AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 32 (2005), Pages 177-195

Possible cardinalities for identifying codes in graphs

IRENE CHARON OLIVIER HUDRY ANTOINE LOBSTEIN

CNRS & ENST
46, rue Barrault
75634 Paris Cedex 13
France
{charon, hudry, lobstein}@infres.enst.fr

Abstract

Consider a connected undirected graph G = (V, E), a subset of ver-
tices C' C V, and an integer r > 1; for any vertex v € V, let B,(v) denote
the ball of radius r centered at v, i.e., the set of all vertices linked to v
by a path of at most r edges. If for all vertices v € V, the sets B,(v)NC
are all nonempty and different, then we call C' an r-identifying code.

It is known that the cardinality of a minimum r-identifying code in
any connected undirected graph G having a given number, n, of vertices
lies in the interval [[log,(n+1)],n — 1], and that the values [log,(n +1)]
and n — 1 can be achieved. Here, we prove that any inbetween value can
also be reached.

1 Introduction

Given a connected undirected graph G = (V, E) and an integer » > 1, we define
B, (v), the ball of radius r centered at v € V, by

B,(v)={z eV :d(z,v) <r},

where d(z,v) denotes the number of edges in any shortest path between v and x,
and S,(v), the shell of radius r centered at v € V, by

Sr(v) ={z eV :d(z,v) =r}.

Whenever d(z,v) < r, we say that  and v r-cover each other (or simply cover if
there is no ambiguity). A set X C V covers a set Y C V if every vertex in Y is
covered by at least one vertex in X.

A code C is a nonempty set of vertices, and its elements are called codewords.
For each vertex v € V, we denote by

Keo.(v) =CN B,(v)



178 CHARON, HUDRY AND LOBSTEIN

INA

Figure 1: A graph G admitting no 1-identifying code.

the set of codewords which r-cover v. Two vertices vy and vy with K¢ (v1) # Ker(v2)
are said to be r-separated, or separated, by code C. This can be expressed as

C N (B,(v1)AB,(v2)) # 0,

where A stands for the symmetric difference.

A code C is called r-identifying, or identifying, if the sets K¢, (v),v € V, are all
nonempty and distinct [9]. It is called r-locating-dominating, or locating-dominating,
if the same is true for all v € V' \ C [7]. In other words, in the first case all
vertices must be covered and pairwise separated by C; in the latter case only the
noncodewords need to be covered and separated.

Remark 1. For given graph G = (V, E) and integer r, there exists an r-identifying
code C C V if and only if

V’Ul,Ug eV (Ul 7é Ug), BT(Ul) 7& BT(’UQ).

Indeed, if for all vi,vy € V, B,(v1) and B,(vy) are different, then C = V is r-
identifying. Conversely, if for some vy,vy € V, B,(v1) = B,(v2), then for any code
C CV, we have K¢, (v1) = K¢, (v2). For instance, there is no r-identifying code in
a complete graph. See also Example 1 below.

Remark 2. For given graph G = (V, E) and integer r, an r-locating-dominating
code always exists (simply take C' = V), and any r-identifying code is r-locating-
dominating.

Example 1. Consider the graph G in Figure 1. We see that Bi(a) = {a,b,d, e},
By(b) = {a,b,c,e}, Bi(c) = {b,c}, Bi(d) = {a,d,e}, Bi(e) = {a,b,d,e}; conse-
quently, because B;(a) = Bj(e), there is no 1-identifying code in G (cf. Remark 1
above). On the other hand, C = {a,b} is 1-locating-dominating, since the sets
Kei(c) = {b}, Kca(d) = {a}, and K¢;(e) = {a, b}, are all nonempty and different.

Definition 1. A graph is said to be r-identifiableif it admits at least one r-identifying
code.

The motivations come, for instance, from fault diagnosis in multiprocessor systems.
Such a system can be modeled as a graph where vertices are processors and edges
are links between processors. Assume that at most one of the processors is mal-
functioning and we wish to test the system and locate the faulty processor. For
this purpose, some processors (constituting the code) will be selected and assigned
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the task of testing their neighbourhoods (i.e., the vertices at distance at most r).
Whenever a selected processor (= a codeword) detects a fault, it sends an alarm
signal, saying that one element in its neighbourhood is malfunctioning. We require
that we can uniquely tell the location of the malfunctioning processor based only
on the information which ones of the codewords gave the alarm, and in this case an
identifying code is what we need.

If the selected codewords are assumed to work without failure, or if their only
task is to test their neighbourhoods (i.e., they are not considered as processors any-
more) and we assume that they perform this simple task without failure, then we
shall search for locating-dominating codes. These codes can also be considered for
modeling the protection of a building, the rooms of which are the vertices of a graph.

Locating-dominating codes were introduced in [7], identifying codes in [9], and they
constitute now a topic of their own: both were studied in a large number of various
papers, investigating particular graphs or families of graphs (such as planar graphs,
certain infinite regular grids, or the n-cube), dealing with complexity issues, or using
heuristics such as the noising methods for the construction of small codes. See, e.g.,
[3], [4], [5], [8], [10], and references therein, or [11].

