AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 33 (2005), Pages 109-123

Critical sets in orthogonal arrays with 7 and 9 levels

RiTAa SAHARAY

Stat-Math Unit, Indian Statistical Institute
203 B. T. Road, Kolkata-700 108
India
rita@isical.ac.in

AVISHEK ADHIKARI

Applied Statistics Unit, Indian Statistical Institute
203 B. T. Road, Kolkata-700 108
India
avishek_r@isical.ac.in

JENNIFER SEBERRY

Center for Computer Security Research, SITACS
University of Wollongong, NSW 2522
Australia
jennifer_seberryQuow.edu.au

Abstract

To date very few results are known on the critical sets for a set of Mutually
Orthogonal Latin Squares(MOLS). In this paper, we consider Orthogonal
Array OA(n? k +2,n,2) constructed from k mutually orthogonal cyclic
latin squares of order n and obtain bounds on the possible sizes of the
minimal critical sets. In particular, for n = 7 we exhibit a critical set,
thereby improving the bound reported in Keedwell (1997). The problem
is also addressed for n = 9 and a critical set is also presented.

1 Introduction

A number of authors have studied critical sets which consist of the minimum amount
of information needed to recreate combinatorial structures uniquely. This research
has been motivated by studies of secret sharing schemes by Cooper, Donovan and
Seberry [4], Chaudhry et al. [2, 3] key distribution schemes by Merkel [15], data
compression and defence against denial of service attacks and some problems in the
design of experiments. Results on critical sets for latin squares which have a number
of applications in both agriculture and cryptology have appeared in papers by Nelder
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[16], Smetaniuk [17], Curran and Van Rees [7], Cooper, Donovan and Seberry [5],
Gower [12], Donovan and Cooper [9] and Donovan and Howse [10]. To date, very few
results on critical sets for a set of two or more pairwise orthogonal latin squares are
known. The only work known to the authors is that of Keedwell [13] which gives a
lower bound of the size of the minimal critical set for a set of k pairwise orthogonal
latin squares of order n. This lower bound is also shown to be attainable for n = 3,
4 and 5 and an upper bound, only, is obtained for n = 4 and 7. In the present paper
we consider Orthogonal Array OA(n?, k + 2,n,2) denoted hereafter by simply OA,
constructed from k mutually orthogonal latin squares and obtain bounds of the size
of the critical sets. As it is well known that the existence of an orthogonal array OA
is equivalent to the existence of Mutually Orthogonal Latin Squares (MOLS), there
is a close connection between Cpy4, the size of a critical set for an OA and ¢, the
size of a critical set for a latin square of order n. There is not a lot known about the
critical sets for latin squares in general. However, a class of critical sets is known for
a back circulant latin square which is a particular latin square having the initial row
in the standard form and subsequent rows are formed by translating the previous
row one element to the left. Starting with a back circulant latin square L; of order n,
for a set S of k, k > 2 mutually orthogonal cyclic latin squares Keedwell [13] showed
that the size of a minimal critical set for n = 7 is at most h + 15 + 6(k — 3) where h
is the cardinality of the minimum number of cells required to complete L; uniquely
as a member of S. In the present paper, in section 3, for n = 7 we exhibit a critical
set of size h + 13 + 6(k — 3) for S or equivalently for OA(49,k + 2,7,2). Thus for
n = 7 the upper bound given in Keedwell [13] is reduced by 2 and we conjecture
that this bound cannot be further improved. In section 4, we consider the case of
n = 9 and exhibit a critical set for Ly, where Lo is a cyclic orthogonal mate of the
back circulant latin square L; and all of its rows starting from the second row are
formed by translating the previous row 2 elements to the left. An upper bound for
the critical set for the corresponding OA constructed from S = {L;, L,} is also
suggested. The critical set produced in each case is indicated by bold font in this
paper.

Before discussing the main results some background information is needed which
is given in the next section.

2 Preliminary Definitions and Notations

In this section, we draw the readers’ attention to the definitions and known results
on critical sets for latin squares of order n which will be used hereafter to derive the
main results.

A latin square L of order n is an n X n array with entries chosen from a set NV
of size n such that each element of N occurs precisely once in each row and in each
column. In what follows N is assumed to be {1,2,---,n}. For convenience a latin
square L of order n is sometimes represented by a set of ordered triplets {(i, 7, k)|
element k occurs in the position (,7), 4,7,k € N}.

