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Abstract

Totally magic labelings and totally magic injections of graphs have been
studied in several recent papers by Exoo, Ling, McSorley, Phillips and
Wallis. A total labeling of a graph with vertex set V' and edge set F is a
mapping from VUE to the positive integers. An injective total labeling is
said to be a totally magic injection if there are “magic constants” h and &
such that the sum of any vertex label with the labels on the incident edges
is h and the sum of any edge label with the labels on the incident vertices
is k. The total deficiency of a totally magic injection with maximum label
M is M — |V| — |E|. A totally magic injection with deficiency 0 is called
a totally magic labeling.

In this paper, we solve two research problems from the book Magic
Graphs by Wallis (Birkhauser, Boston, 2001). We solve Research Problem
4.1 by showing that for any m > 0, although there is a totally magic
injection of K, UmK; for s > 2, there is no totally magic labeling for
s > 3. We solve Research Problem 4.5 by showing, for all even m > 2,
that 2 is the minimum total deficiency of totally magic injections of m K.
This result has been obtained independently by J. P. McSorley (personal
communication). In addition, we give a new recursive construction for
totally magic labelings of m K3 for m odd.

1 Introduction

There have been several graph labelings that generalize the concept of magic squares
by requiring that sums of certain sets of labels be constant. We examine a rather
restrictive type of labeling called a totally magic labeling and a less restrictive vari-
ation called a totally magic injection. Totally magic injections and labelings have
been studied in [1, 5, 4, 6], from which our definitions are taken. Let G = (V| E) be
a finite, simple, and undirected graph, and let v = |V| and e = |E|. A total labeling
of G is a map from V U E to the positive integers.
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Definition 1.1. A one-to-one total labeling A of G is said to be

(a) a vertez-magic injection [2, 4] if there is a constant h, called the vertex
sum, such that for each vertex z,

Mz)+ Y Awy) = h,

YEN(z)

where N(z) is the set of neighbors of .

(b) an edge-magic injection [7, 4] if there is a constant k, called the edge
sum, such that for each edge zy,

Az) + Ay) + Mazy) = k.

(c) a totally magic injection if X is both a vertex-magic injection and an
edge-magic injection.

The total deficiency of a totally magic injection with maximum label M is
M —v—e. The total deficiency of a graph G is the least deficiency of all totally magic
injections of G. We are particularly interested in totally magic injections which use
the labels 1,2,...,v +e.

Definition 1.2. A totally magic labeling is a totally magic injection with total defi-
ciency 0.

We seek to identify the graphs that admit totally magic labelings and totally
magic injections.

Definition 1.3.

(a) A graph G for which there exists a totally magic labeling is said to be
totally magic. A totally magic graph is also referred to as a TM graph.

(b) A graph G for which there exists a totally magic injection is said to
be a TMI graph.

The only known connected totally magic graphs are the isolated point K, the
triangle K3, and the star K 5. Note that a graph that is not a TMI graph cannot be
a component of a TM graph. Exoo, Ling, McSorley, Phillips and Wallis [1, 6] have
shown that no cycles, complete graphs, or trees others than stars are TMI except
for Ky, K3 and K;,. They have also shown that, although every star K; ; is TMI
except for Kj 1, the only totally magic star is K o.

In the following section, we give some basic constructions. In Section 3, we
consider graphs of the form mKj3, a union of triangles. It has been shown in [1] that
mK is totally magic if and only if m is odd. In [5], the values of h and k that may be
used in totally magic labelings mK3 for odd m were determined. In Subsection 3.1
we give an alternate recursive approach to constructing totally magic labelings on
mKs for m odd. In Subsection 3.2 we solve Research Problem 4.5 of [6] by showing
that 2 is the total deficiency of mKj for all even m > 2. This result has been proved
independently by J. P. McSorely [3]. In Section 4, we solve Research Problem 4.1 of
[6] by showing that, although K, UmKj3 is a TMI graph for s > 2, it is not totally
magic for s > 3.
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2 Basic Constructions

First we consider the magic labelings of the three known connected totally magic
graphs. Totally magic labelings of the isolated point K are trivial. The sole vertex
must be labeled 1. All of the totally magic labelings of K3 and K , are displayed in
Figure 1. Of interest to us in totally magic labelings of K3 with vertex sum h and

2 1
2 *\6 5é3 N
5 4 1 4 1 6 3 5
rotate derive
— 4 —
2 6 1 6 1 5 5 4

Figure 1: Connected Totally Magic Labelings

edge sum k£ will be the difference d = k£ — h. The total labelings of K3 in the top row
of Figure 1 have d = £1 while those in the bottom row have d = £3.