In this paper, we concentrate on identifying codes and continue the investigation
started in [6]; it is known that, for all » > 1, the cardinality of a minimum 7r-
identifying code in any connected, undirected, r-identifiable graph G having a given
number, n, of vertices lies in the interval [[log,(n + 1)],n — 1], and that the values
[logy(n 4+ 1)] and n — 1 can be achieved, provided that n is large enough, see [6].
Here, we prove that any in-between value can also be reached. Note that allowing
disconnected graphs would only make things easier.

2 Previous Results and Constructions

We first give the (trivial) lower bound.

Theorem 1 Let r > 1 and n > 1 be two integers; let G = (V, E) be a connected,
undirected, r-identifiable graph with n vertices. If C C 'V is r-identifying, then

|C| = [log,y(n + 1)].
The upper bound is slightly more difficult to establish.

Theorem 2 (Theorem 2 in [6]) Let r > 1 and n > 3 be two integers; let G =
(V,E) be a connected, undirected, r-identifiable graph with n vertices. If C CV is a
minimum r-identifying code, then

|IC] <n-—1.

The following three theorems state that, for n large enough with respect to r, these
bounds can be achieved.
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Figure 2: A partial representation of the graph Ggln

Theorem 3 (Theorem 3 in [6]) Let r > 1 and n be integers such that n > 21,
There exists a connected graph with n vertices admitting an r-identifying code with

size [logy(n 4+ 1)].

Theorem 4 (¢f. Theorem 5 in [6]) Let r be a fized integer, r > 1. For all even n,
n > 3r2, there exists a connected graph nggn with n vertices, such that any minimum
r-identifying code in G™., contains n — 1 vertices.

Theorem 5 (cf. Theorem 6 in [6]) Let r be a fived integer, r > 1. For all odd n,
n > 3r2 + 1, there exists a connected graph Ggg?i with n vertices, such that any
manimum r-identifying code in Godd contains n — 1 vertices.

Now what interests us in the previous two theorems is how the graphs Gevm and
G(dd are constructed when r > 2, since we shall make use of them subsequently (in
Section 4).

In the even case, we write n = 2p and p = kr — a, with 1 < a <.
Then G{%, = (v;(v?n, E1),) is the following graph (cf. Figure 2):
v =1{0,1,...,n— 1},

even

E® —{{iji+jmodn}:iec V™ je{l,2,... . k—a—-1k}}.

EVET

Actually, in view of Section 4.2, all the reader needs to remember about G, is the
following:

— Any subset of an with n — 1 elements is a minimum r-identifying code in el
- FOI' all 7 S ‘/eve'n,,

— there is a symmetry with respect to the diameter [i,7 4+ p mod n).

~ B,(i) = V39 \ {i + p mod n} # B,_y(i).

- Seli) = {i+ pmod n}.
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Figure 3: A partial representation of the graph Gogd

— For any j between 0 and r, S;(i) # 0.

When n is odd, we add one vertex, Z, to Gmn , We delete some edges in Emn , and
add some edges between Z and vertices in vin Y (cf. Figure 3), but again, all the

reader needs to remember about ngzi is the following:

(") 7 \ {Z} is the only minimum r-identifying code in Godd.
- There is a symmetry with respect to the diameter [0, p].
— There is an( e)dge between 0 and Z.
- BT(Z) = V;cZi'
~For all i € V;S;) \ {7},

- B,(1) = odd \{l‘f'med”} # Bra (1)

~ Sar(i) =i+ pmod n}.
— For any j between 0 and r, S;(i) # 0.

In both cases, odd and even, we see that “the circle” (V.70 \ {Z} or Vijen) has an
even number of points, and that any point ¢ lying on it r-covers all vertices but
its diametrical opposite opp(i) = 7 + pmod n, and (r + 1)-covers opp(i). As a
consequence, for ¢ and j on the circle, ¢ # j, B,(i)AB,(j) = {opp(i), opp(j)}, and

B,(i))AB,(Z) = {opp(i)}.

3 The Caser=1

We treat separately the case r = 1, which is easier, and show, in this section, that
any value between n — 1 and [log,(n 4+ 1)] can be reached by the size of a minimum
1l-identifying code, for a well-chosen connected graph with n vertices. Moreover, in
passing, we treat the case of trees and of bipartite graphs.

First, we recall an easy result, with its short proof.
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Figure 4: The tree G of Theorem 7, with a minimum 1-identifying code. Codewords
are in black.

Theorem 6 For all n > 3, there exists a tree G with n vertices, such that any
mintmum 1-identifying code in G contains n — 1 vertices.

Proof. Consider the “star”, i.e., the tree consisting of n vertices 0, 1, ..., n — 1, and
n—1edges {0,i}, 1 <¢<n—1. It is immediate to check that taking for codewords
any set of m — 1 vertices is necessary and sufficient to obtain a l-identifying code,
except for n = 3, where only {1,2} is 1-identifying. A

Next, we divide the interval from n — 2 to [logy(n + 1)] into three (possibly
overlappping) parts: n — 2 (Theorem 7), from n — 3 to [3(n + 1)/7] (Theorem 8),
and from [n/2] to [logy(n + 1)] (Theorem 9).

The tree described in the following theorem is represented in Figure 4.

Theorem 7 Consider the tree G = (V, E) defined by
V={0,1,2,...,n—=3,n—2,n— 1},
E={{0,i}:1<i<n-2}U{{n—-2,n-1}},
with n = |V| > 5. Any minimum 1-identifying code in G contains n — 2 elements.

