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Abstract

Let K, denote the graph obtained from K4 by removing one edge. Let k
be an integer with k£ > 2. Kawarabayashi conjectured that if G is a graph
of order n > 4k + 1 with 05(G) > n + k, then G has k vertex-disjoint
copies of K . In this paper, we settle this conjecture affirmatively.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no
multiple edges. For a graph G, we denote by V(G) and E(G) the vertex set and the
edge set of G, respectively. For a vertex x of a graph G, the neighborhood of z in G
is denoted by Ng(z), and we let dg(z) := |Ng(z)|. For a noncomplete graph G, let
02(G) :=min{d¢(z) + de(y)| zy ¢ E(G)}; if G is a complete graph, let 09(G) := oo.
Let K, be the graph obtained from K, by removing one edge, and let S denote the
graph obtained from K, by removing two edges which have a common vertex.

For a given connected graph F, a spanning subgraph of a graph G is called an
F-factor if all of its components are isomorphic to F. Thus the statement that G has
an F-factor is equivalent to the statement that |V(G)| is a multiple of |V (F)| and G
contains IK(%; vertex-disjoint copies of F'. There are many results concerning degree
conditions %or the existence of vertex-disjoint copies of F'. As for the existence of an
F-factor, Alon and Yuster [1] proved the general result that under the assumption
that [V/(G)| is a multiple of [V'(F)|, the condition that §(G) > (X2 4 0(1))[V(G)|
guarantees the existence of an F-factor in G, where x(F) denotes the chromatic
number of F' and o refers to order of magnitude as |V(G)| tends to infinity. In the
case F = K, Hajnal and Szemerédi [3] proved that if |V(G)| is a multiple of [ and

G) > I_TI|V(G)|, then G has a Kj-factor.

In this paper, we are concerned with conditions on o9(G) for the existence of
vertex-disjoint subgraphs. As examples of results concerning such conditions, we
mention that it is proved in Justesen [4] that a graph G of order at least 3k with
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02(G) > |V(G)| + k contains k vertex-disjoint triangles (see also Theorem 2 below),
and it is proved in Enomoto [2] and in Wang [7] that a graph G of order at least 3k
with 05(G) > 4k — 1 contains k vertex-disjoint cycles.

The main purpose of this paper is to prove the following theorem, which was
conjectured by Kawarabayashi in [5] and [6].

Theorem 1 Let k be an integer with k > 2, and let G be a graph of order
n >4k + 1 with 09(G) > n+ k. Then G contains k vertez-disjoint copies of K .

In Theorem 1, the condition on 0»(G) is best possible in the following sense.
Let k,n be integers with £ > 2 and n > 4k + 1 such that n — k is odd, and let
G = K1+ (Kuzter + Kuzin). Then 05(G) = n+k — 1, but G contains at most
k — 1 vertex-disjoint triangles, and hence G does not contain £ vertex-disjoint K .
Note also that the conclusion of Theorem 1 does not hold when n = 4k. To see this,
let k > 4 be an integer and let | = [#22] and let G = (K1 U K;_1) + Ky—;. Then
02(G) =8k —1—2 > 5k = |V(G)|+k, but G does not contain k vertex-disjoint K, .

In the proof of Theorem 1, we make use of the following theorem.

Theorem 2 ([6]) Let k be an integer with k > 2, and let G be a graph of order
n > 4k with 03(G) > n+ k. Then G contains k vertex-disjoint copies of S.

Our notation is standard except possibly for the following. Let G be a graph.
For a subset A of V(G), the subgraph induced by A is denoted by (A). For a
subgraph H of G, we let G — H = (V(G) — V(H)) and, for a vertex z of G, we
let G —z = (V(G) — {z}). For disjoint subsets A and B of V(G), we let E(A, B)
denote the set of edges of G joining a vertex in A and a vertex in B. When A or
B consists of a single vertex, say A = {«} or B = {y}, we write E(z, B) or E(A,y)
for E(A, B). For a subgraph H of G and for a vertex « of G with « ¢ V(H), we let
Np(z) = Ng(z) N V(H); thus |Ng(z)| = |E(z, V(H))|.

2 Preparation for the proof of Theorem 1

Let G be a graph of order n > 4k + 1 with 02(G) > n + k. Since G has k vertex-
disjoint copies of S by Theorem 2, we can choose k vertex-disjoint induced subgraphs
S1,...,S) such that for each 1 < i <k, S; contains K, as a spanning subgraph
and, for each &' +1 < i < k, S; = S(0 < k' < k). Let H := (U, V(S;)). For
1= ].7 ey k, write V(SZ) = {ai,bi,ci,di} so that dsl(ai) Z dsl(bz) Z dSZ(Ci) Z dsl(dz)
Note that dg,(a;) = ds,(b;) = 3 and ds,(¢;) = ds,(d;) > 2 for each 1 <7 <k, and
dsi(ai) = 3,d51(bi) = dsi(ci) = 2 and dsl(dz) =1 for each k' +1 S 3 S k. IfE = k,
then the desired conclusion holds. Thus we may assume that &' < k& — 1. We may
also assume that Si,..., Sy are chosen so that

(a) k' is maximum; and,

(b) subject to (a), Y5_, [E(S;)| is maximum.
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We start with easy lemmas.