A partial latin square P of order n is an n X n array with entries chosen from N
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such that each element of NV occurs at most once in each row and in each column of
P. Then |P| is said to be the size of the partial latin square and the set of positions
Sp=A{(i,5)| (¢,4,k) € P, 3k € N} is said to determine the shape of P. Let P and
P’ be two partial latin squares of the same order, with the same size and shape. Then
P and P’ are said to be mutually balanced if the entries in each row (and column)
of P are the same as those in the corresponding row (and column) of P’. They are
said to be disjoint if no position in P’ contains the same entry as the corresponding
position in P.

A latin interchange (also referred to as latin trade, cf. Keedwell [14]) I is a partial
latin square for which there exists another partial latin square I’ of the same order,
size and shape with the property that I and I’ are disjoint and mutually balanced.

A Uniquely Completable set (UC set) U of triplets is such that there is only one
latin square L of order n which has element & in position (i, j), for each (4, j, k) € U.

A set C is said to be a critical set if it is a UC set and omitting any element
from C destroys this property. A minimal critical set is a critical set of the smallest
possible size.

A UC set of cell entries for a set of MOLS is called strong if the cell entries in
the entire set of squares can be successively filled by a sequence of adjunctions of cell
entries to individual squares of the set each of which is forced. A UC set which is
not strong is called weak.

A k x m matrix A with entries from a set of s (> 2) elements is called an
orthogonal array of size m, k constraints, s levels, strength ¢, and index X if any
t x m submatrix of A contains all possible ¢ x 1 column vectors with the same
frequency A. Such an array is denoted by OA(m,k,s,t). In the present paper we
deal with the orthogonal arrays constructed from a set of MOLS only. To this end
we observe that if M = {My, M,,...., My} is a set of & MOLS of order n on the

symbols {1,2,...,n} where the entries of M; are denoted by mj;,i,j = 1,2,...,n,
the following is an OA(n% k +2,n,2).
1 1 o1 2 2 e 2 n n n
1 2 e M 1 2 e M 1 2 n
1 1 1 1 1 1 1 1 1
mél m%2 mé" m31 m32 m%” ....... mng mg2 mgm
mi, Miy ... Mi, My Miy e Myy e my, My, my.
k k k k k k k k k
my, miy, ... My, My Mgy ... MG . My, Myy oo My

See Abel [1] for more details.

While there are n — 1 mutually orthogonal latin squares of every order n, a
prime or prime power, not every latin square of prime or prime power order has
n — 1 mutually orthogonal mates or even necessarily one orthogonal mate. So in
the following, we start with a back circulant latin square L; of order n, n odd and
concentrate on a set of mutually orthogonal mates of L;. Furthermore, in the present
context of shared security system used in financial institutions, in communication
network or defence, where a set of mutually orthogonal latin squares is taken to
be the secret key or password and therefore kept private, it is not legitimate to
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assume the latin squares are in the semi standard form to start with, because this
would release complete information about the first row. So in this paper, we deal
with MOLS having its initial row as any permutation of the symbols {1,2,...,n}
viz. {p1,pa,...,pn} and try to identify a minimal critical set for the corresponding
orthogonal array. However, for simplicity in notations, without loss of generality, we
refer to p; as j in our subsequent discussion. It is to be noted that all mathematical
operations discussed in this paper are taken modulo n, however, we use symbol n
instead of 0.

Definition 2.1 We say a latin square L; of order n, is a cyclic latin square if its
(i,7)th cell contains the entry 14+ (i — 1)t +(j — 1), t=1,2,...,n —1,4,j € N.

Definition 2.2 A critical set of size Coa, for an orthogonal array OA(n? k+2,n,2)
is a set C={(i,5,0) | i €{3,4,....k+2}; j€{1,2,....,n%}; L€ {1,2,...,n}} such
that:

(i) OA is the only Orthogonal Array of the format given above which has element ¢
in the position (i, 7) for each  (i,7,0) € C.

(i1) No proper subset of C satisfies (i).

A minimal critical set (mcs) of an OA is a critical set of minimum cardinality.

We now quote the results on critical sets for latin squares of order n which will
be used to obtain a minimal critical set for the corresponding OA.
The next Lemma is due to Cooper, Donovan and Seberry [4].