Proof. Let C be a l-identifying code in G. Because n — 2 and n — 1 must be
1-separated, 0 € C'. Then at least n — 4 of the n — 3 vertices 1,2, ..., n—4,n — 3,
must be taken in C, and one more codeword is necessary, to 1-cover n — 1. On the
other hand, {0,1,...,n — 4,n — 1} is a possible 1-identifying code. A

Theorem 8 For n > 6, for any integer c between n — 3 and [3(n + 1)/7], there
exists a tree G with n vertices in which any minimum 1-identifying code has size c.

Proof. Our tree G is constructed using one tree with minimum 1-identifying code
containing 3/7 of the vertices, and one tree where all but between three and six
vertices are necessary. Varying the respective sizes of these two subgraphs, we can
attain all values between n — 3 and [3(n +1)/7].

Let G; = (Vi, E;), i > 1, be defined as follows:

Vi = {vi1, vi2, Vi3, Vias Vi, Vi, Vi7 )

E; = {{'Ui,la Ui,2}7 {Ui,s, Ui,4}7 {01,5, Ui,6}7 {Ui,h Ui,3}7 {Ui,37 Ui,5}7 {Ui,57 Ui,7}}7
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Figure 5: The tree G of Theorem 8, for s = 3, with a minimum 1-identifying code.
Codewords are in black.

cf. Figure 5. Next, consider, for s € {3,4,5,6}, the tree G% = (V, E}), with:

S
Vi = {UZ,MUZz :1<i< s},

E; = {{U;,lvv;rl,l} 1<i<s—1}U {{U;,lavgg} 11<i< s}
(cf. Figure 5), and the graph G¢ = (V, E9), with ¢ disconnected vertices (g > 0):
Ve ={v'v? ... v}, B4 = 0.
Finally, for ¢t > 0, Gi54 = (Visq: Et,s,4) i given by

Visg = (Uin V) UV UV,

Epsq = Ui B U (UZi{{vir, visn a3 ) U {{onr, ol 3 U BL O (UL {00}
(see Figure 5). The tree Gy, contains n = 7t 4+ 2s + ¢ vertices, and a 1-identifying
code in Gy, 4 requires at least 3t 4+ s + ¢ codewords: first, each G; must obviously
contain at least three codewords, then G} \ {v},,v},} clearly contains at least s — 1
codewords, and finally, the set {v},,v},} UV?, which is a star, needs at least ¢ + 1
codewords; on the other hand,

C= (U§:1{Ui,1avi,37 vis}) U (U;:1{U;,1}) uve

is 1-identifying and has size 3t + s + ¢ (this might be untrue for s < 3).
Now, for fixed n > 6 and c verifying n — 3 > ¢ > [3(n + 1)/7], we want to find
integers t, s, q such that:
t>0,g2>0,6>s2>3,

n="Tt+2s+q, (1)
c=3t+s+q. (2)
Combining (1) and (2), we have:
n—c—s
t= 3
: 0

First we choose s in {3,4,5,6} such that ¢ is an integer; then ¢ is an integer, and all
that remains to be proved is that both ¢ and ¢ are nonnegative.
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(b)

Figure 6: (a) The bipartite graph G, ,, with n = 2s+2. (b) A partial representation
of a bipartite graph when n > 2°"! + 5. In both cases, a minimum 1-identifying code
of size s is given, with codewords in black.

By (2) and (3), ¢ < —1 implies that ¢ < (3n + s — 4)/7. Since ¢ > (3n + 3)/7
and s < 6, this is impossible.

By (3), t < —1 implies that n — ¢ < s — 4. Since ¢ < n — 3 and s < 6, this is not
possible either.

Therefore, we see that for any couple (n,c) withn > 6,n—3 > ¢ > [3(n+1)/7],
we can find integers t > 0, s € {3,4,5,6}, ¢ > 0, such that (1) and (2) hold, i.e., we
can construct a tree with n vertices admitting a 1-identifying code of size c. A

Note that in the construction of the previous theorem, if we allow s to be equal to
one or two, with ¢ = 0, we find the constructions of Theorems 6 and 7, respectively
(with ¢ > 1).

Theorem 9 Forn > 6, for any integer ¢ between |n/2] and [log,(n+1)], there ex-
1sts a connected bipartite graph G with n vertices in which any minimum 1-identifying
code has size c.

Proof. First, we consider the following graph G = (V;, E;), with s > 3:
Ve={1,2,...,s—1,51%2% ... s},

Es={{i,i"}:1<i<s} U {{i,s}:1<i<s—1},

cf. Figure 6(a). Because of the vertices of type i*, any 1-identifying code in G, has
size at least s, and C = {1,2,..., s} is suitable.

The construction of G can be seen as follows: first, a set of s vertices, from
1 to s; then, the addition of s vertices, associated to the s one-element subsets
of {1,2,...,s}, each of these vertices being linked to one and only one vertex in
{1,2,...,s}.

