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Abstract

For every prime power ¢ = 3 (mod 8) we prove the existence of
(q;2,0,y,y)-partitions of GF(q) with ¢ = 22+ 2y for some z, y, which are
very useful for constructing SDS, T-matrices and Hadamard matrices.
We discuss the transformations of (g;«,0,y, y)-partitions and, by using
the partitions, construct generalized cyclotomic classes which have prop-
erties similar to those of classical cyclotomic classes. Thus we provide a
new construction for T-matrices of order ¢2.
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1 Introduction

In 1965 L. Baumert and M. Hall, Jr [1] found a construction of Hadamard matrices
of order 12n from known Williamson matrices of order n. Indeed, they gave the
first example of T-matrices of order 3. Many attempts were made to generalize this
array, but none were successful until in 1971 L.R. Welch found a Baumert-Hall array
of order 5. In 1972, Joan Cooper and Jennifer Seberry Wallis [4] gave the first defi-
nition of T'—matrices. R.J. Turyn [11] proposed the notion of 46 codes and Turyn’s
sequences, using Golay sequences, he constructed an infinite class of T-matrices of
order 2110926% 41 for 4, j, k > 0. Since Turyn’s sequences are very restrictive and very
few are known, Turyn, then J. Seberry, C.H. Yang, C. Koukouvinos, etc. investigated
base sequences instead and found a large number of existent cases (for details see
[10]). In 1984 M.Y. Xia [12] proposed the idea of C-partitions on an Abelian group,
and then an infinite family of C-partitions on GF(g?) with ¢ prime power = 3 (mod
8) was found [14]. Now the construction of C-partitions in this paper is more general
and yields many new T-matrices and Hadamard matrices.

Let G be an Abelian group of order v. We denote the group operation by multi-
plication. Subsets Dy, -+, D, of G are called r-{v;|D1|,---,|D.|; A} supplementary
difference sets(SDS), if for every nonidentity element g in G, there are exactly A
elements (d,d') in Dy X Dy, or Dy X Dy, -+, or D, x D, such that gd' = d.

It is convenient to use the group ring Z[G] of the group G over the ring Z of
rational integers with the addition and multiplication. Here the elements of Z[G] are
of the form

aigy + asgs + -+ + aygv,a; € Z,9; € G.

In Z[G] the addition + is given by the rule

(> alg)g) + (D blg)g) =D (alg) + b(9))g.

The multiplication in Z[G] is given by the rule
> a(g)g)(; b(h)h) = Ek: ( > a(g)b(h)) k.

For any subset A of G, we define an element

DI AFALER

geA

and by abusing the notation we will denote it by A.
Let A, B C G and t be an integer. We define

BY =%"v€Zz[G], AB"V= Y ab7te Z[q]

beB acAbEB

and denote
AA=AATY A(A,B) = ABEY 4 BAEY,
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If A=, we define
AD =0, A(0,B) =0.
With this convention Dy, - -, D, being r-{v; |D1|, -+, |D,|; A\} SDS are equivalent to

S AD, - <Z|Di| —A) Y
=1 i=1

If r = 1 the single SDS becomes a difference set(DS) in the usual sense. When
|Dy| =+ =|D,| =k, we denote r-{v;|D1]|, -+, |D:|; A} by r-{v; k; A}.
In the following we assume p is an odd prime, » > 0, and

g=p =8m+3=2a+2y° (1)

with z =1 =y (mod 2).

In this paper we propose the notion of (¢; z,0, y,y)-partition of GF(g) and prove
its existence for some x,y satisfying (1). It provides a very useful method for con-
structing SD.S, Hadamard matrices and T-matrices. Y. Q. Chen [3] constructed a
partition of GF(g?). Then [15] generalized it from GF(q?) to GF(q) with ¢ prime
power = 1 (mod 4). Now we extend it to the case ¢ prime power = 3 (mod 8).

The rest of the paper is organized as follows. In section 2, we will partition the
group GF(q) into 8 subsets with certain desirable properties. In section 3, we use
the partition obtained in Section 2 to define the generalized cyclotomic classes and
discuss their properties. In section 4, by using generalized cyclotomic classes, we will
construct 4-{q; (¢ —1)/2; q(q — 2)}SDS, Hadamard matrices of order 4¢*. In section
5 we show that there are lots of T-matrices of order ¢2.