Figure 1 also exhibits some “new labelings from old” constructions. The rotation
of a total labeling A on a union of cycles is the total labeling obtained by rotating
the labels on each cycle one step clockwise so that the vertex labels become edge
labels and vice versa. The deriwative of a total labeling A of a graph G with an edge
¢’ for which A(¢') = 1 is the total labeling A — 1 for the graph G — ¢€'.

An example of a TMI graph that is not a TM graph is shown in Figure 2. No

Figure 2: A Best Possible TMI

lower maximum label is possible for that graph, as we see in Theorem 4.1. The
constructions shown in Figures 1 and 2 are generalized in the subsequent sections.

3 Labeling Unions of Triangles

Since only three connected totally magic graphs are known, research on totally magic
graphs has primarily focused on disconnected graphs. As noted earlier, each compo-
nent of a totally magic graph must be a TMI graph. Thus we will consider unions
of triangles and stars. In this section, we study totally magic labelings of mKj, the
disjoint union of m copies of the triangle K3, where m is a positive integer.
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3.1 Odd Numbers of Triangles

In this subsection, we present an alternative proof of a theorem from [1, 5].

Theorem 3.1 ([1, 5]). Let m be an odd positive integer. For every divisor d of 3m,
there is a totally magic labeling of mKs with a vertex sum h and an edge sum k such
that k — h =d.

Our proof is based on a pair of basic lemmas. The first explicitly handles the two
smallest possible values for d.

Lemma 3.2. For any odd positive integer t and for d =1 or 3, the graph tKs has a
totally magic labeling with vertex sum h and edge sum k such that k — h = d.

Proof. The total labelings are specified in terms of Figure 3 and are easily seen to
be totally magic labelings.

21 29 2t
bli ial b2 i iag . bt a
1 G U Iy C2 Y2 Ty G Yt

Figure 3: Totally Magic Labelings of tK3 for odd ¢

Case 1: k—h=1: For each 1 <i<t,let a; = 2i — 1,

i = ¢ =

3t—1 if 7 is even ~Jot+1—u if 7 is even
4t —i if iis odd ’ 5t4+1—i ifiisodd ’
zi=a;+1,y,=b;+ 1, and z; = ¢; + 1. Here, we have k =9t 4+ 2 and h =9t + 1.
Case 2: k — h=3: For each 1 <1 <t,let a; = 61 — 5,
3t—1—37 ifiiseven 6t+ 3 — 37 if iiseven
i = ) C; = C e .. )
‘ 6t—1—37 ifiisodd ‘ 3t+3—37 ifiisodd

x; =a;+3,y; =b;+ 3, and z; = ¢; + 3. Here, we have k = 9t + 3 and h = 9¢. O

The second lemma is an example of a “new labeling from old” result and enables
us to blow up a totally magic labeling from a small number of triangles to a larger
number.

Lemma 3.3. Let s and t be odd positive integers, and suppose there is a totally
magic labeling for tKs with vertex sum h', edge sum k', and difference d = k' — I'.
Then, there is a totally magic labeling for st K3 with a vertex sum h and an edge sum
k such that the difference d = k — h satisfies d = sd'.

Proof. Suppose that the totally magic labeling for t/K3 has been specified in terms
of Figure 3. Note that there is a constant 7 such that k' =7+ 2d’, ' =r + d’, and,
for all 4, a; + b; + ¢; = 7.
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Figure 4: Totally Magic Labelings of sKj3 for odd s

For each 1 < i < t, replace the i** triangle in Figure 3 by the s triangles reflected
in Figure 4. For each 0 < j < s — 1, let a;; = sa; — J,

b sb; — % if 7 is even sc; — % if j is even
ij — i P ; 1] — i P )
by — =22 if j is odd scl-—ZSZJ1 if j is odd

zij = a;j+sd, yi; =b;j+sd, and z; j = ¢; j+sd'. It is straightforward to verify that
this gives a totally magic labeling for stK3 with edge sum k = sr — 3(s — 1) + 2sd,
vertex sum h = sr — 3(s — 1) + sd', and difference d = k — h = sd. O

Proof of Theorem 3.1. Let q = 377". Clearly, q, d, and 3m are all odd.