This gives the idea of adding vertices and edges to G: let ¢ be an integer lying
between 0 and 2°7! — (s — 1) — 1. To G, we add g vertices, associated to ¢ distinct,
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nonempty, non-singleton, subsets of {1,2,...,s — 1}, and each of these vertices is
linked in a very natural way to Gg, by linking it to the elements in {1,2,...,s — 1}
which belong to the subset it is associated to. There are precisely 2°~!—s possibilities.
The graph G;, thus constructed is bipartite and has n = 2s 4 ¢ vertices (6 < 2s <
n < 257!+ s), see Figure 6(a). Its very construction shows that C is still a minimum
1-identifying code in G ,. Therefore, |C| < n/2 and |C| > [logy(n — |C|)] + 1, and
all in-between integer values can be achieved, according to the values taken by s > 3
and q.

The only remaining case is when 2° —1 > n > 271 4+ 5. In this case, we
can exploit the construction illustrated by Figure 6(b), still with the same idea as
before: s vertices 1,...,s, and the use of ¢ appropriate subsets (distinct, nonempty,
non-singleton) of {1,2,...,s}, withn = ¢+, 2" +1 < g < 2°—1—s. The
graph will be connected (because ¢ is large), bipartite, and, since [log,(n + 1)] > s,
Theorem 1 shows that any 1-identifying code contains at least s elements, and clearly
C=1{1,2,...,s} suits.

Therefore, for any couple (n,c¢) with [n/2] > ¢ > [log,(n + 1)], by taking s = ¢
and accordingly ¢ = n — 2c or ¢ = n — ¢, we can construct a connected bipartite
graph with n vertices admitting a 1-identifying code of size c. A

The cases 3 < n < 5 can be studied easily; since trees are bipartite graphs, the
following theorem is the consequence of Theorems 6-9.

Theorem 10 For n > 3, for any integer ¢ between n — 1 and [logy(n + 1)], there
exists a connected bipartite graph with n vertices in which any minimum 1-identifying
code has size c.

The following theorem, the consequence of Theorems 6-8, cannot be improved with
respect to ¢, since it is known (see [1] or [2]) that in a tree with n vertices, a 1-
identifying code contains at least [3(n + 1)/7] elements.

Theorem 11 For n > 3, for any integer ¢ between n — 1 and [3(n + 1)/7], there
exists a tree with n vertices in which any minimum 1-identifying code has size c.

4 Achieving All Values

In this section we prove our main result: given an integer r» > 2 and an integer n
sufficiently large with respect to r, for any integer ¢ between n—2 and [log,(n+1)]+1,
there exists a connected graph with n vertices admitting a minimum 7-identifying
code of size c. Or the other way round: given an integer » > 2 and an integer c
sufficiently large with respect to 7, for any integer n between ¢+ 2 and 2¢7! — 1, there
exists a connected graph with n vertices admitting a minimum r-identifying code of
size c.

Therefore, we fix # > 2 and ¢ (how large ¢ must be will be specified later; let us
only say here that c is of order r?). We will proceed in several steps: first from c + 2
to c+7 4+ 1, second from ¢+ 7 + 2 to ¢+ 2r2 4+ 4r + 1, third from ¢+ 2r2 +4r + 2 to
273 43¢ 47, and finally from (7 + 1)c 4 1 to 2°' — 1 (Lemma 4(ii) will guarantee
that, for ¢ large enough, there is no gap between the last two intervals).
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Our idea is the following. We start with a “dense” graph (needing as many
as (#tvertices —1) codewords) and, in order to gradually diminish the density, we
combine it first with chains of different lengths, then with a “sparse” graph (needing
down to [log,(#vertices +1)] codewords), varying their respective sizes. The final
step uses the sparse graph only. Small technical problems arise because a dense
graph has size at least 3r2, therefore we cannot act on its size as freely as we would
like to.

4.1 Five Easy Lemmas
Let V, = VUW,, with V = {vg,v1,...,0,.}, W, = {w1,wa,...,w,}, 1 < ¢, and let
G, = (V, E;) be a chain:

Eq - {{U07U1}7 {UbUZ}a sy {UT—lva}a {U’rvwl}v {w17w2}7 CIIY {wq—lawq}}'

We say that a code C, C V; is V-semi-identifying in G, if it contains V' and r-covers
and pairwise r-separates all vertices in W,; we denote by 7, + r + 1 the minimum
size of such a code (7, > 0).

Lemma 1
(i) For1<q<r, v,=0. (4)
(1) Forr+1<q<2r, 7,<q—r. (5)
(iii) For2r +1<gq, 7, < {%J o+ 1. (6)
a+1

(tv) For 1 <q, v, <r+

Proof. Case (i) is trivial and (iv) is a consequence of (i)-(iii).

In case (i), C;, = VU {w; : 1 <i < ¢—r} is V-semi-identifying in G,.

In case (iii), C, =V U{w;:ieven,1 <i<g—2r —1}U{w; : ¢—2r <i<gq}
is V-semi-identifying in G,. Note that, since inequality (7) meets our subsequent
requirements, we did not try here to optimize Cj. A

Lemma 2
Foranyq>1, 0<7,4 —7 <L (8)

Proof. 1) 7, < 7,+1: by Lemma 1(i), we can assume that ¢ > r + 1. Let Cy4; be a
minimum V-semi-identifying code in Gy11: |Cyt1]| = Yy+1. Because w,1; and w, are
separated by Cyt1, necessarily wy_, € Cgyi.