Lemma 2.1. Let v € V(G — H).

(1) For eachi with S; = K, |E(v,V(S;))| < 3, with equality only if |E(v, {a;,b;})| =
1.

(i) For each i with S; = S, |E(v,V(S;))| < 2, with equality only if vd; € E(G).

Proof.

(i) If |[E(v,V(S;))] > 3 and a;,b; € Ng(v), then replacing S; by ({v,a;,b;,¢;}) or
({v, a;, b;,d;}), we get a contradiction to the maximality of 2521 |E(S;)].

(ii) If |E(v, {ai, bi, c;})| > 2, then replacing S; by ({v,a;,b;,¢;}), we get a contradic-
tion to the maximality of &'. a

For later reference, we restate the case i = k of Lemma 2.1(ii) in the following
form (see the first paragraph of Section 3).

Lemma 2.2. Let v € V(G — H). Then precisely one of the following siz statements
holds:

(1) Ns.(
(2) Ns.(
(3) Ns.(
(4) Ns(v
(5) N, (
(6) Ns,(v) = {ax, di}. O

Lemma 2.3. Let ¢ be an integer with 1 < ¢ < k — 1. Let S', X be subgraphs of
(V(S)UV(SK)UV(G—H)) suchthat S' = K3, X = K; or K4, and V(S")NV(X) = 0.
Then for each x € (V(S;))UV(Sy) UV(G— H)) -V (X) =V (S'), |[E(z,V(S"))] < 1.

Proof. Suppose not. Then ({z} U V(S")) D K, . Hence by replacing S; and Sy by
X and ({}UV(S")), respectively, we get a contradiction to the maximality of &'. O

Lemma 2.4. Letv € {d,}UV(G—H). Let1 <i < k—1, and suppose that S; = K
and |E(v,V(S;))| > 2. Then |E(c;, {a, by, cr})| < 2 and |E(d;, {ag, b, cr})] < 2.
Further if Ng(v) N {a;, b;} #0, then |E({ci, d;}, {ak, by, cx})| < 3.

Proof. If |E(c;, {ax,br,cr})| = 3, then by replacing S; and Sp by ({v} U V(S; —
02)2) and ({ci, ax, by, ¢ }), respectively, we get a contradiction to the maximality of
> =1 1E(S))] because E(v,V(S; — ¢;)) # 0. Thus |E(ci, {ak, by ,ci})| < 2 and, by
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symmetry, we similarly obtain |E(d;, {a, by, cx})] < 2. Now assume that Ng(v) N
{ai,b;} # 0. Then we have ({v} UV(S; —¢;)) D Ky or ({v}UV(S;—d;)) D K.
We may assume ({v} U V(S; —d;)) D K;. Then by applying Lemma 2.3 with
S = ({ak,bk,ck}) and X = <{’U} @] V(SZ — d2)>7 we obtain |E’(Ci7 {ak,bk,ck})| S ].,
which implies |E({c;, d;}, {a, by, ci })| < 3. O

3 Proof of Theorem 1

We continue with the notation of the preceding section. For convenience, when (m)
of Lemma 2.2 holds for a vertex v € V(G — H), we say that the preference index
of v is m, and write pr(v) = m. Define « =max{pr(v)| v € V(G — H)}. We
henceforth assume that we have chosen Si,...,S; so that a is as large as possible
subject to conditions (a) and (b) stated at the end of the first paragraph of Section 2.

Lemma 3.1. Let v € {d;}UV(G—H). Let 1 <i < k—1, and suppose that S; = Kj.

(i) I |B(, V(S))] > 3, then [B(V(S,), {ar b ci})| < 4.
(ii) If6|E(u,V(Si))| =2, then |E(V(S), {aw, bi, ci})| < 8 and |E(V(S:), {be, cx})| <

(ili) IfveV(G-H), |E(v,V(S))| =4 and o < 2, then E(V(S;), {bx, cx,dy, }) = 0.

(iv) If v € V(G — H), |E(v,V(S;))| = 3 and a < 2, then |E(xz, {ay, bk, cr})]
< 1 for each x € Ng,(v) and, for the vertex z in V(S;) — Ng(v), we have

1

E(z,{bk,ck,d}) =0 (so |[E(V(S:), {bx,ck})| < 3).

Proof. Assume that |E(v, V(S;))| > 2. We first claim that |E(x, {a, by, cx})| < 1for
each z € V(S;) such that |E(v, V(S;—x))| > 2. To see this, take z € V(S;) such that
|E(v,V(S;—x))| > 2. Then ({v}UV(S;—z)) D K, . Hence by applying Lemma 2.3
with S = {ay, by, cx} and X = ({v}UV(S;—z)), we obtain |E(z, {ay, b, cx})| < 1, as
claimed. Thus if |E(v,V(S;))| > 3, then |E(z, {ax, by, cr})| < 1 for each z € V(S;),
which proves (i) and the first assertion of (iv). Assume now that |E(v,V(S;))] =
2. By symmetry, we may assume Ng,(v) = {a;,b;}. Then by the above claim,
|E({ci,d:}, {ag, b, cx })| < 2. Therefore, we obtain