Case 1: 3| q.
Here, d | m. By Lemma 3.2, there is a totally magic labeling of % K3 with a vertex
sum A’ and an edge sum &' such that &' — ' = 1. Since d is odd, it follows from
Lemma 3.3 that there is a totally magic labeling of m K3 with a vertex sum h and
an edge sum k such that £ — h =d.

Case 2: 31q.
It must be that 3 | d. By Lemma 3.2, there is a totally magic labeling of 3T’”Kg with
a vertex sum h' and an edge sum &’ such that &' —h' = 3. Since ¢ and g—i are odd and
m = %q, it follows from Lemma 3.3 that there is a totally magic labeling of m K
with a vertex sum h and an edge sum £ such that £k — h = d. O

Note that each of the totally magic labelings constructed in Theorem 3.1 has an
edge labeled 1. Thus by applying the derive operation, each of these totally magic
labeling of mKj for m odd also generates a totally magic labeling of (m —1)K3UK] ».

The totally magic labelings guaranteed by Theorem 3.1 for certain values of m
and d are not unique. Figure 5 shows two distinct totally magic labelings for m = 3
triangles and difference d = 1. The second labeled graph is not isomorphic to the
first and is also not isomorphic to a rotation of the first.

2 4 6
121 16 8 3 18 10 5 14

17 10 6 15 8 4

Figure 5: Distinct Totally Magic Labelings
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3.2 Even Numbers of Triangles

While an even number of triangles is not totally magic, it is straightforward to give
a construction that shows the total deficiency is at most 2. Our first lemma gives
such a construction.

Lemma 3.4. For any even positive integer m the graph mKs admits a totally magic
ingection with maximum label 6m + 2.

Proof. The total labeling is specified in terms of Figure 3 and is easily seen to be a
totally magic injection. For each 1 < i < m, let x; = 27 — 1,
dm+1—4 if iis even 5m+1—1¢ ifiiseven
i — } Zi = e . }
vi 3m —i if i is odd ' 6m +2 —1 if i is odd

a; = x;+1,b; =y;+1, and ¢; = 2;+ 1. Here, we have h = 9m+3 and k = 9m+2. O
Theorem 3.1 and Lemma 3.4 together give the following result.
Corollary 3.5. For any positive integer m the graph mKjz is a TMI graph.

We now show that the result in Lemma 3.4 cannot be improved, in other words
that the total deficiency is 2. The proof that the deficiency is not 1 is somewhat
complicated. John McSorley [3] has independently obtained the same result with a
different proof.

Theorem 3.6. Let m be an even positive integer. Any totally magic injection for
mK3 has mazimum label at least 6m + 2.

Proof. For a proof by contradiction, assume that there is a totally magic injection
for mK; with largest label 6m + 1 or less. Since 6m distinct labels are used, there is
exactly one positive integer g < 6m + 1 that is not used as a label. If g = 1 then we
can obtain a totally magic injection for mK; with g = 6m + 1 by subtracting one
from each label. Hence, we may assume that 1 < g < 6m + 1.

Let %k be the edge-magic number and h be the vertex-magic number. We may
assume k > h since a rotation can interchange the values of &£ and h. Also, let
d=Fk —h > 0. We use several lemmas to complete the proof.

Lemma 3.7 ([6]). If v1, vs, vs are the three vertices in a component of mKs then
A(Ul) — A(UZ Ug) =d.

Proof. From the edge-magic equation A(v;) + A(v1vy) + A(ve) = k subtract the
vertex-magic equation A(vyva ) + A(vg ) + Mvavg ) = h. O

Lemma 3.8. d > 0.
Proof. This follows from Lemma 3.7 since A(vy ) # A(vavs). O

Lemma 3.9. For some a € {1,2,3,4,5,6}, g = am + 1.



TOTALLY MAGIC LABELINGS OF GRAPHS 53

Proof. The sum of all the labels is
1+2+-6m+1—g=(6m+1)(6m+2)/2—g=18m"+9Im+1—g.
Also, the sum of the labels on each triangle is k& + h. Since
E+h=18m+9—(g—1)/m,
it follows that m | (g — 1). O

For the value of a from Lemma 3.9, let T = 9m + (9 — a + 3d) /2.