Before we proceed further, we list the notations that will be used throughout this
paper:

¢: a power of an odd prime p as in (1);

GF(q): the Galois field with ¢ elements;

GF(g)*: the multiplicative group of GF(g);

S: the set of all nonzero squares of GF(q);

N: the set of all non squares of GF(q);

d: a generator of GF(q)%;

Tr¢™: the absolute trace from GF(¢") to GF(p);

Tr¢"/q: the relative trace from GF(¢") to GF(q);

(¢,7) : the cyclotomy number.

Recall that the absolute trace Tr¢™ of an element g € GF(¢") is defined as

rn—1
Trq"(g9) = Y ¢" € GF(p).
j=0
For the detailed discussion of absolute and relative trace maps of finite fields, we
refer the reader to textbooks such as [6], [7] and [8]. The characters of the group
GF(q") are given by the following (see [9]). Let £ be a fixed primitive pth root of
unity, «, 8 € GF(¢™), define a group homomorphism

Xa : GF(¢") = C*,
Xa(B) = €T @D,
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where C* is the multiplicative group of nonzero complex numbers. These group
homomorphisms can be easily extended to ring homomorphisms from Z[GF(¢")] to
C. In order to show A = B in Z[GF(¢")] by using the Fourier inversion formula, we
need only to verify x.(A) = xa(B) for every a € GF(¢").

2 (gq;z,0,y,y)-Partitions

Let w be a solution of the irreducible polynomial 2? + 1 over GF(q). Then the set
of all elements aw + 3, a, 3 € GF(q), is GF(¢?). It is well known that there is an
element g = aw + 8, a, € GF(q), such that
GF(qZ)* :{gk k:0717"'aq2_2}'
Let g be such an element and put
B = {98(2m+1)j+i ;j:0,1,~-~,4m},i =0,1,---,16m +7.
It is easy to show that

E0:{62’”‘:k:0,1,-~-,4m}:S,

and
Egmya = {6% 0k =0,1,---,4m} = N.
For any i,1 < i < 16m + 8,1 # 8m + 4, write ¢° = aw + 3, then o # 0 and
Ei=g'Ey = {ad®w+p6%:j=0,1,--- 4m}
ad*w 4+ a"Bad? 5 =0,1,--- 74m}
{(aéZ’”‘,a’lB(aé%)) :7=0,1,--- 74m} :

>l

So we can represent E; by {(n,vn):n € S} or {(n,vn) : n € N} according to a € S
or « € N. For convenience, we denote

EO - (075)7 E8m+4 - (OvN)
and

{(m,ym):ne S}t = (5,79),
{(n,m):n€ N} = (N,yN).

The partition given in the following theorem is the basis of the paper. It provides
a useful method for constructing SDS, Hadamard matrices and T-matrices.
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Theorem 1 There exist eight subsets, X1, --,Xs, of GF(q), ¢ and m satisfy (1),

such that
|Xa| =X = m,
{IXsl, 1 Xal} = {m+%(1+y),m+%(l—y)}:{|X7|,|X8|},
1L 1l = {m+ 30+ a)mt50-2),
Xi+-+Xs = GF(q),
V = MU,

for some x,y satisfying (1), where
V o= (XuN + X28, X1 + XoN, -+, XN + XsS, X718 + XsN),

U = (le"'aXS),
and
|X1[-1 X1 [X-1 [XG|-1 XG0 | Xl [ X1 X1
| Xo | X1 | X4 | X3 | X6 | X5 | X | X7|
| X4 | X3 | X1 ] |Xa| | X7] | X | X | X5
o | 1Xsl Xl Xl G X X X [ X

We call the partition satisfying (2)—(9) a (¢; x,0,y,y)-partition.
Proof. Put
Ci={g":k=i(mod8)}, i=0,1,---,7,
where g is a generator of GF(q?). It is clear that
2m
Oi - U ESjJria l:0a1a77
j=0
Particularly, Cy and Cy = ¢g****Cy can be written in the forms
Co
Cy