|E(V(S:), {ak, by, cx D)= |E({ai, bi}, {ar, br, cx })| + |E({ci, di}, {an, by, cx })| <6+2=8

and, since we clearly have |E({c;, d;}, {bk,cr})| < |E({ci, di}, {ak, by, cx})|, we also
obtain |E(V(SZ)7 {b}w Ck})| = |E({a2, b2}7 {bk7 Ck})|+|E({Cz7 d1}7 {bk7 Ck})| S 4+2 = 6.
Thus (ii) holds. Finally assume that v € V(G — H), |E(v,V(S;))] > 3 and a < 2,
and take z € V(S;) such that |E(v,V(S; — 2))| = 3. If E(z, {bk,ck,di}) # 0, then
replacing S; by ({v}UV(S;—z)) and v by z, we get a contradiction to the maximality
of a. Thus E(z, {bx, ¢k, dr}) = 0, which proves (iii) and the second assertion of (iv). O
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Lemma 3.2. Letv € V(G — H). Let 1 <i < k-1, and suppose that S; = K, and
|E(v,V(S;))| > 3. Then the following hold.

(i) We have |E(V(S;), {ar, b, cr})| <6 and |E(V(S;), {bx,cr})] < 5.
(i) If a < 4, then |E(V(S;), V(Sk))| < 7.

(ili) If « <2, then |E(u,V(S;))| < 1 for each u € {by,ck,dy}-

Proof. By Lemma 2.1(i) and by symmetry, we may assume Ng,(v) = {a;,c;, d;}.
Then for each z € {b;,¢;,d;}, we get |E(z, {ay, by, ci})| < 1 by applying Lemma 2.3
with S = ({ak, by, ¢ }) and X = ({v} UV(S; — x)). Hence we may deduce that
|E({bi, ciydi}, {ak, br, e })| < 3. Consequently,

|E(V(Sl)7 {aka bk7 Ck})| S |E(ai7 {ak7 bk7 Ck})| + |E({blv Ci, d2}7 {aka bk7 Ck})| S 3 +3:6

and, since we clearly have |E({b;,c;, d;}, {bx,cr})| < |E({b;,ci,di}, {a, b, cx})|, we
similarly obtain |E(V(S;), {bk,cx})] < 2+ 3 = 5. Now assume that o < 4. Take
z € {b;,c;,d;}. If |[E(z,V(Sk))| > 2, then replacing S; by ({v}UV(S; —z)) and v by
x, we get a contradiction to the maximality of a. Thus |E(z, V(S;))| < 1 for each
z € {b;,c;,d;}, and hence |E(V(S;),V(Sk))| < 4+ 3 = 7. Finally assume that o < 2,
and let u € {bg,cy,di}. Take x € {b;,¢;,d;}. If vu € E(G), then as above, we get
a contradiction to the maximality of a. Thus zu ¢ E(G) for each & € {b;,¢;,d;},
which implies |E(u, V(S;))| < 1. |

Now fix v € V(G — H) such that pr(v) = a. We divide the proof of Theorem 1
into four cases according to the value of a =pr(v).
Case 1: The case where Ng, (v) = {ay, dx} (i-e., @ = 6)

Lemma 3.3. For each i with 1 <i <k —1, |[E({bx, cx, dr, v}, V(S;))| < 10.

Proof. By way of contradiction, suppose that
|E({bk,ck7dk7’l}}7V(Si))| Z 11. (A)
We consider three subcases separately according as S; = Ky, K; or S.

Subcase 1: S; & Ky.

We first claim that if Ng,(d) N Ng,(v) # 0, then |E(z,V(S; —y))| < 1 for each
y € Ng,(d) N Ng,(v) and each = € {by,c}. To see this, let y € Ng,(dy) N Ng,(v)
and z € {by,cx}. Then ({y,ay,dr,v}) D K;. Hence applying Lemma 2.3 with
S"'=S8—yand X = ({y, ax,dy,v}), we obtain |E(z,V(S; — y))| < 1, as claimed.
Now suppose that Ng,(b;) N Ng,(c;) # 0 and Ng,(dy) N Ng,(v) # 0. Then by
the above claim, |E(z,V(S;))] < 2 for each z € {by,c;} and, by the symme-
try of the roles of {by,c;} and {dj,v}, we similarly obtain |E(z,V(S;))] < 2 for
each z € {dy,v}. Hence |E({by,cs,di,v}, V(S;))| < 8, which contradicts (A).
Thus we have Ng,(by) N Ng,(cy) = 0 or Ng,(dx) N Ng,(v) = 0. We may assume



194 SHINYA FUJITA

NSi(bk)ﬂNSi(Ck) = (. Then |NSL(bk)|+|NSL(Ck)| < 4, and hence |NS1(dk)|+|NSL(U)| >
7 by (A), which implies |Ng,(dx) N Ns,(v)| > 3. Therefore it follows from the
claim made at the beginning of this subcase that |E(z,V(S;))] < 1 for each z €
{bk, ek}, and hence |E({by, cx }, V(S;))| < 2. Consequently |E (b, ¢k, di, v}, V(S:))| =
|E({bk,ci}, V(Si)| + |E({dk, v}, V(S;))| <2+ 8, which contradicts (A).