Lemma 2.3 Let n = 2m + 1, for some positive integer m and

C = {(,5,i+j-1)]i=1,....,(n—=1)/2and j=1,...,(n —1)/2 =i + 1}
U {(jiti—1)]i=m+1)/2+1,....n, andj=(n+3)/2—1i,....n}

Then C is a critical set for a back circulant latin square of order n.

Definition 2.4 Two latin squares L and M of order n are said to be isotopic or
equivalent if there exists an ordered triplet (o, B,7) of permutations such that «, 3,7
map the rows, columns and the elements respectively of L onto M. That is, if
(i,7,k) € L, then (ia, jB,kvy) € M.

Along the same lines two critical sets A and B of the same order are said to be
isotopic if for all (z,y,z) € A, (za,yp,27) € B.

The following result on isotopism of critical sets for a latin square is quoted from
Donovan, Cooper, Nott and Seberry [8].

Theorem 2.5 Let L be a latin square of order n with a critical set A. Let (a, B,7)
be an isotopism from the critical set A onto A. Then A s a critical set in a latin
square L of order n and L is isotopic to L.

Definition 2.6 In annxn array, a transversal is a collection of n cells {(i1, j1),-- -,
(tnyjn)} where (i1,...,0,) and (j1,...,Jn) represent permutations of the numbers
{1,2,..n}.
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Now we define two special transversals pertinent to our discussion in this paper.

Definition 2.7 In an n X n array, for i € N, the transversal {(1,7), (2,7 — 1),...,
(n,i —n+1)} is termed as the ith reverse transversal denoted by T;.

Definition 2.8 In an n X n array, for i € N, the transversal {(1,7), (2,7 — 2),...,
(n,i—2n+2)} is termed as one step back reverse transversal denoted by yT;.

We denote the ith row and the jth column of any n X n array by R; and Cj; respec-
tively.

Remark 1 : It is evident that in the back circulant latin square L;, the ith symbol
occurs in the i th reverse transversal. Also note that any L;, t € {2,...,n—1} with ¢
and n coprime, has its first row in the standard form and subsequent rows are formed
by translating the previous row t elements to the left.

3 Critical sets for Mutually Orthogonal Latin Squares and
Orthogonal Arrays with 7 levels

In view of the close connection between mutually orthogonal latin squares and or-
thogonal arrays discussed in the previous section the following lemma is immediate.

Lemma 3.1 If the number of elements in the minimal critical set for each M, t =
1,2,...k in a set of k MOLS is at most cg, the set of mutually orthogonal latin squares
of order n can be completed from kc, elements. Hence the minimal critical set for
the OA(n* k +2,n,2) or equivalently a set of k MOLS of order n satisfies

Coa < key.

The only research work known to the authors improving the above upper bound
is due to Keedwell [13]. He carried out a preliminary investigation on the size of a
minimal critical set for a set of mutually orthogonal latin squares of small orders.
For the sake of completeness, we refer below to two main theorems of Keedwell [13]
in this connection.

Theorem 3.2 Let M be a set of k pairwise orthogonal n X n latin squares My, My,
.oy My. Foreachi,i=1,2,...,k, let h; be the cardinality of the smallest number of
cells of the latin square M; that enable it to be completed uniquely as a member of M
when the entries in those cells are specified. Let h, called the smallest UC cardinality,
be the smallest of the h;’s. Then the size of the minimal critical set for M is not less
than h+ (k —1)(n —1).

Keedwell [13] showed by actual construction that for a complete set of n — 1 or
for a set of k, k < n—1, pairwise orthogonal latin squares of order n the lower bound
given in the above theorem is attainable for n =3, 4 and 5. However, he claimed
that for n = 7 this lower bound is no longer attainable and through construction of
a UC set he proved the following result.
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Theorem 3.3 For a set of k, 3 < k <7, pairwise orthogonal latin squares of order
7, the size of the minimal critical set is at most h+ 15+ 6(k — 3) where h is defined
as in Theorem 3.2. For sets of 2 and 3 cyclic pairwise orthogonal latin squares, the
sizes of a minimal critical set are at most h+ 8 and h + 15 respectively.