Lemma 3.10. If vy, vy, vsare the three vertices in a component of mKs, then
A(Ul ) + )\(UQ ) + A(Ug) =T.

Proof. By Lemma 3.7 and the proof of Lemma 3.9, the sum of the labels in any
one component of mKj is 18m +9 — a = 2(A(vy) + A(v2) + AM(vs)) — 3d. Thus
AMor) +AMvg) +Avs) =(18m+9—a+3d)/2=T. O

Lemma 3.11. d is even if and only if a is odd.
Proof. By Lemma 3.10, since T is an integer, 9 — a + 3d is even. |

Lemma 3.12. Let Ly be the set of labels on the edges of mKs3. For any integer z,

define i — z—d zfm>g and x = g (mod d),
x otherwise.

Thenx € L if and only if 1l <z < 6m+1, z# g, and 1 < ¥ mod 2d < d.

Proof. Our proof is by induction on z. First, suppose 1 < z < d and = # g. Since
x —d < 1, it follows from Lemma 3.7 that z is not the label on a vertex. Therefore,
x € Ly. Now suppose d <y < 6m + 1, y # g and the lemma holds for all z < y.

Case 1: y = g + d. Note that § = y — d, and since g is not a label, y € Lg and
y—2d=g—d¢ Lg. It follows that 1 < § mod 2d < d. So the lemma holds for y.

Case 2: y#g+dand 1 < g mod 2d < d. Then y —d ¢ Lg. By Lemma 3.7, y is
not the label on a vertex. Therefore y € L.

Case 3: Any remaining y value. Then y — d € Lg. By lemma 3.7, y is the label
on a vertex. Therefore y ¢ Ly. a

Lemma 3.13. Ifa € {1,2,4,5}, then 2d | m. If a € {3,6}, then 2d | 3m.

Proof. By Lemma 3.7, any label y such that y # ¢g and y > 6m + 1 — d must be on
a vertex. Let x be the largest number less than or equal to 6m + 1 such that v =g
(mod d). If @ = 6, then & = 6m+1. Otherwise, since z+d > 6m+1, x is on a vertex.
If 6m 42 —d < x < 6m + 1, then, since (6m + 1) — (6m +2 —d) = d — 1, Lemma
3.12 tells us that (6m + 2 — d) mod 2d = d+ 1 and (6 + 1) mod 2d = 0. However,
this is impossible since 1 < x mod 2d < d. Therefore z =6m+1or z =6m+2 —d.
In the latter case a # 6.

Case 1: z = 6m + 1. By Lemma 3.12, 6m mod 2d = 0. So 2d | 6m, and hence
d | 3m. If a = 6 then d is odd by Lemma 3.11. Since m is even, this implies 2d | 3m.
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Now assume a # 6. By definition of z, 6m+1 = am+1 (mod d). Thus d | (6 —a)m.
It follows that d | am. If am mod 2d = d then (am + 1 — d) mod 2d = 1. But then
g — d is an edge label, which is impossible. Therefore, 2d | am. So 2d | gcd(a, 6)m.
If a =1ora=>5then 2d | m. If a = 3 then 2d | 3m. If a = 2 or a = 4 then 2d | 2m,
or d | m. Since d is odd for a even, we can conclude that 2d | m.

Case 2: = 6m+ 2 —d and a # 6. It follows from the definition of z that
6m+2—-d=am+1 (modd). Sod]| (6 —a)m+ 1. Furthermore, by Lemma 3.12,
(6m +2 — d) mod 2d = d. So 2d | (6m + 2), and hence d | (3 + 1). It follows that
d| (am+1). If (am+1) mod 2d = 0 then (am+1—d) mod 2d = d. But then g —d
is an edge label, which is impossible. Therefore, (am + 1) mod 2d = d. Note that
since m is even, the previous equation implies d is odd. By Lemma 3.11, a is even.
If @ =2 then (2m + 1) mod 2d =d. Hence bm+2=3d—-1=d—-1=0 (mod 2d).
Thus d = 1. Similarly, if a = 4, we get (4m + 1) mod 2d = d. Now,

6(dm+1) —4(6m+2)=2=6d—4-0=0 ( mod 2d).
Thus again d = 1. Therefore, we may conclude 2d | m in this case. a
Lemma 3.14. d # 1

Proof. Suppose d = 1. By Lemma 3.11, a is even.

