—(15) are similar to (1).

We assume that ged(p,q) = 1, ged(p,9) = 1, ged(g, 16) = 16 and ¢ = 16¢4 hold.
Then ged(p+ 1644, 2) = ged(p+ 12¢4,2) = 1 and ged(p, 16g4) = ged(p, 9¢4) = 1 hold.
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It is easy to see that 7 = (p + 16¢4)(p + 994)z/(pgs). By Lemma 2.2, we see that
ged(p + 16q4, pgs) = ged(p 4 9qa,pgs) = 1. Therefore, 2/(pgs) must be an integer.
Let 2" = 2/(pgs). Then we have m = 3(p + 16q4)(p + 12¢4)z'/2 is an integer. We see
2'/2 must be an integer. Let s = 2'/2. Then the equalities in (5) hold.

The proof of the equalities in (11) are similar to (5).
This proves the lemma.

For our main result, we need the following direct constructions. We use [z] to
denote the least integer not less than z and |z| the largest integer not exceeding z.

Lemma 2.5 For any positive integers p and q, let m = 6(p + 29)(2p + 3q) and
n = (8p+9q¢)(2p + 3q). Then K,,, has a P;-factorization.

Proof Let a =2p(2p+3q), b=3¢(2p+3q), r = (p+ 2¢)(8p+9¢), 11 = p+2¢ and
ry = 8p+9¢. Let X and Y be two partite sets of K, , and set
X={2;;:1<i<r, 1<j<6(2p+39)},
Y={yi;:1<i<ry, 1<5<2p+ 3¢}
We will construct a Pr-factorization of K,,,. We remark in advance that the
additions in the first subscripts of x;;’s and y;;’s are taken modulo r; and r; in
{1,2,---,71} and {1,2,---,rs}, respectively, and the additions in the second sub-

scripts of x;;’s and y;;’s are taken modulo 6(2p + 3¢) and 2p + 3¢ in {1,2,---,
6(2p+3¢)} and {1,2,---,2p + 3¢}, respectively.

For each 1 <i < p, let

Ei = {xi,j+(2p+3q)(uf1)+3(2p+3q)vy8(171)+4v+u+w,j+2i—1+w
1<j<2p+3¢, 1<u<3, 0<v<1, 0<w< 1),

For each 1 <t < g, let B,y =

{wp+2(i*1)+f(u+w)/27 I+ (2p+3¢) (v—1)+3(2p+3¢) [1 - ([u/2] — [u/2])](1—w)+3(2p+3q) ([u/2]—u/2] )w

Y8p+9(i—1)+3(v—1)+u,2p+j+3(i—1)+u
1<j<2p+3¢, 1<u<3, 1<v <3, 0w 1)

Let F' = Uj<i<ptq Fi- Then the graph F'is a Pr-factor of K, ,. Define a bijection
o from X UY onto X UY in such a way that o(z;;) = =41, and o(yi;) = Yiy1,-
For each i € {1,2,---,m} and each j € {1,2,---, 7}, let

F,j={o(x)oi(y) :x € X,y € Y,zy € F}.
It is easy to show that the graphs F;; (1 < ¢ <7y, 1 < j < ry) are Pr-factors of K, ,

and their union is K, ,. Thus, {F;; : 1 <i<ry, 1 <j<ry} is a Pr-factorization
of Ky, . This proves the lemma.
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The proof of the following lemma is similar to Lemma 2.5, so we only give the
representions of X, Y, E; and E,,.

Lemma 2.6 For any positive integers p and q, let m = 6(p + 4¢)(p + 3q) and
n =2(4p+9q)(p + 3q). Then Ky, has a Pr-factorization.

Proof Let a = 2p(p + 3q), b = 6q(p + 3q), r = (p +4q)(4p + 9¢), 11 = p + 4q,
ry = 4p + 9¢ and

X={;;:1<i<r,1<j<6(p+39)},
Y ={y;:1<i<r, 1<j<2(p+3g)}.