Remark 2: Even though the statement of the above theorem is quite general in
the proof Keedwell dealt only with the cyclic latin squares L;, t = 1,2,...,6 as
defined above. Moreover he started with the sequence L, L, and L; and showed
that whatever be the fourth member the theorem holds. In a subsequent theorem he
showed that uniquely completable sets of 7 and 6 cells respectively exist by means of
which L4 and L3 can be completed to members of the triad Ly, Ly, Ly or quadruple
Ly, Ly, Ly, Ly of orthogonal latin squares of order 7.
Remark 3: We note that once L; and Ly are chosen in order, any latin square
orthogonal to both of these is necessarily a cyclic one viz. Ly, t = 3,4,5,6. However
any orthogonal mate of L; is not necessarily a cyclic one. So along the lines of
Keedwell we confine ourselves to the set of cyclic mutually orthogonal latin squares
only, and the first two members are chosen, in order, as L; and L,. Moreover, the
third member is chosen to be L4, to emphasize the redundancy of the elements in
the chosen UC set of Keedwell.

In what follows, through construction of critical sets, we establish that for n =7
the upper bound given in Keedwell [13] can be further reduced by 2. To this end,
we proceed through the following lemmas.

Lemma 3.4 For a set S = {Li, Ls} of cyclic mutually orthogonal latin squares of
order 7, the size of the minimal critical set is at most h + 7 where h is the smallest
UC cardinality.

Proof: The proof is by construction. We assume that guided by Lemma 2.3, L; may
be completed uniquely from a set of 12 elements given in Fig. 1. We now complete
L, using its orthogonality to L; from the 7 specified entries as shown in Fig. 2 below.

1123 1 3
213 3 5
3
4
4
415 7 2
41516
Fig. 1 Fig. 2
Towards unique completion of Ly from the set C' where,
C = {(17 17 1)7 (17 3’ 3)’ (27 17 3)’ (27 3’ 5)’ (47 5’4)’ (67 4’ 7)’ (67 6’ 2)}7 (3'1)

we argue as follows :
Step 1: First note that the ith symbol occurs in the ith reverse transversal T; in Ly
forcing the symbols along T; of L, to be all distinct. Thus, the symbol 3 in C7 can
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occur in one of the cells (5,7) or (6,7) or (7,7). But 3 in (5,7) will force the placement
of 31in Cj at (3,5) leading no choice for 3 left in Cy. Similarly choice of 3 in (7,7) will
determine the placement of 3 in Cy,C4 and Cs in order uniquely, leading no place
left for 3 in Cs. Thus 3 is uniquely placed in (6,7) forcing unique placement of 3 in
Cs, Cs, Cy, Cy sequentially.

Step 2: Now the only choice for 5 along Tj is (5,4) or (7,2). Placement of 5 in
(7,2) will determine the position of 5 uniquely in Cy, C1, Cg sequentially, and hence
determine the symbols along 77 uniquely. Consequently all the possible placements
of 1 in C4 will place 1 sequentially in Cy and Cj, finally leading to a contradiction in
the placement of 1 either in Cy or Cr. Thus 5 along T} has to be in (5,4).

Step 3: Now 7 in T; can be in (2,7) or (7,2). If it is in (2,7), occurrences of 2 and
6 are fixed along T;. Now 2 in Cy can be placed at two places viz. (2,4) and (3,4).
Placement of 2 in Cy at (2,4) determines 2 in Cy, Cs,C7 and C5 sequentially. Then
the possibilities remaining for 7 in Cj are (3,3) or (5,3). But 7 in C5 at (5,3) leads to
a contradiction in the placement of 7 in C) after determining, in order, its position
in C5,Cg and Cs in order. Similarly 7 in (3,3) forces 7 in C5 at (1,2) leaving no place
for 7in C5. Thus 2 in Cy at (2,4) is not possible. But 2 in Cy at (3,4) is also not
possible since then 2 in C; should be at (5,1) leaving no place for 2 in C5. Hence 7
along T; should be at (7,2) uniquely determining T7.

Step 4: Now 2 can be assigned to (3,4) or (7,4) in Cy, but placement of 2 at (3,4)
leads to two possible choices of 2 in C5 which leads to a contradiction in the placement
of 2 either in ' or sequentially in C5 and C, respectively. So 2 has to be placed in
04 at (7,4)

Step 5: Placement of 2 is now uniquely determined in C;, Cy, Cs3, Cy sequentially.
Step 6: Placement of 1 in Cy can now be at (2,4) or (3,4). If it is in (2,4), possible
allocations of 1 in Cj are at (5,5) or (6,5). But placement of 1 in (5,5) leads to a
contradiction in the placement of 1 in C3 whereas placement of 1 in (6,5) uniquely
determines 1 in Cy at (4,6), in R at (3,2), in C; at (5,3). Then 5 is uniquely placed
in Cs at (1,5), leading to a contradiction in the placement of 5 in Cy. Thus 1 in C4
must be in (3,4).