(0,8)U{(S,7S),y € Xi} U{(N,yN),v € Xa},
(OvN) U {(NvaN)va € Xl} U {(5775)77 € XZ}

for some subsets X; and X, of GF(gq). Obviously,
For any 4,1 < i < 2m, write g% = aw + B(€ Eg;) and a # 0 for sure. Now

(g%)Fm+3 = g(6m+8)(4i=1)+8(2m+1-i) Esomi1-4)

(2)
(3)

—
N
Nus’

—
BN
~
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and
(aw +ﬁ)8m+3 — aw8m+3 +B — —aw+6,

so a(—a) € N and a8 + (—a)™'8 = 0. Therefore v = a™'3 € X; if and only if
—v € X3-4,7 =1,2. These facts, together with (12), show that

| Xi| = | Xa =m (13)
and
0¢ X, UX,. (14)
Now take
Xs={-7'ive(XinN)U(X2n9)}, (15)
Xe={0}u{—y":7€(XINS)UX2NN)}. (16)

Since {027 CG} = {g4m+2007912m+600} and {.E4m_|_27 E12m+6} = {(S, 0), (]\[7 0)}7 SO

{C%CG}_{ U (S"VS)U( U (N"VN))v U (NW/N)U( U (S"VS))}'

7€EXs 7€X6 V€EXs 7€X6

Without loss of generality, we can write

C: = {(S5,75),7 € Xs} U{(N,7N),7 € X}, (17)
Cs = {(N,yN),v € X5} U{(5,75),7 € X¢}. (18)
Clearly
| X5 + | Xg| = 2m + 1. (19)
Since

{Eoms1, Bomss, Ervomas, Bumir} = {(S, =5), (N, N), (N, =N), (S, 9)},
it follows that
1,-1¢ X, UXo.
Define

X; {(-1}u{-(y=1D)'(y+1):ye(XiN(S+1)U(XyN (N +1))},
Xy = {=(=D)7r+ Dy e(XnN(N+1)u(XN(S+1)},

Xe = {0+ D)y =D v e (NN =1)U (XN (S-1)},

Xg = {BU{(y+ D)y =D:ve(Xn(S-1))U(XaN(N-1))}
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Similarly to (17) and (18), without loss of generality, we can write

Cl = {(S,’}/S),’}/EX;;}U{(N,’}/N),’}/ €X4}a (20)
03 = {(SaVS)vVEX'?}U{(NfYN)a’Y EXS}a (21)
C(5 = {(Na’YN)VY€X3}U{(Sa’7s)a76X4}a (22)
Cr = {(N,yN),y € X7} U{(5,75),7 € Xs}-. (23)
Obviously,
| Xs| + | Xa| = [ X7| + | Xs| = 2m + 1. (24)
From [16] we know that
4
(1 Xnima| = [ Xil)? = 2(1Xs| = [Xa))* + (1X5] = 1X6])* = a.
i=1
Therefore,
(1Xs] = [X6])? = 2® and (| Xs| = |Xu])® = (|X7] = [Xs])? = ¢° (25)

for some « and y. Consequently, by (13), (19), (24) and (25), we have

161Xl = {m+ 30+ a,m+30-2),

{1 Xs], | Xal}

1 1
{261, X l} = {m + 51+ m+ 50 -0}
Since

{(S,’YS),’Y S X1UX3UX5UX7}U{(N7’YN),’Y S XQUX4UX6UX3}

2m 3 2m
= U Esi V(U U Bgjna),
i=1 =1 j=0
it follows that
|X1UX2UX3UX4UX5UXGUX7UX8| :8m+3,

ie.
X1+ X0+ Xa+Xu+ X5+ Xo+ Xr+ Xs = GF(g).

Now we are going to prove (6).
For any h =aw+  #0,a,8 € GF(q), it is clear that

{hC(Jv"'ahC'f} = {Cﬂa"'vc'?}'
Note that

(OC7B)(O/7B’) - (O{’LU +,3)(a'w +ﬁ,) - (Oéﬁ, +/6a’7661 - OéOé,),
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we have

hCo (a5, BS) U{(ay +B)S, (By — @)5),y € X1}
U{((ay + B)N, (By — a)N),7 € Xa}, (26)
hCy = (aN,BN)U{(ay+B)N,(By — a)N),7y € X1}
U{((ay +B)S, (By — «)S),y € Xu}.
For any vy € X, we can choose o, § € GF(q) such that o € S and a™!3 = —y € Xo.
In (26) the term
(aS,8S5) = (S,—0S) € Cq;

it follows that
hCy=C4y and hCy = C.
Then in (26) the term
(a0 + B)S, (B0 — a)S) = (0, =(1 +5)S)
should be equal to (0, N), i.e.,, 1 +12 € S. Now

hCy = (S, =7S)U (0, N) U{((v —1)S, =(1 +77)S),7v € X1,7 # 1}
U{((7v =70)N, =(1 +77)N), v € X2}