Case 1: a =2. SoT =9m+5 =1 (mod2). By Lemma 3.12, the labels
on the vertices are {2,4,6,...,2m} U {2m + 3,2m +5,...,6m + 1}. Consider the
component that has a vertex labeled 2. Since T is odd, exactly one of the other
two vertex labels is odd. Thus the largest possible sum for the three vertex labels is
24+2m+ (6m +1) =8m+3 <9m+5="T. This is a contradiction.

Case 2: a =4. SoT =9m+4 =0 (mod2). By Lemma 3.12, the labels
on the vertices are {2,4,6,...,4m} U {4m + 3,4m +5,...,6m + 1}. Consider the
component that has a vertex labeled 6m + 1. Since T is even, exactly one of the
other two vertex labels is odd. Thus the smallest possible sum for the three vertex
labels is (6m + 1) + (4m +3) +2 = 10m + 6 > 9m + 4 = T. This is a contradiction.

Case 3: a =6. So T =9m+3 =1 (mod 2). However, all of the vertex labels
are even by Lemma 3.12. This is a contradiction. a

Lemma 3.15. The number of vertex labels congruent to i (mod 2d) is €2 where

2d
6 ifi=0o0rd+1<1<2d,
6—a ifi=1,
c=
a ifi=d+1,
0 if2<i<d.
Proof. This follows from Lemmas 3.12 and 3.13. O

Lemma 3.16. Ifa =1 then d # 2.
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Proof. Suppose a = 1 and d = 2. Note that 4 | m, by Lemma 3.13. By Lemma 3.15,
the vertex labels are distributed in the four congruence classes modulo 4 as follows:
6m/4 are congruent to 0, 5m/4 are congruent to 1, 0 are congruent to 2, and m/4
are congruent to 3. Since T = 9m + 7 =3 (mod 4), any component that has a
vertex label congruent to 0 modulo 4 must have another vertex label congruent to
0 modulo 4 and the third vertex congruent to 3 modulo 4. Hence, there are 3m/4
such components. However, this is impossible since there are only m/4 vertex labels
congruent to 3 modulo 4. |

Lemma 3.17. 0 < (T — 3) mod 2d < d — 1.

Proof. Toward a contradiction, suppose d < (T' — 3) mod 2d < 2d — 1.

Case 1: (T'—3)mod 2d < 2d—-3. Sod+2 < (T —1)mod2d < 2d — 1. By
Lemma 3.15, for any component with a vertex label congruent to (T'— 1) modulo 2d,
the other two vertices must have labels congruent to 0 and 1 modulo 2d. There must
be 62—2 such components. However, there are only (6;3)m vertex labels congruent to
1 modulo 2d.

Case 2: 2d—2 < (T'—3) mod 2d. Then (T —2) mod 2d € {0,2d—1}. By Lemma
3.15, for any component with a vertex label congruent to T'— 2 modulo 2d, the other
two vertex labels must either both be congruent to 1 or d + 1 modulo 2d. There

must be 62—73 such components. However, there are only GZ_—da vertex labels congruent
to 1 modulo 2d and 35 congruent to d + 1 modulo 2d. This provides enough labels
for at most i—Z‘ such components. a

Completing the proof of Theorem 3.6. By Lemmas 3.10 and 3.17,
0< (9m+ =%t — 3) mod 2d < d— 1.
Since 2d | 3m by Lemma 3.13, we have
0< (3% +2) mod2d <d-1.

Note that d > 1 by Lemma 3.14. It follows that 3%“ + % > 0.
Case 1: 3%“ + % <d—-1. Then d < a—5 <1, contradicting Lemmas 3.8 and
3.14.
Case 2: 3_7‘1 + % > 2d. Then 3—a > d. This can only be true if a = 1 and d = 2,
contradicting Lemma 3.16.
d

One consequence of Theorem 3.6 is a theorem from [1].

Theorem 3.18 ([1]). Let m be an even positive integer. Then, mKs has no totally
magic labeling.

Additionally, a stronger result holds.

Corollary 3.19. Let m be an even positive integer. The total deficiency of mKs is
2.

Proof. This follows from Theorem 3.6 and Lemma 3.4. Ol
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4 Triangles and a Star

In this section we show that no additional totally magic graphs can be obtained by
taking unions of stars and triangles. Although it was shown in [1] that no star other
than K is totally magic, the following theorem of J. P. McSorley shows that every
star other than K ; is TMI and determines the total deficiency of each of these stars.