Step 7: Now 1 in Cs can be in (5,5) or (6,5). But (5,5,1) leads to a contradiction
in placement of 1 in C3. Hence (6,5) should contain 1. Then the positions of 1 in
Cs, Cr, C3, Cq are determined uniquely. Now the positions of 5 is determined uniquely
in Cy, C5, C1, Cs, C7 sequentially. Hence Ly can be filled uniquely as follows.

Ly: (3.2)

o x| po| ~1| o) o| =
| ot wo| =] o] | o
S ECIRN RS
| | ot | —| o i
w| —| o x| po| ~3] ot
N~ o w| —|o
o | | o k| N ~1

To show that the set C' given in (3.1) is a critical set, we have to verify that no
proper subset can be completed to a unique latin square orthogonal to L;. It suffices
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to verify that deleting one element at a time from C there exist more than one latin
square orthogonal to L;. To this end, for each deletion of a single element (4, j, k) € C
we exhibit below one more orthogonal latin square different from L, denoted by L5 .
The notation r <+ s denotes that the new latin square is obtained by interchanging
the symbols r and s in L.

6234|517 1/2/6|4(5|3]|7 1/2/3|4|5(6|7
4151|1762 3|7|/5(1(2]4|6 6751243
5(1(7]6(2|3 |4 4111263715 41112|3(6|7|5
71623451 613|7|5(4|1|2 3|16|7|54|1|2
213(4]5(1|7/|6 7T14/112(6|5|3 714/112/3]5|6
4151171623 5(6(3[7|1/2]|4 513/6(7|1]|2|4
1|17(6[2(3|4]|5 2151413 |7]6|1 2151416 7(3]|1
L5 160 78 iy
1(2(3[4(6|5]|7 1/2/3|4|5|716 1(2/3|4|5|716
314/6|5|7|1|2 314/5(6[2|1|7 3/4|/5|7/6|1]2
6(5/7|1(2|3|4 7T1112|3|4/615 5[716|1(2|34
711/2|3|4|6|5 6715|342 611/2|34|5]|7
21314]6|5|7|1 4167|2153 21314|5|7|6|1
4165|7123 5[3/4|7/6|2]|1 4157161123
5171112 (3|4|6 215161734 716/1]2(3(4]5
LB 5+ 6 L% L8 67

112(3/4/5|6|7

3(7|5(6]1(4]|2

416|123 |7]|5

213|7|5(4|1|6

7141213|/6]|5]|1

511(6|7|2|3|4

6(5|14|1/7(2|3

L§°
This ends the proof of Lemma 3.4. a

Remark 4: It is interesting to note that for a completion as a latin square Lo
requires at least 8 cell entries to be specified (cf. Cooper, McDonough and Mavron
[6] and Fu, Fu and Rodger [11]) where as the condition of orthogonality reduces the
size of the critical set to 7. It is also to be noted that that here the critical set C' is
weakly completable set.

Conjecture: A second latin square mutually orthogonal to a back circulant latin
square cannot be completed uniquely, using orthogonality, from a set of 6 or fewer
elements .

Lemma 3.5 For a set S = {L1, Ly, Ly} of cyclic mutually orthogonal latin squares
of order 7, the size of the minimal critical set is at most h + 13, where h s the
smallest UC' cardinality.
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Proof: The proof is by construction. Using orthogonality to both L; and L, we
show that a third mutually orthogonal latin square L4 can be completed from the
six specified entries given in Figure 3.

1
7
3
6 2
5
Fig. 3
To be precise, we will show here that
Cc={(1,1,1),(2,3,7),(3,2,3),(5,4,6),(5,7,2),(6,6,5)} (3.3)

is a critical set for L.

Note that in Ly, ,T; contains the ith symbol for ¢ = 1,2, ...,7. Hence orthogonality
of Ly to both L; and L, demands that in L, all the symbols along the transversals
v 15, as well as T, should be different. We start with placement of 1 along T} in L.
Step 1: 1 in Ty can only occur in (7,5) and hence T} is determined uniquely. Now
along T3, 1 can be possible only at (2,2) or (5,6) or (4,7). If 1 is placed at (2,2),
then the only possibility for 1 in Cg is at (4,6) and in C7 at (6,7) which lead to a
contradiction to the orthogonality of Ly and L, along ;T3 in the cell positions (6,7)
and (7,5). Again 1 in (4,7) leaves no place for 1 in Cs. Thus 1 has to occur along T
in (5,6).