(07 N) U (S’ _705) U {(S’ _7_1(1 + '73 + 707)5)v7 € Rl}

U{(N, =77 (1 499 + %7 N, 7 € Ro},

where

R = ((Xi=v%)NSHU((X2—)NN),
Ry = (% —0) NN U((Xs — 70N S).

Comparing expression (26) with (11), it follows that

|Ri] = [(X1 =) NS+ [(X2 =) N N[ =[Xi| -1, (27)
|Ra] = |(X1 =) N N[+ (X2 =) N S| = [ Xl (28)

(27) and (28) mean that the coefficients of 7o in X3 N + X5 and X;5 + Xy N are
| X1| — 1 and |X,| respectively.
Similarly, for vy € X7, we can prove

hCz = C’L+4 and hC¢+4 = CZ7/L = 17273'

Comparing the expression of h(C; with that of Ci4(i = 1,2,3), it follows that the
coefficients of Yo in X3N+X4S, X35+X4N, )(5]\[-|-)<GS7 X5S+X6N, X7N+XgS
and X785 + XgN are | Xy, | X5, | X6|, | X5], | Xs| and | X7| respectively.

Similarly, repeating the procedure for Xs,---, X, one can get (6). The theorem
is proved. O
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For any subset E C GF(q), 5,7 € GF(q) and integer ¢, we write
BE+~y={Ba+y:acE}, EY={a:acE}
and as well as in Z[GF(q)]

BE+y=> (Ba+ry), EV=73 o

aclk aEl

Theorem 2 Suppose W = {Xy,---,Xs} is a(g;2,0,y,y)-partition of GF(q), 5,7 €
GF(q) and B £ 0. If W = {X1,---, Xs} is obtained from W under the following
transformations:

(0) X =X;+r, i=1,---8,
() X;=XP i=1,---38,
(¢c) Xi=pX;,i=1,---,8for €S,

(d) X17: ,8X27X2 :ﬁXl anXm :,BX»“ 1= 3,"‘,8][07',8 S N,
then W is also a (q;x,0,y,y)-partition of GF(q).

The proof of Theorem 2 is trivial. We leave it to the reader.
Remark. In general, the representation ¢ = % + 2y? is not unique, and so the
values of z and y in (1), (3) and (4) are not completely determined by Theorem 1.
In this case there is a problem: Does there exist a (g¢;,0,y, y)-partition for every
given pair (z,y) satisfying (1)?

Example 1 ¢ =27 =8 x3+3=32+2x32=05242x 12, Let § be a root of the
equation 0> = 6 + 2. Then

GF(3*)" ={0":i=0,1,---,25}.

Take
Xl — {(55,(515,(519}, X2 — {52’56’518}’
X3 = {64a51076127613}7 X4 = {614,616,622}7
X5 — {57,58,511,520,521,524}, Xe — {0}’
X ={6,0%,6°, Xg = {00,617, 6% 6%},

It is easy to verify that {Xy,---,Xs} is a (27;5,0,1, 1)-partition.
Remark. We can read off
[(Xoic1 — )N S|+ |(Xas — ) NN, [(Xaie1 —a) NN| + (X2 —a) N S|
by simply finding the coefficients of &« € GF(g) in
Xoi 1N + X5;S, Xo; 1S + Xos N

respectively, 1 = 1,2, 3, 4.
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3 Generalized cyclotomic classes

In this section, by using (g; z, 0, y, y)-partitions, we will construct generalized cyclo-
tomic classes, which have properties similar to those of classical cyclotomic classes.