Subcase 2: S; = K, .

By (A) and Lemma 2.1 and by symmetry, we may assume that |[E(v, V( S;))| =
|E(bk, V(S;))| = 3. Then |E({bx, cx}, V(Si))| < 5 by Lemma 3.2(1) and, by symmetry,
we similarly obtain |E({v,dy},V(S;))| < 5. Thus, |E({bk,cs, dk, v}, V(S:))| < 10,
which contradicts (A).

Subcase 3: S; = S.

By Lemma 2.1 and by symmetry, |E(z

,VI(S:)| < 2 for each z € {by, c, di, v},
which implies that |E({bg, ck, dr, v}, V(S:))| <

8, a contradiction. O

Now for each € V(G — H — v), Lemma 2.1(ii) implies that |E({by, cx},z)| <
1, and we also have |E({dy,v},z)] < 1 by symmetry. Hence by Lemma 3.3 ,
dG(bk) + dG(Ck) + dG(dk) + dG(U) < 10(k — 1) + 2{7’L — (4k + 1)} + 8 =2n+ 2k — 4.
On the other hand, dg(by) + de(ck) + da(dy) + dg(v) > 205(G) > 2n + 2k, which is
a contradiction. This completes the proof for Case 1.

Case 2: The case where Ng, (v) = {by, di}, {ck, dx}, {0}, {ck} or {di} (le,3<a<
5)

By the symmetry of the roles of by and ¢y, we may assume Ng, (v) = {bx, di.}, {bx}
or {dk}

Lemma 3.4. For each i with 1 < i < k-1, 2|E(v,V(S;))| + |E({ax, bk, cx,dr},
V(S:)| < 15.

Proof. By way of contradiction, suppose that
As in Lemma 3.3, we consider three subcases separately.

Subcase 1: S; = K.

Suppose that |E(v,V(S;))| > 3 or |E(dy, V(S;))] > 3. Then by Lemma 3.1(i),
|E(V(S:),{ak, bk, e })| < 4. By assumption (B), this implies that |E(v,V(S;))| =4,
|E(V(SZ)7 {ak, bk7ck})| =4 and |E(d}”V(Sz))| = 4. From |E(V(SZ)7 {ak, bk7ck})| = 4,
we see that there exist z,y € V/(S;) such that Ng(z) N {ay,by,cx} N Ne(y) # 0.
Now by replacing S; by (V(S; — «) U {v}) and v by x, we see from the maximal-
ity of « that @ = 5, that is to say, Ng,(v) = {b,dx}. This implies ({dy,v} U
(V(S;) — {z,y})) = K,. Consequently by replacing S;, Sy and v by ({dg,v} U
(V(S:) = {z,y})), {z,br,cr,ar}) and y, we get a contradiction to the maximal-
ity of a. Thus |E(v,V(S;))| < 2 and |E(d;, V(S,))] < 2. If |E(v,V(S)))] = 2
or |E(dy,V(S:))| = 2, then |E(V(S)),{ax,bk,ck})] < 8 by Lemma 3.1(ii), and
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hence 2|E(v,V(S;))| + |E({ak, bk, cr, dx }, V(Si))| < 4+ 2+ 8 = 14, a contradic-
tion. Thus |E(v,V(S;))| < 1 and |E(dy, V(S;))| < 1. Consequently, 2|E(v, V(S;))|+
|E({ak, b, ¢k, di}, V(Si))] < 241+ 12 = 15, which contradicts (B).

Subcase 2: S; = K.

By Lemma 2.1, |E(v, V(S;))| < 3. We divide the proof into two subcases accord-
ing as by, ¢ Nsk(v) or by € Nsk(v).

Subcase 2.1: Ng, (v) = {d;}.

First let |E(v,V(S;))| = 3. Then by Lemma 3.2(ii), |E(V(S;), {ak, bk, cx, di})| <
7. Consequently, 2|E(v, V(S;))| + |E({ak, bk, ck, dr}, V(S;))| < 6+ 7, which contra-
dicts (B).

Next assume that |E(v, V(S;))| = 2. I |E(v,{a;,b;})| = 2, then arguing as in the
proof of Lemma 3.2(ii), we see from the maximality of a that |E({c;, d;}, V(Sk))| < 2,
and hence 2|E(v, V(S:))|+|E ({ax, br, ek, di}, V(S;))| < 4+8+42 = 14, a contradiction.
Thus |E(v,{a;,b;})] < 1. Assume for the morment that |E(v,{a;,b;})| = 1, say,
va;,ve; € E(G). Then by the maximality of «, |E(d;, V(Sk)| < 1. If |[E(b;, VI(Sk))| >
3, then replacing S;, Sy, and v by ({b;, ax, by, ¢ }) , ({ai, s, ds, v}) and dy,, respectively,
we get a contradiction to the maximality of . Thus we also have |E(b;, V(Sy))| < 2.
Consequently, 2|E(v,V(S:))| + |E({ak, b, ek, di}, V(Si)| < 4+8+2+1=15a
contradiction.