If wyy1 € Cypa, then Cppy €V, is V-semi-identifying in Gy, and v, < v441.

If wyy1 € Cypa, then we consider Cy = Cyyq \ {wys1}; two things can prevent C,
from being V-semi-identifying in G,:
— either some vertex in W, which was covered by wg4; is not covered by Cg; this is
not possible, since w,_, € Cy;
— or Wy, and wq_r4+1, which were separated by wgy1, are not separated by any
element in C;. But if r+1 < ¢ < 2r, then w,_, and w,_,41 are separated by a
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codeword in V; so necessarily 2r + 1 < ¢, in which case Cy U {w,_o,} separates w,_,
and wq_r11, is V-semi-identifying in G, and has size y441.

2) Yg+1 < 74 + 1: by Lemma 1(i), we can assume that r < ¢. Let Cy be a
minimum V-semi-identifying code in G,. If ¢ = r, then w, and wy4; are separated
by v, (which implies that wy4; is separated from all vertices by C,), and with at
most one additional codeword covering wq1, we obtain a V-semi-identifying code in
Gg41. So we assume that » +1 < g.

If wy—r € Cy, then w, and wy4; are separated by Cj, and with at most one
additional codeword covering wg+1, we obtain a V-semi-identifying code in Ggq;. If
wy—r ¢ Cy, then the codeword which covers w, also covers wy;1, and by taking w,_,
as a codeword, we obtain a V-semi-identifying code in Gg4;. A

Lemma 3 The set {q — 7, : ¢ > 1} is equal to IN*.

Proof. By (8),for ¢ > 1, (¢+1—7441) —(g—"7,) =0o0r1; by (4),1 -y =1,
by (7), ¢—, > (¢—1)/2 —r. Therefore the sequence (g —~,) starts at one, possibly
increases by one only, and is bounded from below by a quantity going to infinity
with q. A

Lemma 4 Letr > 2.
(i) Forx >2r+3, 2°> (z+1)(r+1). (9)
(ii) For o >5r2 +5r+1, 227" 4302 40 > a(r +1). (10)

Proof. (i) Let f(z) = 2* — (¢ + 1)(r + 1); f'(z) = 2*In2 — (r + 1) > 0 when
x> 2r+3,r>2,and f(2r +3) = 2%+ — (2r + 4)(r + 1) is nonnegative for r > 2.

(i) Let g(z) = 2°°%° 4+ 37> + r — z(r 4 1); similarly, ¢'(z) > 0 when z >
5r% + 5r + 1,7 > 2, and g(5r* + 5r + 1) is nonnegative for r > 2. A

Let s > 2r 4+ 3 and G(s) = (V(s), E(s)) be the following graph, with (r+1)s+1
vertices (cf. Figure 7):

V(s)={z;;:1<i<s5,1<j<r}UX(s)with X(s) ={z:1<i<s+1},
E(s) ={{wi1,wiy11} 1 1 <i<s—1}U{{ws1,211}} U
{{xi,jami,j—O—l} : ].SZSS,].S] ST—l}U{{ZZ‘,Zj} 01 SZ<]SS+1}U

{{Ziaxjﬂ‘} 01 S 1 S 871 SJS 87i7éj}u{{zs+laxj,7‘} 01 SJS 8}'

Lemma 5 Forr > 2, s > 2r + 3, the only minimum r-identifying code in G(s) is
C={wi;:1<i<s}
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G(s)

X(s),
a complete

subgraph

Figure 7: The case r = 2: a partial representation of G(s).

Proof. For 1 < < s, z; is r-covered by all vertices but z;:, and 2,4, is covered by
all vertices, so B,(2;)AB,(zs41) = {2;1}. Therefore, any r-identifying code in G(s)
contains {z;; : 1 < ¢ < s}. On the other hand, it is easy to check that this set is
suitable: for a given j, the vertices z;; are covered by different sets of codewords of
size 1 +2(r—j+1) < 2r+1; for 1 <i< s, the vertices z; are covered by different
sets of codewords of size s — 1 > 2r + 2, and z,, is covered by all s codewords. A

Remark 3. Still with the same identifying code C' = {z;; : 1 <14 < s}, we can have
more vertices and construct a graph G, with up to 2° — 1 vertices (cf. the proof of
Theorem 9): let ¢ be an integer between 0 and 2° — 1 — |V(s)| =25 — (r + 1)s — 2.
We set X(s,q) = X(s) U{w; : 1 < j < ¢} and construct new edges in the following
way: first, X(s,q) is a complete subgraph; next, to all vertices w; we associate
distinct subsets of C, K(w;), which are nonempty and not equal to any of the sets
Kec.(y),y € V(s). There are exactly 2° — 1 — |V (s)| such subsets available. Then
every vertex w; is linked to the vertex z;, whenever z;; € K(w;): obviously, the set
of codewords r-covering w; is K(w;), i.e., K(w;) = K¢,(w;), and we see that, by
construction, C' is still the only minimum r-identifying code in the new graph G;,.

