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Abstract

A totally magic injection of a graph with v vertices and e edges is a one-
to-one map taking the vertices and edges into the positive integers, such
that the sum h of the label on a vertex and the labels on its incident
edges is a constant independent of the choice of vertex, and the sum k
of an edge label and the labels of the endpoints of the edge is constant.
This is a generalization of a totally magic labeling, which maps onto the
integers 1,2,---,v + e, and arises in the attempt to find totally magic
labelings. In this paper we explore the existence and properties of totally
magic injections, and prove the existence of a new small totally magic
injection.

1 Introduction

All graphs in this paper are finite, simple and undirected. Unless otherwise specified,
the graph G has vertex set V' = V(G) and edge set E = E(G) and we write e for
|E| and v for |V].

For a given graph G, suppose A is a map from V(G) U E(G) to the integers. We
define the weight of vertex z as

wi(e) = @) + 3 May) M

and define the weight of edge xy as
wi(zy) = A@) + Mzy) + Ay)- (2)

A labeling on a graph G is a one-to-one map from V(G)U E(G) onto the integers
1,2,...,v+e. A labeling is called edge-magic if all edges have the same weight,
vertex-magic if all vertices have the same weight, and totally magic if it is both
vertex-magic and edge-magic. In other words, a totally magic labeling A on a graph
G is a one-to-one map A from V(G)U E(G) onto the integers 1,2,...,v+ e, with the
property that, given any vertex x,

wt(z) =h
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and given any edge xy,

wt(zy) =k
for some constants h and k. A graph having a totally magic labeling is called a
totally magic graph.

Totally magic labelings have been discussed in [3]. It is shown in that paper
that totally magic graphs are very rare. The only known infinite families consist
of the unions of an odd number of triangles, mK3, where m is odd, and the same
graphs with precisely one edge deleted. (On the other hand, the members of these
families with m even are never totally magic.) Only two other totally magic graphs
are known: the single vertex K, and the graph obtained by appending an isolate to
the two-edge path, Py U K;. (We label paths by their number of vertices.)

2 Totally magic injections

A magic injection of GG is a one-to-one mapping from the elements of G to the positive
integers which has a magic property. In other words a magic injection is like a magic
labeling, but the condition that the labels be consecutive has been removed. One
can discuss edge-magic, vertex-magic or totally magic injections. It is easy to see
that every graph has an edge-magic injection, and every graph has a vertex-magic
injection except for those that have a component K, or two components K, (see, for
example, [5]).

If the largest label used in an injection is m, we call m the size of the injection.
The deficiency of an injection on a graph G is m — v(G) — e(G), and the deficiency
def.(G) of a graph G is the minimum value of m —v(G) —e(G), such that there exists
an injection on G of size m. We use the terms “edge-magic deficiency,” “vertex-magic
deficiency” and “totally magic deficiency” in the obvious way.

If a disconnected graph is totally magic (or has a totally magic injection), the
totally magic labeling induces a totally magic injection on its components. For
example, the union of an even number of triangles has a totally magic injection,
as does the graph obtained from it by deleting one edge. So we are interested in
finding totally magic injections on graphs, even if they do not admit if totally magic
labelings. For this reason totally magic injections have been studied by several
authors (see [2, 4, 5, 6]). In what follows, it will be convenient to refer to a graph
possessing a totally magic injection as a TMI graph.

3 Known TMI graphs

Theorem 1 The star K, is TMI when n > 2.

Proof. To label K, ,, label the center 1 and the edges 2,3,...,n+ 1. From consid-
eration of the center vertex a totally magic injection will have h = $(n + 1)(n + 2).
Label the outer vertex attached to edge ¢ with h — i; then k = h + 1.

To see that this is an injection, it is only necessary to check that

(n+1)(n+2)/2-n-1>n+1
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But this is obvious when n > 2. g

Of course, K;, = P; is totally magic, and K;; = K, has no totally magic
injection.