Theorem 4.1 ([4, 6]). The star K5 has a totally magic injection provided s > 1.

The total deficiency when s > 2 is (3;2) —2s — 3.

Since stars other than K ; are TMI, it is possible that they could be components
of totally magic graphs. It has been shown in [1, 6] that a TMI graph cannot have
more than one star as a component, and that the only totally magic graphs with K3
as a component are K; U K; 5 and K itself. Furthermore, as mentioned previously,
K, UmKj is totally magic for m even. The theorems in the next two subsections
show that these are the only totally magic graphs that can be formed as a union of
a star and some number of triangles.

4.1 Totally Magic Labelings

Theorem 4.2. The graph K, U mK; is a totally magic graph if and only if m is
even.

Proof. Suppose m is even. From 3.1 we know that there is a totally magic labeling
of (m + 1)Kj;. If we take the derivative (as defined in Section 2) of this labeling of
(m + 1)K, it gives a totally magic labeling of Ko UmIs.

Suppose that m is odd, and that K, U mK;3 has a totally magic labeling. If
we take the reverse of the derivative, we would have a totally magic labeling of
(m + 1)K;. This is impossible. O

So we see that the union of mK3 with the star K 5 is totally magic if and only if
m is odd. Previous results do not rule out the possibility of forming a totally magic
graph as the union of a larger star and some number of triangles. This suggests
Wallis’ Research Problem 4.1: Is the graph K; ; UmK3 ever totally magic for s > 27
We answer this question in the negative in the following theorem. Since the only
cycle that is TMI is K3 and the only trees that are TMI are stars and K, this
theorem completes the characterization of all totally magic graphs with maximum
degree 2 or less.

Theorem 4.3. For any m > 0 and s > 1, suppose G is a totally magic graph
wsomorphic to K; , UmKs. Then s =2.

Let A be a totally magic labeling for G with vertex sum h and edge sum k. Let
d = k — h. Let ¢ be the central vertex of the star and by,bs,...,b, be the other
vertices of the star. We use several lemmas to prove the theorem.

Lemma 4.4. \(c) = d.
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Proof. From the edge-magic equation A(b1) + A(bic) + A(c) = k subtract the vertex-
magic equation A(by) + A(bic) = h. O

Lemma 4.5. Let M be the maximum label. Then M = 6m + 2s + 1.

Proof. The number of vertices of G is 3m + s + 1. The number of edges is 3m + s.
The sum of these is the maximum label. d

Lemma 4.6. h — M4WM+1)/2=(m+1)d
o 2m+s

Proof. The sum of all the labels is M (M + 1)/2. Since the sum of the labels on each
K3 is h + k and for each i, A(b;) + A(b;c) = h we can also find the sum of the labels
as d+ sh+m(h+ k) =d+ sh+m(2h 4+ d) = (2m + s)h + (m + 1)d. Setting these
expressions equal and solving for h gives the result. O

Lemma 4.7. h(s — 1) < s(M — (s — 1)/2) — d.

Proof. Start with the vertex-magic equation d + XA(b;c) = h. This yields h — d =
T A(b;c). Now, notice that since M is the largest label,

SAb) < M+(M-1)+-+(M-s+1)
= sM—-s(s—1)/2=s(M - (s—1)/2).

By the vertex-magic property A(bic) = h — A(b;) for i = 1,...,s. Hence h —d >
sh —s(M — (s — 1)/2). The result follows. O

Lemma 4.8. (s —3)(6m*+3(s + 1)m+s(s+2)/2) +s—1+d < (s —3)md

Proof. First, substitute the expression for h from Lemma 4.6 into the inequality from
Lemma 4.7 to get

(s=1)(MM+1)/2—(m+1))d
p— <s(M—(s=1)/2) —d.

Now substitute the expression for M from lemma 4.5 and multiply both sides by
2m + s to get

(s =1)((6m+2s+1)(B3m+s+1)— (m+1)d) <
(2m + s)(s(6m + 3s/2 4 3/2) — d).

Expanding we get

(s —1)(18m? + 12ms + 25>+ 9Im + 3s + 1 — (m + 1)d) 4+ 2md <
s(12m? + 9ms + 3s%/2 + 3m + 35/2 — d).

This can be rearranged to obtain
6(s —3)m* +3(s—3)(s+ L)m+s(s—3)(s +2)/2+s—1+d < (s— 3)dm.