4.2 Fromc+2toc+r—+1

Let ng = c+1and G() = (V™) Em0)) be either G, or G((,Zg), and let Y(n0) = 1/ (no)
or V(") \ {Z}, according to the parity of ng (cf. Section 2); in both cases, V(™) is
the set of vertices of an even cycle, and for a set X C V(") we denote by opp(X)
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Figure 8: A representation of G(™) based on the distances to the vertices v;: (a) r =

6,0=4 (D_y = {p}); (b) r = € =2 (I = {p},T = {0}).

the set of points which are the diametrical opposites of the points in X, with the
convention that if Z € X, then Z € opp(X).

Let ¢ € {1,2,...,7}; to V(™) we add ¢ vertices, vy, vs, ..., vy, and construct a
graph Gpo10 = (Vagtts Eng+¢) in the following way:

‘/TL(H»Z = V(TLO) U {Ul,Ug, e ,U[},

Eﬂ0+f = E(TLO) U {{Oavl}a {UhU?}a RN {’Ul*lﬁvf}}'

For notational reasons, we set vg = 0. We now prove that in G4, which contains
n = ng + { vertices, with c+2 =ng+1 <n < ng+r = c+r+1, there is a minimum
r-identifying code of size ¢, provided that ¢ > 372 (so that n, fulfills the assumptions
in Theorems 4 and 5).

We need further notation (see Figure 8 for an illustration). For ¢ between 0 and
—1,let Ty = S,(v;) N V™) let T, = {p} (we remind the reader that the vertex
p = |n/2] is the diametrical opposite of the vertex 0), and I'y = B,(v;)NV™). When
no is odd, we add Z to Iy if ¢ < r, and to ',y if £ = r (because there is an edge
between 0 and Z, we choose to put Z in a set where there are vertices at distance
one from 0). Note that all points in I';, —1 <4 < ¢ — 1, are at distance r — i from
0, and all points in I'; are within distance r» — ¢ from 0. This shows that the ¢ + 2
sets [';, —1 <4 < {, partition the set V(™); the sets opp(I';) also partition V(") but
because of Z, they might be less regular with respect to distances.

Let C' be an r-identifying code in G, 4,. We want to prove that necessarily

ICl = c.

Lemma 6 For any i between —1 and {, there is at most one noncodeword in opp(T;).
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Proof. Assume on the contrary that there is an i such that two elements in opp(I';),
a; and b;, do not belong to C'.

a) Neither of them is Z; since opp(a;), opp(b;) € I';, either opp(a;) and opp(b;)

are at the same distance from 0 (hence, they are at the same distances from vy,

.., Ug), or they are within distance r from v,; therefore, the symmetric difference
of B,(opp(a;)) and B,(opp(b;)) is equal to {a;,b;}, its intersection with C' is empty,
and so opp(a;) and opp(b;) are not r-separated by C, a contradiction.

b) One of them, say a;, is equal to Z; because both Z and opp(b;) are either at
the same distance from 0 or within distance r from v,, the symmetric difference of
B,(opp(b;)) and B,(Z) is equal to {b;}, which again shows that Z and opp(b;) are
not r-separated by C. A

Lemma 7 For any i,j with —1 < ¢ < j < {, if there is one noncodeword in
opp(T;) and one noncodeword in opp(T';), then there is at least one codeword among
Vig1y -+, V5.

Proof. Assume that there exists 7 and j (-1 <1 < j < ¢) such that one vertex a;
in opp(T;) and one vertex b; in opp(I';) do not belong to C.

a) Neither of them is Z; the symmetric difference of B, (opp(a;)) and B, (opp(b;))
is equal to {a;, bj, vit1, ..., v;}, and so at least one of v;11, .. ., v; must be a codeword.

b)a;=Z;since Z el if ¢ <r,or Z €l'yy if ¢ =r,and i < j < ¢, necessarily
¢=r,i={—1and j = {. Then the symmetric difference of B,(opp(b;)) and B,(Z)
is equal to {by, v;}, and v, must be a codeword.

¢) b; = Z; the symmetric difference of B, (opp(a;)) and B,(Z) is equal to {a;, vit1,
oo v} if =0 —1 (when £ =), or to {a;,vit1,...,0e} if j =€ (when ¢ <r). In
both cases, at least one vertex of type v must be a codeword. A

Now let s be the number of noncodewords in V(™). By Lemma 6, and because
the sets opp(T';) partition V(") s < ¢ +2.If s = 0 or 1, then |C| > ny — 1 = ¢ and
we are done. So we can assume that 2 < s < {+ 2.

Also, there are s indices, i1,...,1s (=1 < 43 < ... < iy < ¢) such that each of
opp(Ty), ..., opp(T;,) contains exactly one noncodeword.
Then, by Lemma 7, the s — 1 sets {vi,+1, -+, Viy }, {Vigr1y -5 Vig}y oy {Vi 141,

...,v;,} each contain at least one codeword, which would lead to at least (no — s) +
(s = 1) =ng — 1 = ¢ codewords. The last point consists in showing that these s — 1

codewords of type v belong to vy, ...,v, and do not interfere with vy = 0, which is a
vertex in V(™) If 0 is not a codeword, we are done.
If 0 is a codeword, then, since opp(I'_;) = {0}, there is no noncodeword in

opp(I'_1), and 4; # —1, L.e., v;41 # 0.
We can therefore conclude that C contains at least ¢ codewords.