For each 1 <17 < p, let

E; = {xi,j+2(p+3q)uy4(if1)+u+v+1,j+2i71+v
1< <2(p+3g), 0<u<2 0<v<1)

For each 1 <1 < g, let

Ep+i = {wp+4(i*1)+u+w,j+2(p+3q)vy4p+9(if1)+3v+u,2p+j+6(i71)+2u+w71
1< j<2p+3q), 1<u<3,0<0v<2 0<w< 1),

Lemma 2.7 For any positive integers p and ¢, let m = 3(p + 8¢)(p + 6¢) and
n=22p+9q)(p+6q). Then K, has a Pr-factorization.

Proof Let a = p(p+ 6q), b = 6q(p + 69), » = (p + 8¢)(2p + 9¢), r1 = p + 8¢,
ry = 2p + 9¢ and

X={z;;:1<i<r, 1<j<3(p+6q¢)},
Y ={y;;:1<i<ry, 1<j<2(p+6q)}.

For each 1 <i < p, let

E; = {xi,jJr(ﬁJrGQ)(ufl)y2(i*1)+f(u+v)/27 JHit1=(Tu/2] = [w/2])](p+6a) (1-v)+([w/2] - [u/2])(p+6q)v
1<j<p+6g 1<u<3 0<v< 1)

For each 1 <1 < g, let

Ep+i = {wp+4u+8(i71)+w+v,j+(p+6q)(h71)y2p+9(i71)+3(h*1)+w,j+(p+6q)u+ﬁ+w+3v+6(if1)
11<j<p+6q, 0<u<1, 0<v<1, 1<w<3, 1<h<3)

Lemma 2.8 For any positive integers p and ¢, let m = 6(3p + 2¢)(2p + ¢q) and
n=38p+3q)(2p+q). Then Ky, has a Pr-factorization.
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Proof Let a =6p(2p+q), b =3¢(2p+q), » = (3p+ 2¢)(8p + 3q), 1 = 3p + 2¢,
ry = 8p + 3¢ and

X={r;; :1<i<r,1<j<6@2p+q)},
Y={y; :1<i<ry, 1<5<3(12p+9)}

For each 1 <1 < p, let

E; = {«’Us(171)+u,j+3(2p+q)vy8(171)+4v+u+w,j+6(i71)+2u+w71
11<j<3(2p+q), 1<u<3,0<0v<1, 0<w< 1}

For each 1 <1 < g, let

Epyi = {I3p+2(i—1)+[(u+v)/21,j+3(2P+Q)[1—(M/ﬂ—Lu/ZJ)](1—v)+3(2p+¢1)(M/ﬂ—[u/ZJ)v

Y-p+3(i—1)+u,6p+j+u+3(i—1)
1< <3(2p+q), 1<u<3, 0<v< 1)

Lemma 2.9 For any positive integers p and q, let m = 6(3p + 4q)(p + q) and
n=06(4p+3q)(p+q). Then Ky, has a Pr-factorization.

Proof Let a = 6p(p + ¢), b = 6q(p + q), r = (3p + 4¢)(4p + 3q), r1 = 3p + 4gq,
ry = 4p + 3¢ and

X={z;;:1<i<r, 1<j<6(p+q)},
Y={y;:1<i<r, 1<j<6(p+q)}

For each 1 <1 < p, let

E; = {-r3(i—1)+u,jy4(i—1)+u+v,j+6(i—1)+2(u—1)+v
11<j<6(p+q), 1<u<3 0<v<1}),

For each 1 <1 < g, let

Epti = {@aptai—1)+utv, Yap3(i—1)+u6p-j-—6(i—1)+2(u—1)+v
11<j<6(p+q), 1<u<3, 0<v < 1)

The proof of Theorem 1.2: By applying Theorem 2.3 with Lemmas 2.4 to 2.9, it
can be seen that when the parameters m and n satisfy conditions (1)—(4) in Theorem
1.2, the graph K, , has a Pr-factorization. This completes the proof of Theorem 1.2.
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