Step 2: Now 1 is uniquely determined in C7, C3, Cy, Cy sequentially at (3,7), (4,3),
(2,4) and (6,2) respectively.

Step 3: Now 6 in Cy can be at (1,2) or (2,2). But 6 in (1,2) leads to placement of
6 in C; at (7,3) leaving no place for 6 in Cg. So 6 in Cy should be at (2,2).

Step 4: Now 6 is determined uniquely in C;,C5,Cs and C7 at places (7,3), (3,5),
(1,6) and (6,7) uniquely.

Step 5: Now 7 can occur in C7 at (1,7) or (4,7). But if it is in (4,7) then 7 has no
place in C5. So 7 in C7 is at (1,7).

Step 6: Now 7 in C} can occur in (6,1) or (5,1). But if it is in (5,1) then no place
is left for 7 in Cy. So place 7 in (6,1).

Step 7: Now place 7 uniquely in Cy, Cy, C5, Cg sequentially.

Step 8: Now the possible places for 2 along 73 are (1,3) or (3,1). But if it is
placed in (1,3) then 2 is uniquely determined in C; at (7,1) leaving no place for 2 in
C5. Hence 2 can occur along T3 only at (3,1), determining 2 uniquely, in order, in
C3,Cy, Cy,Cs, Cs.

Step 9: Now complete Cy, Ty, R7, Rg, Cs and Cj sequentially.
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It is now easy to verify that L, can be completed as follows.

4

L4Z

| =1 | o | ro| ot =
QY = | WD N
| | G| | | ~3| w
= | =1 w| o ho| ot
oot =] 1w o
WD N| O | =~

—

w

.

=

~J| W || Ot =

This ends the proof of Lemma 3.5.

O
Remark 5: Clearly a latin square of order 7 cannot be completed uniquely from a
set of 5 or fewer elements. Hence the UC set for L, turns out to be critical.
Remark 6: The above theorem demonstrates that there is a critical set of 13 entries
as opposed to the UC set of 15 entries as given in Keedwell [13] to complete L, and
L4.

Now in view of Lemma 3.4 and Lemma 3.5 we claim the following theorem.

Theorem 3.6 For a set of k, 3 < k < 7, pairwise cyclic orthogonal latin squares
of order 7 starting with Ly and Ly in order the size of the minimal critical set is at
most h + 13 + 6(k — 3) where h is the smallest UC cardinality.

Proof: It has been noted earlier that L; and Lo chosen in order, can be extended
uniquely to a complete set of 6 MOLS of order 7 having members as L3, L4, Ly, Lg
chosen in any sequence. A general representation of L; is given below where {p;1,. ..,
per} stands for any permutation of {1,2,...,n} for t=3, 4, 5, 6.

P31 | P32 | P33 | P34 | P35 | P36 | Pat P41 | P42 | P43 | P44 | P45 | P46 | Pat
P34 | P35 | P36 | P37 | P31 | P32 | P33 P45 | Pag | Pa7 | P41 | P42 | P43 | P44
P37 | P31 | P32 | P33 | P34 | P35 | P3s P42 | Pa3 | P44 | Pas | P46 | Pa7 | P41
Ls: | p33|p3s|D3s | D36 | P37 | P31 | D32 Ly: | pas | Par | Pa1 | Pa2 | P43 | Pas | Das
P36 | P37 | P31 | P32 | P33 | P34 | P35 P43 | Pa4 | P45 | P46 | Pat | P41 | P42
P32 | P33 | P34 | P35 | P36 | P37 | P31 P47 | Pa1 | P42 | P43 | P44 | P45 | Pas
P35 | P36 | P37 | P31 | P32 | P33 | P34 P44 | Pas | Pa6 | Pa7 | P41 | P42 | P43
D51 | P52 | P53 | Ps4 | Pss | Pse | Pst D61 | Pe2 | Pe3 | Pe4 | Pes | Pee | Pet
Ps6 | Ps7 | P51 | P52 | P53 | Psa | Pss Pe7 | Pe1 | Pe2 | P63 | Pe4 | Pes | Pes
Ps4 | P55 | Ps6 | P57 | Ps1 | P52 | Ps3 DPe6 | Pe7 | Pe1 | P62 | P63 | Pe4a | Pes
Ls: | ps2 | ps3 | Psa| Pss | Pse | Ps7 | Psi| Le: | Pes | Pes | Dot | Per | Pe2 | De3 | Pea
P57 | P51 | P52 | P53 | Ps4 | Pss | Pse D64 | Pes | Pe6 | P67 | Pe1 | P62 | Pe3
Ps5 | Pse | P57 | P51 | Ps2 | P53 | Ps4 P63 | Pe4 | Pes | Pe6 | Pe7 | Pe1 | Pe2
P53 | P54 | P55 | Pse | Ps7 | Ps1 | Ps2 DPe2 | Pe3 | Pe4a | P65 | Pes | Pe7 | Pe1