On the other hand, in G4, we can construct an r-identifying code C' with exactly
¢ elements in the following way: as codewords, we take all elements v;, 1 < i < ¢,
and in V(™) all vertices but £ + 1, choosing exactly one noncodeword in each of the
¢+ 1 sets opp(I';), 0 < i < ¢ (therefore, 0 € C'). We leave the checking to the reader.
Therefore the following theorem has been proved.
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Theorem 12 Letr > 2 and ¢ > 3r2. For n between c+2 and c+r + 1, there exists
a connected graph G with n vertices, such that any minimum r-identifying code in G
contains ¢ elements.

Remark 4. The inequality |C| > ¢ stems only from the necessary covering and
separating of vertices in V("0). Therefore, if £ = r and if the graph G,,,, is extended
into a new graph G* = (Vioqr UV', Epgyr U E') where the only edges between V.,
and V' are between v, and V', then, because no vertex in V' is within distance r
from a vertex in V(") any r-identifying code C* in G* is such that |C* NV, +,| > c.

Consider in particular the case when V' = W, = {wy,...,w,} and E' =
{{vr, w1}, {wr,wa}, ..., {wy—1,w,}} (cf. Section 4.1); then, since we can construct
a minimum identifying code C' in G,y4, which contains all vertices v; (0 < ¢ < r)
and since clearly this is the most favourable situation for the vertices in W, any
r-identifying code in G* has cardinality at least ¢ + ,; actually, we can reach ex-
actly ¢+, since C*, the union of C' with a {vo, ..., v, }-semi-identifying code C" in
{vo, ..., v, }UW,, is identifying in G*: all vertices in V,,4, are r-covered and pairwise
r-separated by C, all vertices in W, are r-covered and pairwise r-separated by C",
and, because 0 € C*, w; is separated by C* from v,, which guarantees that any
vertex in W, is separated by C* from any vertex in Vpoy,.

4.3 Fromc+r+2toc+2r:+4r+1
We shall use the previous construction and Remark 4 to prove the following.

Theorem 13 Let » > 2 and ¢ > 5r2 + 5r + 1. For n between ¢ +r + 2 and
¢+ 2r? + 4r + 1, there exists a connected graph G with n vertices, such that any
manimum r-identifying code in G contains c elements.

Proof. Let j be such that 7 +2 < j < 2r2 447 4+ 1; then j —r — 1 > 1, and
by Lemma 3, there exists an integer m such that m —~,, = j—1—r. By (7),
j>r+1l4+(m=-1)/2—-r=(m+1)/2,or: m <2j—1.

Let ng = ¢+ j — m — r. Thanks to the assumptions on ¢ and j, we have:

ng >(Bri+dr+1)+5—(25-1)—r

=52 4+4r+2—3j
> 577 4 4r+2— (2r2 +4r + 1)
=3r2+ 1.

Therefore, ng satisfies the conditions of Theorems 4 and 5. We mentioned in the
proof of Lemma 1 that we did not try to optimize inequality (7); we can see here
that any general improvement on (7) would change only marginally the condition
involving ¢ in the statement of Theorem 13.

Next, consider the graph Guo4r = (Vagtr, Eng+r) constructed in the previous
section with ¢ = r. To V,,4, we add m vertices, v,41,Vr12,..., Upsm, where m is
such that m —~,, = j — 1 —r, and construct a graph Guy+rem = Vagtrtms Engrrim)
in the following way:

Vaotrem = Vager U {Ur+17 Up42y - -+ aUr+m}7
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Eno+'r+m = Ling+4r U {{U'm U’I‘+1}7 {UT+17 U’I‘+2}7 LR {UT+m—17 U7+m}}-

The number of vertices in Gy 4r+m is equal to no+r+m = (c+j—m—r)+r+m = c+j,

with r +2 < j < 2r2 + 49 + 1. By Remark 4 we have immediately the size of a

minimum r-identifying code in Gy qrim: it is
ng—l+ym=_(c+tj-m-r)=1+(m-(j-1-r1)) =c A

4.4 From c+ 2r2 +4r+2 to 9c—3r? +3r2 47

Theorem 14 Let r > 2 and ¢ > 3r%2 + 2r + 3. For n between ¢ + 2r% + 4r + 2
and 26737 4 372 + r, there exists a connected graph G with n vertices, such that any
manimum r-identifying code in G contains c elements.

Proof. Let ¢; € [2r + 3,¢ — 3r?], and consider the sparse graph G, , in Remark 3,
with 0 < ¢ <29 —(r+1)c; —2: G, 4 hasny = (r+1)c;+14¢ vertices, (r+1)e;+1 <
ny < 29 — 1, and admits a minimum r-identifying code Cy of size ¢y, consisting of
the vertices ;1,1 <1 < ¢;.

Let ¢ =c—c¢; > 3r%, ny = ¢ + 1, and Gpy+r be the dense graph constructed
in Section 4.2 with ¢ = r: this graph has n, 4+ r vertices and admits a minimum
identifying code C5 of size ny — 1 containing the vertices vg, vy, .. ., Up.