For any o € GF(q)*, we know that x,(S) and x.(N) only depend on the fact
that aisin .S or in N, and do not depend on the particular choice of the element a
in Sor N. If Q is either S or N, we will denote x,(Q) by xs(Q) for any o € S and
xn(Q) for any 8 € N. Define

a=xs(S) =xn(N), b=xs(N) = xn(5).

The value of a and b can be computed from either the values of quadratic Gauss
sums [6], [7], [8] or uniform cyclotomy [2]. They are

o0} = {50+ V=D~ 1~ v=0)}.

Theorem 3 Suppose {X;, i = 1,---,8} is a (¢;2,0,y,y)-partition of GF(q), and
Cy, -+, Cr are subsets of GF(q?), given as in (10), (11), (17), (18), (20), (21), (22)
and (23) respectively. Then

7
CiCij=c;i(2m+1)(dm+ 1)+ > <j—i,k>Cipy, 0< i < j <7, (29)
k=0

where €j_; = 1 or 0 according as j — i = 4 or not, the table of < 1,7 > (0 <4,j <7T)
reads as:

<0,0> <0,1> <0,2> <0,1> <0,4> <0,1> <0,2> <0,1>
<1,0> <1,0> <1,2> <0,1> <0,1> <0,1> <0,1> <0,7>
<2,0> <0,1> <2,0> <1,7> <0,2> <0,1> <0,2> <1,2>
<1L,0> <0,1> <0,1> <1,0> <0,1> <1,7> <1,2> <0,1>
<0,0> <1,0> <20> <1,0> <0,0> <1,0> <2,0> <1,0>
<L0> <0,1> <1,7> <1,2> <0,1> <1,0> <0,1> <0,1>
<2,0> <L,7> <0,2> <0,1> <0,2> <1,2> <2,0> <0,1>
<1,0> <L,2> <0,1> <0,1> <0,1> <0,1> <1,7> <1,0>

<0,0>=m’+m, <0,1>=m"+m - 3(y* - 1),
<0,2>=m?-m+ 3(y* - 1), <0,4>=m?+3m+1,
<LO0>=m?+ 3(y* - 1), <1,2>=m?+m+ 11+ 22y +37),

<L7>=m*4+m+51-2zy+y?), <2,0>=m?>+m—L(y* - 1),
and C; = Cj as i = j(mod 8).

Proof. We calculate the character values of C;,7 =0,---,7, as follows.
For any ay,ay € GF(q), clearly,

X(al,az)(oi+4) - X(al,az)(oi)J - Oa ]-a 2a 3.
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It is enough to calculate the character values only for Cy, C,Cy and Cs. Now

Z €TI‘ ¢*(a1fw+azB) + Z gTT ¢*((cay+az)Bw+azyB—a1B)
BES BESYEX)
+ Z €TI‘ ¢*((a17+az2)Bw+azyB—o13)
BEN,YEX2
_ ZgTrq(Trf/q(alﬂwmﬂ))
pes
+ S gTradret/u(eartanputarb-af)
BESyEXL
+ Y ¢Trolré/a(enrtansutans-oap)
BEN,YEX2

= T eTraees | 5 (TraCerans) L 5 Troeesy—ans)
BES BES,yEXL BEN,yE€X2

= X2a2(s) + Z X2(a277a1)(5) + Z X2(a277a1)(N)-

y€X1 v€X2

X(al,az)(oo) =

If a; = a3 =0,
X0.0)(Co) = |Co| = (2m +1)(4m + 1) = (¢° - 1)/8.
If ay =0,a; #0,
X(a1,0)(Co) = 4m + 1 4 | X1]Xa, (S) + | X2[Xas (V) = 3m + 1.

If as € N, we set a = a;lal, then

Xasa)(Co) = a+ Y Xa-alS) + 2 Xy-al)

v€X1 VEX2

=at Y xS+ X ()

YE(X1—a)NS YE(X1—a)NN

+ Z X4(S) + Z X+(N)
YE(X1—a)n{0} YE(X2—a)n{0}

+ 2 W)+ X xnd)
YE(X2—a)NS vE(X2—a)NN
= (14 k)a+ ksb+ (dm + D]((X) U Xp) — a) 0 {0},

where

By = |(Xi—a)n S|+ (X —a)N N,
k2 = |(X1—Oé)ﬂN|+|(X2—Oé)ﬂS|

If ay € S, let a = o5 'ay again, we get

X(az.a2)(Co) = (1 + k1)b + kaa + (4m + 1)|((X7 U Xs) — o) N {0}].
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Similarly, we have