Factoring (s — 3) from the first three terms gives the result. O
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Lemma 4.9. If s > 3, then (s — 3)(6m?* + 3(s + 1)m) < (s — 3)md.

Proof. If s > 3, then (s — 3)s(s +2)/2+ s — 14 d > 0. The result follows from
Lemma 4.8. O

Lemma 4.10. s =2

Proof. If s =3 or if s > 3 and m = 0, then Lemma 4.9 implies 0 < 0. If s > 3 and
m > 0, then Lemmas 4.5 and 4.9 imply M = 6m +2s+1 < 6m+ 3(s+ 1) < d. But
by Lemma 4.4, M > d. Finally, if s = 1 then A(b;) = d = A(¢), so G is not totally
magic. The only remaining possibility is s = 2. 0l

4.2 Totally Magic Injections

We have shown that K; ,UmKj is totally magic if and only if s = 2 and m is even.
However, this leaves open the question of whether K; ; U mKj is a TMI graph. We
will show in Theorem 4.12 below that K ;UmKs is TMI for all s > 1 and all m > 0.
First we prove a lemma that will be useful in constructing a totally magic injection
for K, UmiKs.

Lemma 4.11. For all positive integers m and s, there is a totally magic injection
of mK3 with vertex magic number h and edge magic number k such that

3(5;—1) <oh -k

and every label is greater than d =k — h.

Proof. By Corollary 3.5 there is a totally magic injection of mKj, say with h = a
and £ = b. We get a new totally magic injection by adding c¢ to every vertex label,
where ¢ = max{d, (s(s + 1)/2 — 2a + b)/3}. The result is a totally magic injection
with h = a+3c and k = b+ 3c. Note that d is unchanged. Also, the least label used
in the new labeling is at least 1 +c¢ > d and

2h—k=2(a+3c)—(b+3c)>2a—b+3(s(s+1)/2—2a+b)/3=s(s+1)/2.
O
Theorem 4.12. For any m > 0 and s > 1, K; ; UmKj3 is a TMI graph.

Proof. The cases m = 0 and s = 2 are handled in [6], so we assume m > 1 and s > 3.
Consider a total labeling of the triangles that satisfies Lemma 4.11, say with h = a
and k = b. We may assume a < b. Multiply each label by n, where n = s(s—1)/2+1.
This gives us a totally magic injection of the triangles with h = na, k& = nb, and
d = nb — na. Note that by the conditions of Lemma 4.11 each label is greater than
d. Now label the central vertex of the star d. Label s — 1 of the edges 1,2,...,s—1
and label the corresponding vertices na — 1,na — 2,...,na — s + 1. Label the last
edge n(2a —b) — s(s — 1)/2, and label the corresponding vertex n(b—a)+ s(s—1)/2.
Note that none of these labels are divisible by n, so they have not been used in the
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labeling of the triangles or the central vertex. Also, by the conditions of Lemma
. (20— b) — s(s — 1)/2 > ns(s +1)/2 — s(s — 1)/2 > .
Hence the labels on the edges are all distinct. Since na+ s —1 < nb+ s(s — 1)/2,
we also have that n(2a —b) — s(s — 1)/2 < na — s + 1. Clearly,
s—1<n(b—a)+s(s—1)/2.
Furthermore, by the conditions of Lemma 4.11,
n(2a—0b) >2a—-b>s(s+1)/2>s(s—1)/2+5s—1.

Sona—s+1>n(b—a)+s(s—1)/2. It follows that all the labels are distinct
except possibly n(2a — b) — s(s — 1)/2 and n(b — a) + s(s — 1)/2. Suppose we had
n(2a—b)—s(s—1)/2 = n(b—a)+s(s—1)/2. Then (s(s—1)/24+1)(3a—2b) = s(s—1)
or equivalently (1 + ;255)(3a — 2b) = 2. Thus 0 < 3a — 2b < 2. Since 3a — 2b is an
integer, 3a — 2b = 1. But then s = 2, so this case cannot occur. We have shown all
the labels are distinct. It is now easy to verify that the magic equations hold. So we
have a totally magic injection of the graph. a

The previous proof shows the existence of a totally magic injection of Ky ;UmK;
for m > 0 and s > 1. However, no attempt has been made to achieve the minimum
total deficiency. This leaves open the following question.

Question 4.13. What is the total deficiency of K1 sUmK;?
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