Recall that throughout this paper for convenience we have treated the entry
pue as k only. Moreover to form a set of MOLS, the extension of L; and Lo to
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L3, Ly, Ls and Lg is unique in the sense that the symbol p; occurs along the
transversal {(1,1), (2,i—t), (3,i—2t),...,(7,i—6t)} only. Now consider L;,t = 3,5,6
which is isotopic to Ly. Now because of the unique extension pointed out above,
clearly the corresponding isotopism applied on the critical set of size 6 for L, given
in Fig. 3 leads to a completion unique to L;, and no other latin square revealing the
identities of py’s. Moreover, as no latin square of order 7 can be completed from a
set having fewer than 6 elements, the isotopic of the critical set for L, turns out to
be a critical set for L;, t = 3,5,6. Hence the theorem follows. O
Remark 7: Any cyclic latin square L;, ¢ = 1,...6 can be permuted to L;. So,
without loss of generality starting with L; we try to find a critical set for any other
Lyt # 2. As Ly, t # 2 is isotopic to Ly, the corresponding isotopism is applied to
the critical set for L, and it has been observed that this set can be completed not
only to L;, but also to some other latin squares, as any orthogonal mate of L; is
not necessarily a cyclic one. But, however, if we restrict ourselves only to cyclic
orthogonal mates of Ly, then the corresponding isotopic set turns out to be a critical
set for L.

Using equivalence of existence of a set of MOLS and OA the next theorem is imme-
diate.

Theorem 3.7 Consider OA(49, k+2,7,2) constructed from the set of k cyclic MOLS
of order 7 starting with Ly and Ly in order. Then there is a critical set for the
OA(49,k +2,7,2) satisfying Coa < h+ 7+ 6(k —2).

4 Critical sets for Mutually Orthogonal Latin Squares and
Orthogonal Arrays with 9 levels

In this section we deal with the set S = {L;, Lo} of two cyclic MOLS of order 9 and
identify a critical set for S.
Theorem 4.1 Let Ly be the back circulant latin square of order 9 and Loy be its

cyclic orthogonal mate. Then

o
C = {(6,j,2i+j—2): ¢:1,2,...,TJ, j=1,3,5}
U {(i,,2i+j—2): i:9,...,9—%+1, j=4,6,...,8) (4.1

is a critical set for Ly as a member of the set of MOLS S = {L, Ly}.

Proof: We first prove the unique completion of Ly from C. We start with the partial
latin square
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9 2
2 4

O = N ©

To obtain completion, using the fact that orthogonality of L, to L; requires all
the symbols in Lo along T;, besides those in R; and in Cj;, to be different for all
1=1,2,...,9, we argue as follows:

Step 1: As 7 occurs in Ty, T5 and Tg as well as in R, R3 and Ry, there are three
possible places for 7 in C; viz, (1,7), (5,7) and (6,7). Now 7 in (5,7) determines 7 in
Cs uniquely at (1,8) which leaves no place for 7 in Cs. Similarly 7 in (6,7) determines
7 in Cg uniquely at (1,8) and in Cg at (5,6), leaving no place for 7 in Cy. Thus 7 is
uniquely determined at (1,7) in C.

Step 2: Fill Cy, Cg and Cy uniquely in order.

Step 3: Fill R; uniquely using the fact that 9 is already on T5.

Step 4: Using T, 77,75 and Ty, C) is filled uniquely in Rg, R;, Rg, R9 and Rs se-
quentially.

Step 5: We use 1%, Tz and Tg in order to find Cy which places 3, 5 and 7 in Rg, Ry
and Rg respectively.

Step 6: We use T3, Ty, T in order to find Cs in Ry, R3 and R4 which uniquely places
4, 6 and 8 in the cell positions respectively. The rest of the entries in Cy can now be
determined.