X(O,O)(Oi)
X(a1,0)(C)

(2m+1)(4m + 1),
|X2i+1|Xa1 (S) + |X2i+2|Xa1(N)v

N () = E2iv1a + kaivab + (4m + 1)|((Xaiv1 U Xaiva) — ) N{0}], ;a2 € N,
(an.02) 4 Foip1b + koiroa + (4m + 1) |((Xoip1 U Xoig0) — @) N{0}], ;a2 € S,

where
k2i+1 - |(X2i+1 — Oé) n S| + |(X22‘+2 —an N|,
koivs = [(Xoi1 — @) N N|+ [(Xpiga —anN S|,
i=1,2,3.
We know that for any v # 0
X7(5) + xy(N) = -1, Xy (S)xy(N) =2m + 1,
2 2

X5(8) = =2m —1=x,(5),  x3(N) = =2m — 1 - x,(N).

We denote the right hand side of (29) by R;; and discuss the case i = j = 0 at
first. One can see that

and
7 7
|Rool = > <0,k > |Cxl = (2m+1)(4m +1) Y < 0,k >= |CoCo.
k=0 k=0
For a; # 0,
X(01.0)(CoCo) = X{ay 0)(Co) = (3m +1)?
and
X(@,0(Roo) = (<0,0>+<0,4>)3m+1)— <0,2> (| X3] + | X4])
—<0,1> (| X5+ |X6|)— < 0,3 > (| X7| + | Xs])
= X(a,O)(COCO)-
For as € N,
X(al,az)(COCO) = —(2m + 1)(1 + :lil — k2)2 — (]. + k1)2a — k;b +
(4m + 1)[2(1 + Ey)a + 2kb + (4m + 1)]]((X1 U X5) — o) N {0}
and

X(an,a2)(Foo)

=< 0,0 > [-1—Fk — ke +2(4m + 1)|((X1 U Xa) — ) N {0}]] +
<0,1>[—ks — ks — k7 — kg +2(4m + 1)|((X3 U X4 U X7 U Xg) — a) N {0}]]
+ < 0,2 > [—ks — ks +2(4m + 1)|((X5 U Xg) — o) N {0}]]

+[< 0,4 > — < 0,0 >]X(a1,02)(C4)-
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Ifa:a;lozl € X, U Xy, then
1+ky=ko=m, kyiy1 +kopo=2m+1, i =1,2,3.

Hence,
X(alsO‘Q)(Cg) = (3m + 1)2 = X(alaaz)(ROO)'
If a € X3, then

k1:|X3|_17 k2:|X4|7 k3:|X1|7 k4:|X2|7
ks = X5, ke =[Xq|,  kr=|Xs], ks =|Xel|

Therefore
X(ar.a2)(C5) = =(2m + 1)y — [ Xs[’a — | Xa]*b = X(ay.a2)(Roo)-
If a € X4, then

k1:|X4|_17 k2:|X3|7 k3:|X2|7 k4:|X1|7
ks = |X|, ke = |Xs|, k7 =|Xe|, ks =[X;5|.

So
X(Oél,OQ)(Cg) = _(2m + 1)y2 - |X4|2a - |X3|2b = X(a1,a2)(R00)'

By a similar discussion we can prove that

X(al,az)(cg) = X(al,az)(ROO)
is valid in all cases. Consequently, CZ = Ry;. The proof of the rest of the theorem is
similar. O

Theorem 3 shows that the formulas of the left part of the table [5, p196] are still
valid for Cy, - - -, C7 defined by (10), (11), (17), (18), (20), (21), (22), (23) respectively,
which need not be cyclotomic sets. We call them generalized cyclotomic classes.