Suppose « is a map from the vertices and edges of a graph G to the positive
integers in which every vertex has weight h and every edge has weight £k, where
no two vertices and no two edges have the same label. Then « is a totally magic
injection unless some vertex label and edge label are equal. If we add an integer
constant ¢ to each vertex label, the new map has the same properties, so long as the
sum of ¢ and the smallest vertex label is still positive. So by a suitable choice of t we
obtain a totally magic injection with vertex constant h +t and edge constant k + 2t¢.

In particular, suppose G is a TMI graph with no isolate and « is a totally magic
injection. Select ¢ so that no vertex X and edge Y have a(X)+t = a(Y"), and no edge
has a(Y) = h +t. (This can always be done by choosing ¢ sufficiently large.) Then
append an isolated vertex, Z say, to G. The injection 3, defined by (X)) = a(X) +¢
for vertices of G, B(Y) = «(Y) for edges, and 5(Z) = h + t, is totally magic. We
have

Theorem 2 If G is a TMI graph with no isolate then G U K is also TMI.

Combining these theorems with the results stated earlier, the known TMI graphs
with 7 or fewer vertices are as follows.

TMGs | Others!

1 vertex: | K3 none

2 vertices: | none none

3 vertices: | K3, P3 | none

4 vertices: P3UK1 K3UK17K1,3

5 vertices: | none Ki3UK, K4

6 vertices: | none KgUKg,KgUPg,KLLlUKl,Klﬁ

7 vertices: | none K;UK3;UK,,K3UP; UKy,
Kis UK, K¢

4 Known forbidden configuration theorems

The following theorems are proven in [3] as results about totally magic graphs, but
all are essentially forbidden configuration theorems. If a graph G is in violation of
one of them, then not only is G not totally magic, but G cannot be a TMI graph.
So we restate them in the more general form:

Theorem 3 A TMI graph cannot contain two isolated vertices.



342 W.D. WALLIS AND R. A. YATES

Theorem 4 A TMI graph cannot contain a Ky as component.

Theorem 5 If a TMI graph has a vertex x of degree 1, the component containing
15 a star.

Theorem 6 If a TMI graph contains two adjacent vertices of degree 2, then the
component containing them is a cycle of length 3.

Theorem 7 Suppose G contains two vertices, x; and xs, that are each adjacent to
precisely the same set {y1,ya,-..,ya} of other vertices. (It is not specified whether
x1 and x5y are adjacent.) If d > 1 then G is not TMIL

Theorem 8 Suppose G contains two vertices, x and y, with a common neighbor. If
x and y are nonadjacent and each has degree 2, or are adjacent and each has degree
3, then G is not TMI.

Theorem 9 Suppose a TMI graph contains a triangle. Then the sum of the labels
of all edges outside the triangle and incident with any one vertex of the triangle is
the same, whichever vertex is chosen.

5 The totally magic equation matrix

Suppose A is a totally magic labeling of a graph G with vertices X, Xs,... X, and
edges Y1,Ys,...Y.. If the wt functions are defined as in (1) and (2), then

wt(X;))—h = 0 forallie{1,2,...,v}, (3)
wt(Y;)—k = 0 forallje{l,2,... e}

Let us write Mg for the matrix of coefficients of this system of equations. Mg
is the totally magic equation matriz of G. For convenience, we refer to the row
corresponding to the weight equation for vertex X; or edge Y; as “row X’ or “row
Y;” respectively. Similarly we refer to columns by the appropriate vertex, edge or
magic constant.

The problem of determining whether G is a TMI graph can thus be stated as the
problem of finding positive integer solutions to

MG[xla'r?a"'a'rvaylv'"7y57h7‘l‘7}T:0 (4)

where all the 2’s and y’s are distinct (and then setting A\(X;) = w;, etc.).
We write M for the matrix derived from Mg by deleting the columns for h
and k.

Theorem 10 If 8 is a totally magic injection on a graph G, and M is invertible,
then each edge label has the form
B(Yy)

"~ det Mg

(2h — k), (5)

where the n; are integers.
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Proof. The equations (4) can be interpreted as the set of equations
Mé[l‘tha ey Ly Y1, - 7y€]T - b7

where b is the vector with its first v elements & and its other e elements h.