L, can now be permuted to L}, which has the standard form of Cooper, Donovan
and Seberry [5] and Smetaniuk [17] where we now have a critical set in the back
circulant latin square. This allows us to uniquely complete L} and reversing the
permutation gives back L,. It is to be noted that C is a weakly completable set.

Now to prove that the UC set C in (4.2) is a critical set for Ly, we show that for
each (i,7,k) € C, there exists a latin trade Ly, t = 1,2 in Ly satisfying

C () Lu={(.4k)} t=12
Define

Co = {(i,5,2i+j-2) i=1,2,..., %5 j=1,35}
and

Con {(i,§,2i+5j—2) i=9,...,9— 1 +1,j=4,6,...,8}.

Clearly, C' = Cy U Co;.
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We now observe that taking addition modulo 9, for any (i, j, k) € C, Ly contains
a partial latin square Ly; of the form

Ly = {(6,5,k), (1, + ok + ), (i +a,j +a, k), (i +a,j + 20,k +a),
(14 20,5 +2a,k), (i + 20, j,k+ )},

which can be replaced by another partial latin square Lo, of the form

Ly = {(i,j,k+a),(i,j+a,k),(i—l—oz,j+a,k+a),(i+a,j+2o¢,k),
(14 20,5+ 20,k +a), (i + 2a,5,k)},

yielding a different latin square Ly orthogonal to L; where,

a = 3 for (i,j,k) € Cyn\ {4,1,7)} U {(6,8,9)}
and

a = 6 for (i,5,k) € Cy\ {(6,8,9)} U {(4,1,7)}.

In order to verify that Ly is also orthogonal to L;, we recall that in L;, ith symbol
occurs along T;. Now orthogonality of both Ls and Ez to Ly follows from the fact
that in Ly, (4,7, k) and (i+a, j+2«, k+«) fall along T;1 1, similarly (¢, 7+, k+a)
and (i + 2a, j + 2a, k) fall along Ty j4q-1 and (¢ +«,j + «, k) and (i + 2a, j, k + «)
fall along Tj4j12q—1 Whereas Ly is obtained by interchanging & and k + a along the
above mentioned transversals retaining the latin square property.

Thus if we remove any element from C then we can complete the subset to at
least two latin squares orthogonal to L; each of which has one of the partial latin
squares given above. So C with size 18 turns out to be a critical set for Lo, as a
member of the set of MOLS S = {L;, L,}. As an illustration, the figures given below
present partial latin squares Loy and Loy for (1,1,1) € C' and L, and L, completed
from the subset C'\ (1,1,1).
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1(2(3/4|5/6|7|8|9 412(3]1|5|6|7/819
3(4|5|6|7/8[9|1]|2 3(/4|5|/6|7(8[9|1]|2
5(6|7|8|9/1/2|3|4 5(6(7|8/9(1]2|3]|4
718(9]1(2|3|4|5|6 718(914|2|3|1]5|6
911(23(|4|5|6|7|8 911(23|4|5|6|7]|8
213(4]15|6|7/8[9]1 213|14|/5/6|7(8|9]|1
415(6|7|18/9]1(2]|3 115(6|7/8(9(4|2]|3
6|7(8/9(1|2/3[4]5 6/7(8/9|1|2/3/4]|5
819(112|3|4|5|6|7 819(1/2|3|4|5/6|7
Ly L,

Remark 8: Note that using orthogonality with L; the size of the critical set for L,
can be reduced by 2 from 20, the size of the critical set of smallest size known so far
as given in Lemma(2.3) due to Cooper, Donovan and Seberry [5].

The following theorem is now immediate.

Theorem 4.2 Consider OA(81,4,9,2) constructed from the back circulant latin
square Ly of order 9, and its cyclic orthogonal mate Lo. Then there is a critical
set for OA(81,4,9,2) constructed from Ly and Lo satisfying Coa < 38.

5 Conclusion

The authors are unable to find any latin square of order 9 which is orthogonal to both
Ly and L. It turns out that the pattern of the set C' given in (4.1) when extended
for n, n odd and n > 11, can be easily shown to be a UC set, thereby providing an
upper bound for the size of the minimal critical set for Ly as "24’1 — 2, but it is not a
critical set for Ly for any n, n > 11. Further investigation in connection to obtaining

a finer upper bound is on going and will be reported in a subsequent paper.
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