Corollary 1 Under the same assumptions as Theorem 3, Cy, C1,Cy and C3 are 4-

{¢%(¢* —1)/8;(¢* — 9)/16}SDS.
Proof. From Theorem 3 we have
3 3
Y AC; =Y CiCipa = (7¢* +1)/16 + (¢* — 9)/16GF(¢°).
i=0 i=0

The proof is completed. O

Remark. It is easy to see that C;, C}, Cy and C) are 4-{¢%; (¢°—1)/8; (¢*—9)/16}SDS
for any set {4, j,k,{} = {0,1,2,3} (mod 4).
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Example 2 Let q=11. Thenm =1=y,x = 3.
S =1{1,3,4,5,9}, N=1{2,6,7,8,10}.

fuke Xo= {6}, Xo={10}, Xs={0,1}, X,={9},

X5 = 0, X6 == {2,3,8}, X7 == {7}, Xg == {4,5}
It is easy to verify that X1, - -+, Xg satisfy (2)-(9). Define Cy,---,Cy as in (10), (11),
(17), (18), (20)—(23):

Co (0,S)U(S,65) U (N, —N), = (0,N)U(N,6N)U(S,-39),
=(5,0)U(S,5) U (N,9N), = (N,0) U(N,N) U(S,95),
moN)(N3N)(M&w, — (5,25) U (S,35) U (S,85),
= (S,75) U (N,4N) U (N,5N), = (N,7N) U (S,45) U (S,5S5).

From Theorem 3 it follows that

<0,0>=<0,1>=2, <0,2>=0, <0,4>=05,
<1,0>=<1,7>=1, <1,2>=4, <2,0>=3.

It is easy to show that Cy,---,Cq satisfy (29). However they are generalized cyclo-
tomic classes, not cyclotomic sets.

4 Constructing SDS

In this section we will construct some SDS which can be used to form Hadamard
matrices.
To construct SDS in GF(q?) we need the following lemmas.

Lemma 1 In GF(q%) the following equations hold:
(ii)) A(E;, Eiismra) = (4m + 1)(E; 4+ Eiigmea);

(iii) A(Ei, Ej + Ejysms) = GF(¢®)" — (Ei + Ej + Eivsm+a + Ejysm+4),
i£5,0<i,j<16m+T.

For the proof see [13].
Let A = {ao,---,am} C {0,1,,16m—+— 7} and B = {b17"',b4m+17t} C {07].7
-,8m + 3}. Suppose

[{a(mod 8m +4) :a € A}UB| =4m + 2+ t. (30)

Write

2t _ 2t 4m+1-t
C=Eu C=U FEautsmss, H= |J (B, UEp4smsa), D=CUH.

i=0 i=0 j=1
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Lemma 2 Under the condition (30) we have

AD = 2(4m+1—1t)(dm+1)+ [(4m+1)* — £*|GF(¢*)"
—(dm+1-1)(C+C)+ AC. (31)

Proof. (31) follows from Lemma 1 by direct calculation. O

From (31) we see that the expression of AD only depends on the set of A and
does not depend on the particular choice of B.
Let Xy,--+,Xg be a (¢;z,0,y,y)-partition of GF(q),

Bi C GF(q)\(XQH_l @] )(22‘_'_2)7 |B2| =3m + ]., 1= 0, 1,2,3, (32)
Co,-++,Cr are given in Theorem 3. Set
H;, = U ((S,7vS)U(N,yN)), D;,=C;UH;, i=0,1,2,3. (33)
Y€B;

Theorem 4 Dy, Dy, Dy and D3 given in (33) are 4-{q% q(q — 1)/2;q(q — 2)} SDS.

Proof. It is easy to show that (32) and (33) guarantee the validity of (30) for every 1.
From Lemma 2 we have

AD; =2(3m+1)(dm+ 1)+ (3m +1)(5m + 1)GF(¢*) — (3m + 1)(C; + Ciza) + AC,,

1 =0,1,2,3. The conclusion follows immediately from Theorem 3. O

Let e, f be integers such that 0 < e, f < 7 and {e, f} = {1,3}(mod 4),

B; C Xo(irf)+1 U Xogig 42, |Bil =m, (34)
Hi= |J ((S,75)U(N,yN)), Dy =CiUCiyyUCip UH,, (35)
Y€EB;

i=0,1,2,3.

Theorem 5 Dy, Dy, Dy and D3 given in (34) and (35) are 4-{q¢* q(q — 1)/2,q(q —
2)}SDS.