Thus we are reduced to the case where Ng, (v) = {¢;,d;}. Suppose that Ng(dy) N
{ai,b;} # 0. Then we see from the maximality of « that |E({c;, d;}, {ax, bx, cx})| < 2,
and hence 2|.E(’U7 V(Sz))| + |E({ak, bk, Cl dk}7 V(Sz))| < 44+8+2+2=16. In view
of (B), this implies that |E(dy, {c;,d;})] = 2 and |E({ay, by, ck,di}, {a;, b;})| = 8.
Consequently replacing S; and Si by ({v,dy, ¢, d;}) and ({b;, ag, b, cr}), we get a
contradiction to the maximality of &'. Thus Ng(dx) N {a;,b;} = 0, which implies
that |E(dy, V(S;))| = |E(dk, {ci,d;})| < 2. Since we are assuming Ng,(v) = {c;, d;},
we also have |E({c¢;,d;},{ax,br,cr})| < 4 by Lemma 2.4. By (B), it follows that
|E(dk, {ci,d;})| = 2 and |E({ax, bk, cr }, {a;, b;})| = 6. Consequently by replacing S;
and Sy, by ({v,dy, c;, d;}) and ({b;, ax, bg, cx }), respectively, we get a contradiction to
the maximality of &’. This concludes the discussion for the case where |E(v, V(S;))| =
2.

Finally assume |E(v,
= 3, then |E(dy, V(S;))|
2|E(v, V(Si)| + |E({ak, by, ek, di }, V(S;:))| <2+ 1412 = 15,

a contradiction. Thus |E(c;, {ag, bk, cr})| < 2 and |E(d;, {ax, br, cr})| < 2. By (B),
this implies that |E(dg, V(S;))| = 4 and |E(c;, {ak, bx, cx})| = 2. Therefore replacing
S; and Sg by ({dk,a;,b;,d;}) and ({c;, ax, be, cx }), we get a contradiction to the max-

imality of &'.
Subcase 2.2: Ng, (v) = {by,dy} or Ng,(v) = {bi}.

By the symmetry of v and dj in (V(Si) U {v}), we have |E(d;, V(S;))] < 3 by
Lemma 2.1. If |E(v, V(S;))| = 3 or |E(dy, V(S;))| = 3, then |E(V(S;), {a, b, ci })| <
6 by Lemma 3.2(i), and hence 2|E(v,V(S;))| + |E({ax, br, cx, di}, V(S:))] < 6 +

V(SZ))| S 1. If |.E(CZ‘7 {ak,bk,ck})| =3or |.E(d¢7 {ak, bk7ck})|
< 1 by Lemma 2.4, and hence
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3+ 6 = 15, a contradiction. Thus |E(v,V(S;))] < 2 and |E(dy, V(S:)] < 2.
Hence by (B), |E(V(S:),{ak,br,cr})] > 10. Now if |E(c;, {ak,br,cr})| = 3 or
|E(d;i, {ak, b, cx})| = 3, then |E(v, V(S;))| < 1and |E(dg, V(S;))| < 1 by Lemma 2.4,
and hence 2|E(v,V(S;))| + |E({ak, bx, ck,di}, V(S:))| < 3 +12 = 15, a contra-
diction. Thus |E(c;, {ak, by, cx})| < 2 and |E(d;, {ak, bx,cr})| < 2. Consequently
|E(c;, {ag, b, cr})| = 2, |E(d;, {ag, b, cr})] = 2, |E({as, b}, {ax, bx,ck})| = 6 and
|E(v,V(S:))| = |E(dy, V(Si))] = 2. If va; € E(G), we get a contradiction to the
maximality of &’ by replacing S; and Sy, either by ({a;, b;, ¢;, v}) and ({a, bg, c, di})
or by ({ai,b;,d;,v}) and ({ay, bg, ¢k, ¢;}). Thus va; ¢ E(G). Similarly vb; ¢ E(G).
Hence Ng,(v) = {¢;,d;}. By symmetry, we similarly obtain Ng,(dy) = {¢;,d;}. Since
|E(ci, {ak, bi, e })| = 2, we have ¢;ax, € E(G) or ¢;by € E(G). By the symmetry of ay
and by, in (V(S;) U {v}), we may assume c;b;, € E(G). But then replacing S; and Sy,
by ({a,ci, b, v}) and ({b;, d;, ar,cr}), we obtain a contradiction to the maximality
of k.

Subcase 3: S; = S.