Given the edge Y}, joining vertices X; and X}, consider row Y} of M. It contains
1’s in columns Y}, X; and X; and 0’s elsewhere. Rows X; and X will contain 1’s
in columns X; and X; respectively and in the columns of edges incident with the
relevant vertex. Subtracting rows X; and X; from row Y} and then negating yields
a row with 0 in each vertex column, 1 in each column representing an edge incident
with X; and X (or both), and 0 in the other edge columns. The right hand will be
2h — k. If we repeat for all edge rows, we finish with the last e equations in the form

If we continue Gaussian elimination until the first v + e columns form an identity
matrix (possible because M, is invertible), only edge rows will be added to the edge
rows, so the right-hand sides of the final e equations will all be multiples of 2k — k.
Cramer’s rule tells us that the multiplier must be an integer multiple of the inverse
of det M. d

In the process of proving Theorem 10, we in fact showed

Corollary 10.1 If X;X; is an edge of a TMI graph, the sum of the weights of all
edges incident with X; or X; or both is 2h — k.

If G is regular, an analogous proof applies to the vertex weights.

Theorem 11 If 3 is a totally magic injection on a regular graph G of degree d, and
Mg is invertible, then each vertex label has the form
B(X:)

 det M7

(dk — h), (6)

where the m; are integers.

6 Survivors on seven vertices

In [3] it was observed that the only graphs with fewer than seven vertices that were
not eliminated by the above theorems were those we have already listed in Section 2.
There were 42 connected graphs on 7 vertices, other than the star, not eliminated by
the theorems; these were called survivors in [3], and were eliminated by computer-
aided techniques. Those techniques did not rule out the possibility that the graphs
might have totally magic injections. We examine these 42 graphs. To identify the
graphs, we use the labeling in the database of graphs on seven or fewer vertices given
in [1].

T; = ,h+ ,‘l‘ja]-SZva
det M det Mg
g = —_(2h—k),1<j <k

det M
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For a graph G, we write

Pt = [hi,hay ... by,
PL = [ki,ks,... k] and
Neg = [ni,na,...,ne.

Figure 1: The graph Giago

Figure 1 shows G100, in the notation of [1]. We found that this is a TMI graph.

It has det Mémo = —789, and satisfies
h
PG1200 - [359a —17,64,169,97,47, ].6].]7
Pl = [-574,-391,—410, 479, —443, —418, —475] and
Ney = [-176,-203, ~195, ~12, —45, —81, ~77, -39, —64,

—100, —133, —165, —72, —129, —104].

To ensure that all labels are integers, we need 2h—k = 0( mod 789). If 2h—k < 0 the
edge-labels will be non-positive, so we try the minimum feasible value, 2h — k = 7809.
Then h = k = 789 is an obvious solution, and others can be found by adding ¢ to
each vertex label, giving h = 789+t and k = 7894 2¢; the edge labels are unchanged.

The smallest feasible value is t = —214, which gives z; = 1 (z; is the smallest vertex
label), but in this case z7 = y10 = 100. Similarly, ¢ = —213 forces z5 = y;; = 133.
The next case, t = —212, gives a minimal totally magic injection with h = 577,

k = 365 and deficiency 181. It is shown in Figure 2.

It remains to show that there are no further TMI graphs of order 7. In Table 1 we
exhibit the vector Ng for the remaining 41 graphs. In each case it is seen that every
case Ng contains two equal entries (which implies that two edge labels are equal), a
zero (implying a zero edge label) or both positive and negative entries (so that there
must be a negative edge label). So we have:
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3 186
O\ 176 e
195 12 4
45 81
167 100
203 64
133 98 77
39
165
é 77 134 129&
@, 104 @)
159 102

Figure 2: A totally magic injection for G

Theorem 12 There are precisely five TMI graphs with seven vertices, of which two
(G200 and Ky g) are connected.
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