Proof. First, (34) and (35) ensure (30) for every D;,i =0,1,2,3.
Then, from Lemma 2 we have
AD; = 2m(dm+ 1)+ m(Tm+ 2)GF(¢*)* — m(GF(¢*)* — Cirj — Citpya)
+ A (Ci+ Cia + Cige).

Hence
3 3
SN AD; = 8m(dm+1)+m(28m + 5)GF(¢*)" + > A(Ci + Cizz + Cige)
i=0 1=0

= ¢ +q(q—2)GF(¢%),
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where we used the following equations:
3
A(Ci 4 Cipz + Ciye) = 32m +1)(4m + 1) + > a;(Ciyj + Cigjpa),
j=0
3
S a; = 36m*+27Tm+3.
j=0

O
Remark. The (1,—1) incidence matrices of Dy, Dy, Dy and D3 in Theorem 4 or

Theorem 5 maybe used to construct an Hadamard matrix of order 4¢? with Goethals-
Seidel or Wallis-Whiteman type [13].

5 Constructing T-matrices

T-matrices play an important role in composite Hadamard matrices.

Definition 1 (T-matrices) (0,%1) matrices Ty, Ty, T3 and Ty of order t are called
T-matrices if the following five conditions are satisfied:

(a) They are pairwise commute;
(b) There is a monomial matriz R of order t, R' = R, R* = I, such that

(T,RY =TiR, i =1,2,3,4;

¢) Ty xT; =0,1# 5,1 <1,7 <4, where x denotes Hadamard product;
J
(d) Ty + Ty + T3+ Ty is a (1,—1) matriz;

(e) S, T,T! =tI.

Let Cy,---,Cr be given as in (10), (11), (17), (18), (20)—(23) respectively. We
know that for each ¢, 0 < i <7, there is a set A; of numbers, such that

|4l =2m+1,  A;C{0,1,--,16m + 7},
C; = Ujea, Ej, i=0,1,---,7.

It is clear that
7
UA4i={0,1,---,16m + 7},
i=0

and for 2 =0,1,2,3,

Ai+8m+4={a+8m+4(mod 16m +8) : a € A;} = Aiya.
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For each ¢,0 < < 3, choose a subset I; of A; such that |I;] = m. Denote A;\I;
by I, i = 0,1,2,3. Set

Dy = U (El U Ei+8m+4) V) CO U Cl @] 027

i€l3

D2 = U (El U Ei+8m+4) U C2 U 03 U 047
i€l

D, = U (Ez U Ei+8m+4) U ( U (E]' U Ej+8m+4)>
i€lo jen

U ( U (Bru Ek+8m+4)> U Cs,

kelz

Ds = | (EiU Eipsmysa) U ( U (B U Ej+8m+4)>
J

iely j €12

U ( U (Ek @] Ek+8m+4)> U Cs. (36)

kels
Theorem 6 Dy, D1, Dy and D defined in (36) are 4-{¢*;q(q¢—1)/2;q(q—2)}SDS.

Proof. First, we see that, for each D;,0 < i < 3, (30) is valid. Then, from Lemma
2 it follows that

ADy = 2m(dm +1) +m(Tm + 1)GF(¢*)* + m(Cs + C7) + A(Co + Cy + Ca),
ADy = 2m(dm +1) +m(Tm + 1)GF(¢*)* + m(Cy + Cs) + A(Cy + Cs + Cy),
AD; = 2(3m+1)(4m+ 1)+ (3m +1)(5m + 1)GF(¢*)* -

(3m 4+ 1)(C3 + Cr) + ACs,
AD; = 2(3m+1)(4m+1) + (3m + 1)(5m + 1)GF(¢*)* —

(3m 4 1)(Cy + Cs) + ACs.

From Theorem 3 it is easy to verify that
3
> AD; = ¢’ +q(g - 2)GF(g).
i=0
The theorem is proved. O

We have need to point out that every element of GF(q?) appears an even number
of times in the system of Dy, Dy, D, and Dj given in (36). Hence from Theorem 1
and Theorem 3 of [14] and Theorem 6 above we obtain the following theorem.

Theorem 7 There exist T-matrices of order q* with q prime power = 3 (mod 8).

It is worth pointing out that from [13], [15] and this paper one would know the
state of the art concerning Hadamard matrices of order 4¢> (¢ prime power), namely,
the only open case is ¢ = 7 mod 8.
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