First assume that |E(v,V(S;))| < 1. Then by (B), |[E({ax, bx, cx, di}, V( S:))| >
14. If |E(dg,{ai, bi,c;i})| + |E(diy {ax, br, i })| > 4, then E(dy,{a;,bi, ¢;}) # 0 and
E(d;,{ag, by, ct}) # 0 and we have |E(dg, {a;, bi,¢;})| > 2 or |E(di, {ak, be, cr})| > 2,
and hence we get a contradiction to the maximality of &’ by replacing S; and Sy by
({ai, bi7 Ciy dk}> and ({ak, bk7 Cly d2}> Thus |E(d}w {ai, bi7 Cz})| + |.E(d¢7 {ak, bk7 Ck})| S
3. Hence |E(V(Sy), V(SO = 1B (du dy)l+(|E(ds, {as, by D)+ (Lo by} o))+
|E({ak, b, ¢}, {ai bi, ¢;})| < 143+ 9, which contradicts the earlier assertion that
|[E(V(Sk),V(S;)) | > 14. Next assume that |E(v,V(S;))] > 2. By the maxi-
mality of «, this forces |E(v,V(S;))] = 2, Ng,(v) = {by,d}, di € Ng,(v) and
[{bi,c;} N Ng,(v)| = 1. Hence applying Lemma 2.1 with the roles of v and dj, in-
terchanged we obtain |E(dy, {a;,b;,¢;})] < 1. Further applying Lemma 2.1 to Sy
with the roles of v and d; interchanged, we obtain |E(d;, {ak, by, cx})| < 1. Conse-
quently |E(V/(Sy), V(S:)| = |E(dk, di)| + |E(dk, {ai, bi, ci})| + |E({ak, by, ek}, di)| +
|E({ak, b, ¢}, {ai, by ci})| < 14+141+9. In view of (B), this forces did; € E(G) and
|E({ak, by, e}, {ai, bi,ci})| = 9. Therefore ({a;,d;,v,di,}) D S and ({b;, ag, by, cx}) =
K4, and hence we get a contradiction to the maximality of &' by replacing S; and Sy
by ({a;,d;,v,d}) and ({b;, ax, be,ci}). O

For each z € V(G — H —v), 2|E(v, z)| + |E({a, bk, ¢k, dy }, )| < 4 by Lemma 2.1
and, if equality holds, then dg,v € Ng(z) by Lemma 2.1, and Ng, (v) = {bg, dy} (and
|Ne(z) N {by,cx}| = 1) by the maximality of pr(v). Thus if there exist two vertices
z,y € V(G — H — v) such that 2|E(v,z)| + |E({ak, bk, cx, di },2)| = 2|E(v,y)| +
|E({ak, br, ¢k, di},y)| = 4, then by replacing Sy, by ({z,y,v, dx}), we get a contradic-
tion to the maximality of &’. Consequently, by Lemma 3.4, 2dg(v) +de(ax) +de(by) +
de(cr)+de(dy) < 15(k—1)+3(n—4k—1)+1414 = 3n+ 3k —3. On the other hand,
by the assumption that 02(G) > n+k, 2dg(v)+de(ar) +de(br) + da(ck) + da(dy) >
3n + 3k. This is a contradiction, and this completes the proof for Case 2.

Case 3: The case where Ng, (v) =0 (ie., a = 2)
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Lemma 3.5. For each i with1 <¢ <k —1,
41E(v, V(S)| + |E({ax, bk, cx, di }, V(S3))] < 20.

Proof. By way of contradiction, suppose that
Then |E(v,V(S;))| > 2. By the maximality of «, this implies that S; & S.
Subcase 1: S; = K.

If |[E(v,V(S;))] = 4, then by Lemma 3.1(iii), E({by, cx,dr},V(S;)) = 0, which
implies that 4|E(v,V(S:))| + |E({ak, bx, ¢k, di}, V(Si))| < 16 + 4, a contradiction.
It |[E(v,V(S;))| = 3, then |E(V(S;), {ax, bk, cx})| < 4 by Lemma 3.1(i), and hence
4 E(v, V(Si)|+|E({ak, br, c, di }, V(S:))| < 12+4+4 = 20, a contradiction. Finally
if |E(v,V(S;))| = 2, then |E(V(S;), {a, b, cr})| < 8 by Lemma 3.1(ii), and hence
4|.E(U7 V(Sz))| + |E({ak, bk7 Cly dk}7 V(Sz))| S 8+4+8= 207 a contradiction.

Subcase 2: S; = K, .

By Lemma 2.1, |E(v,V(S;))| < 3. If |E(v,V(S;))| = 3, then by Lemma 3.2(ii),
|E(V(S:), {ak, bk, ck, dr})] < 7 and hence

4|E(U,V(Sz))| + |E({ak, bk7Ck,dk},V(Si))| S 12 + 7= 19,

a contradiction. Thus |E(v, V(S;))| = 2. By Lemma 2.4, |E(c¢;, {ag, by, cx})| < 2 and
|E(d;, {ak, b, cr})| < 2. Since we clearly have |E({a;, b}, {ax, b, cr})| < 6, this to-
gether with (C) implies that we have |E(c;, {ay, b, cr})| = 2 or |E(d;, {a, by, ck})| =
2, and |E(dg,V(S:))] > 3. By the symmetry of the roles of ¢; and d;, we may
assume |E(c;, {ax,br,cx})| = 2. Then replacing S; and Sy by ({dk,a;,b;,d;}) and
({ci, ar, by, e }), we get a contradiction to the maximality of &' O

Let € V(G — H — v). By the maximality of pr(v), Ng,(z) C {a;}. Further if
zay,zv € E(G), then by replacing Sy, by ({z} UV (S —d})), we get a contradiction
to the maximality of a. Hence 4|E (v, z)|+|E({ax, bk, cx, di }, )| < 4. Consequently,
by Lemma 3.5, 4dg(1)) + dg(ak) + dg(bk) + dg(Ck) + dg(dk) < 20(k — 1) + 4(n — 4k —
1) 4+ 8 = 4n + 4k — 16. On the other hand, by the assumption that o2(G) > n + &,
4(1@(1)) + dc(ak) + dG(bk) + dG(Ck) + dG(dk) Z 4n 4+ 4k. This is a contradiction, and
this completes the proof for Case 3.