Now construct a new graph G by taking the union of G, 4 and G,,4, and adding
the set of edges

{vn v} iy € X(en )}
Since v, cannot distinguish the vertices in X(ey, q), it is now quite clear that C, U Cy
is a minimum r-identifying code in G, of size ¢ = ¢; + ¢5. On the other hand, G has
ny + ny + 7 vertices, and, setting n = ny + nq + 1,

n=ni+(cc+1)+r=n+(c—c)+1+mr
therefore,
(r+lei+1+(c—ec1)+1+r<n<2%—1+(c—c1)+ 1+
Or, setting min(c;) = r(c; + 1) + ¢ +2 and max(c;) =2 +c¢— ¢+ r:
min(e;) < n < max(cy),

with 2r + 3 < ¢; < ¢ — 3r2. Which values of n can be achieved? We see that
the functions min(.) and max(.) increase with ¢;; moreover, by (9), we know that
21 > (¢; +1)(r+1), which proves that max(c;)+1 > min(c; +1). From this, we can
conclude that ny + ng + 7 achieves all values between min(2r + 3) = ¢+ 2r? +4r 4 2
and max(c — 3r%) = 2% 4 3r2 4 r, provided that ¢ > 3r® + 2r + 3. A

4.5 From (r+1l)c+1to2! -1

Theorem 15 Letr > 2 and ¢ > 2r+3. Forn between (r+1)c+1 and 2¢7' —1, there
exists a connected graph G with n vertices, such that any minimum r-identifying code
in G contains ¢ elements.
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Proof. Use Lemma 5 and Remark 3, with ¢ = s, to construct a graph with a number
of vertices between (r 4+ 1)c+ 1 and 2¢ — 1, admitting a minimum r-identifying code
of size c. A

4.6 Recapitulatory

By Lemma 4(ii), for ¢ > 572 +5r + 1 and r > 2, we have 203" L 3p2 4y > c(r+1);
therefore there is no gap between the interval [(r +1)c+ 1,271 — 1] and the previous
interval [ + 2r% 4 47 + 2,273 4 3r2 4 r]. Gathering Theorems 12-15 and their
conditions on ¢, plus Theorems 3-5 and 10, one obtains the following.

Theorem 16 Letr > 1 and ¢ > 572 + 5r + 1. For n between ¢+ 1 and 2° — 1, there
exists a connected graph G with n vertices, such that any minimum r-identifying code
i G contains ¢ elements.

5 Conclusion

We conclude with some open problems and one conjecture.

The graphs we consider here are still finite, unoriented and connected. Let r > 1,
n > 3 be integers, and G be a family of graphs G (e.g., trees, multipartite graphs,
planar graphs, series-parallel graphs, . ..); in particular we denote by T the family of
trees and by B the family of bipartite graphs. We define the following parameters:
- ¢(r,n,G) (respectively, ¢(r,n,G)) is the smallest (respectively, largest) size of a
minimum 7-identifying code among the r-identifiable graphs G € G having n vertices.
—¢(r,n) (respectively, ¢(r,n)) is the smallest (respectively, largest) size of a minimum
r-identifying code among all the r-identifiable graphs G having n vertices.

Using Theorems 1 and 2, we have, for any family G and for any n > 3 for which
the parameters are defined,

[logy(n +1)] < ¢(r,n) < ¢(r,n,G) <e(r,n,G) <t(r,n) <n -1

Open Problem 1. Study ¢(r,n), ¢(r,n); study ¢(r,n,G), é(r,n,G) for certain fam-
ilies of graphs.

By Theorems 3-5, we know that there exist values of n such that
c(r;n) = [logy(n + 1)1 (11)

or ¢(r,n)=n—1. (12)

We denote by E(r) (respectively, F(r)) the set of values of n such that (11) (respec-
tively, (12)) holds. Again by Theorems 3-5, we know that

[2% +o00) C E(r), [3r® +1,+00) C F(r). (13)

Open Problem 2. Study E(r) and F(r). In particular, is there a function e(r)
(respectively, f(r)) such that E(r) = [e(r),+o00) (respectively, F(r) = [f(r), +00))?
what happens when n ¢ E(r) or n ¢ F(r) (i.e., for “small” values of n)?
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By Theorems 10, 11 and the remark in-between, we have

c(1,n,B) = [logy(n + 1)1, (14)
¢(l,n,B)=n-1, (15)
o(L,n,T)=[3(n+1)/7], (16)
and ¢(1,n,T)=n—1, (17)

and, if we denote by E(1, B) (respectively, F(1,B), E(1,T), F(1,7)) the set of values
of n such that (14) (respectively, (15), (16), (17)) holds, then we also have, still by
Theorems 10 and 11, that

B(1) = F(1) = B(LB) = F(1,B) = E(1,T) = F(1T) = [3, +cc).

It can also be proved that E(2) = [6,+00), F(2) = [5,+00), and [2%", +00) C E(r),
improving the first inclusion in (13).

Open Problem 3. Study other values of r, other families of graphs (with the same
questions as in Open Problem 2).

Finally, Theorems 10, 11 and 16, which give results about intermediate values, sug-
gest the following.

Conjecture. For anyr > 1 andn > 3,

(i) for any integer ¢ between c(r,n) and ¢(r,n), there is a graph G with n vertices
admitting a minimum r-identifying code with ¢ elements;

(ii) for some families G of graphs such as trees, multipartite graphs, planar
graphs, ..., for any integer ¢ between c(r,n,G) and ¢(r,n,G), there is a graph
G € G with n vertices admitting a minimum r-identifying code with c elements.
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