Case 4: The case where Ng, (v) = {a;} (l.e.,a=1)

Lemma 3.6. For each i with 1 < i < k — 1, 2|E({v,d},V(S:))| + |E({bk, ck},
V(S:))| < 16, and equality holds only if S; = K, , Ng,(v) = Ng,(dp) = {c;,d;},
Ng(bk) D) V(Sl) and Ng(Ck) D) V(Sl)

Proof. Suppose that
21E({v, di}, V(Si)l + [E({bx, e}, V(Si))| = 16. (D)
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Then we have |E(v, V(S;))| > 2 or |E(dy, V(S;
of v and dj, we may assume that |E(v, V(S;))
S S.

Subcase 1: S; = K.

If |[E(v, V(S;))| = 4, then E(V(S;), {bk, ¢k, dr}) = 0 by Lemma 3.1(iii), and hence
2|E({v,di}, V(S))|+|E({bk, ek}, V(S:))| < 8, acontradiction. Thus |E(v, V(S;))] <
3 and, by symmetry, we similarly obtain |E(dy, V(S;)) | < 3. If |[E(v, V(S;))| = 3,
then |E(V(S;), {bk,cr})] < 3 by Lemma 3.1(iv), and hence 2|E({v,dy}, V(S;))| +
|E({bk,ci},V(S:))| <12+ 3 = 15, a contradiction. Thus |E(v,V(S;))| = 2, and we
similarly obtain |E(dy, V(S;)) | < 2. Now by Lemma 3.1(ii), |[E(V(S;), {bk,cx})| < 6,
and hence 2|E({v, di.}, V(S:))| + |E({bx, cr}, V(S:))| < 8+ 6 = 14, a contradiction.

Subcase 2: S; = K, .

By Lemma 2.1, |E(v, V(S;))| < 3. By symmetry, we also have |E(dy, V( S;))| < 3.
If |[E(v,V(S;))| = 3, then |E(V(S;), {bx,cx})| < 2 by Lemma 3.2(iii), and hence
2|E({v,di}, V(Si)| + |E({br, ek}, V(S:))| < 12+ 2 = 14, a contradiction. Thus
|E(v,V(S;))] = 2. By symmetry, we similarly obtain |E(d, V(S;))] < 2. In view of
(D), this implies that |E(dg, V(S;))| = 2, Ne(bx) 2 V(S;) and Ng(c,) 2 V(S;). If
Ng(v)n{ai, b} # 0, then |E({ci, d;}, {br, cx})| < 3 by Lemma 2.4, which contradicts
the assertion that Ng(by) 2 V(S;) and Ng(cx) 2 V(S;).Thus Ng,(v) = {¢;,d;}, and
we similarly obtain N, (dy) = {¢;, d;}. ]

| > 2. By the symmetry of the roles
> 2. Then by the maximality of «,

)
|

Note that for each z € V(G—H —v), Ng(z)N{v, by, cx, d,} = 0 by the maximality
of pr(v). Suppose that 2|E({v,d}, V(S:)|+|E({bx, cx }, V(S;)) | < 15 for each i with
1 <4< k—1. Then 2(dg(v) + de(dy)) + de(by) + de(cr) < 15(k —1)+8 = 15k — 7.
On the other hand, by the assumption that o3(G) > n + k, 2(dg(v) + da(dy)) +
dg(br) + dg(cr) > 3(n + k) > 15k + 3. This is a contradiction. Thus we may
assume that 2|E({v,d;}, V(S1))| + |E({bk,ck},V(S1))| > 16. Then by Lemma 3.6,
2|E({vvdk}vv(51))| + |E({bkvck}vv(51))| =16, 51 = K, NSI(U) = NSl(dk) =
{c1,d1}, Ne(by) D V(S1) and Ng(cr) D V(S1). If arer € E(G), then by replacing
S1 and Sy by ({v,c1,ax,d}) and ({bg,a1,b1,d1}), we get a contradiction to the
maximality of &'. Thus ayc; ¢ E(G). Now we prove the following lemma.

Lemma 3.7. For each i with2 <i¢ <k —1,
2[E({v, di}, V(Si))| + [E({ak, 1}, V(S))| < 15.

Proof. By way of contradiction, suppose that
2|E({v, di}, V(Si)l + [E({ax, e}, V(S))] = 16. (E)

By the symmetry of the roles of v and dg, we may assume that |E(v,V(S;))| >
|E(dk, V(Si))I.
Subcase 1: S; = K.

First we consider the case |E(v, V(S;))| = 4. By Lemma 3.1(iii), E(dy, V (S;)) =
0. In view of (E), this forces |E(ay,V(Si))| = 4 and |E(cy,V(S;))] = 4. Hence
by replacing S1,5; and Sy, by ({a1,b1,bx,ct}), {({ c1,ai,b;,¢:}) and ({d;, v, ar, dy}),
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respectively, we get a contradiction to the maximality of Z§:1 |E(S;)|]- Next we
consider the case |E(v,V(S;))] = 3. Note that we have Ng,(v) D Ng,/(dy) by
Lemma 3.1(iv). Assume first that |E(dy, V(S;))] = 3. Then Ng,(v) = Ng,(dy).
Suppose that Ng,(v) N Ng,(ay,) # 0, and let y € Ng,(v) N Ng,(ag). Then by replacing
S1,5:, Sk and v by ({cg, a1,b1,d1}), ({de} UV (Si — v)), ({y, v, ax, b }) and ¢;, respec-
tively, we get a contradiction to the maximality of . Thus Ng,(v) N Ng,(a;) = 0,
which implies that |E(ag, V(S;))| < 1. If |E(a, V(S;))| = 0, then by replacing
Si by ({v} U Ng,(v)) and v by the vertex in V(S;) — Ng(v), we get a contradic-
tion to the maximality of o. Thus |E(ay,V(S;))| = 1. Also, by (E), we have
|E(c1,V(S;))| > 3. Take y € Ng,(v)N Ng,(dx) N Ng,(c1). Then by replacing S, .S;, Sk
and v by ({ck, a1,01,d1}), {y,v,dy,e1}), {ar} UV(S; —y)) and by, respectively,
we get a contradiction to the maximality of a because |E(ay, V(S;) — {z})] = 1
and apby € E(G). Assume now that |E(dy, V(S;))| < 2. Then by (E), 1 <
|E(dy, V(S:))| <2 and |E(c1,V(S:))| + |E(ax, V(S;))| > 6. Suppose that Ng,(v) N
N, (dy) N Ng,(c1) # 0, and let y € Ng,(v) N Ng,(dg) N Ng,(c1). Since |E(cy, V(S;))| +
|E(ag, V(S;))| > 6, we have Ng,(ax)—{y} # 0. Hence by replacing S, S;, Sy and v by
({eks a1, b1,d1}), {y, v, di, a1 }), (V(Si—y)U{ar}) and by, respectively, we get a contra-
diction to the maximality of . Thus Ng,(v) N Ng,(dx) N Ns,(c1) = 0. Since Ng,(v) D
Ng,(dy), this together with (E) implies that |E(dg, V(S;))| = |E(c1,V(S))| = 2
and |E(ax, V(S;))| = 4. Let y € Ng,(v) N Ng,(ar) — Ng(ci). Then by replac-
ing S1,S:, Sk and v by ({a1, b, bk, cr}),(V(S: — y) U {a}), {y,v,ar,dr}) and di,
respectively, we get a contradiction to the maximality of a because didg,div €
E(G). This concludes the discussion for the case |E(v,V(S;))] = 3. Finally we
consider the case |E(v,V(S;))] < 2. By (E), |E(v,V(S:)| = |E(di,V(S:))| =
2,|E({ax,c1},V(Si))| = 8. Let y € Ns,(v) N Ng,(ar). Then by replacing S;, S;
and Sy, by ({a1, b1, bx, e }), (V(Si —y)U{e1}) and ({y, v, ax, dy}), respectively, we get
a contradiction to the maximality of 37, |E(S;)].

Subcase 2: S; = K, .

By Lemma 2.1, |E(v, V(S;))| < 3. Suppose that |E(v,V(S;))| = 3. Then ¢;,d; €
Ng(v) by Lemma 2.1. By Lemma 3.2(iii), we also have |E(dy, V(S;))| < 1. By (E),
this forces |E(ag, V(S;))| = |E(c1, V(S;i))| = 4. Consequently by replacing Sy, S; and
Sk by ({ex}UV(S1—c1)), {({e1}UV(Si—c;)) and ({c;, v, a, dy}), we get a contradiction
to the maximality of Y~7_, [E(S;)|. Thus |E(v,V(S;))| < 2. By (E), this forces
|E(v, V(S:)| = 2,|E(di,V(S:))| = 2, and |E({ag, 1}, V(S;))] = 8. Suppose that
Ng,(v) N Ng,(dg) # 0, and take y € Ng,(v) N Ng,(d;). Then replacing S;, S; and
Sy by ({ck, ar,b1,d1}), {ar} UV (S; —y)) and ({y,v, c1,di}), we get a contradiction
to the maximality of &’. Thus Ng,(v) N Ng,(dy,) = 0. Since |E(dy, V(S;))| = 2 and
|E(v,V(S;))| = 2, we may assume ¢;dy € E(G) by symmetry. Then by replacing S;
by (V(S; — ¢;) U {v}) and v by ¢;, we get a contradiction to the maximality of a.

Subcase 3: S; = S.

By the maximality of o, E(v,V(S;)) C {a;v} and E(dy, V(S;)) C {a:di}, and
hence 2|E({v,d;},V(S:)| + |E({ak,c1},V(Si))| € 4+ 8 = 12. This is a contradic-
tion. O
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For each © € V(G — H —v), E(z,{v,c1, ag,di}) C {wer, zay} by the maximality
of «, and hence 2|E({v,dy},2)| + |E({ag, c1},2)| < 2. Consequently, by Lemma 3.7,
2(dg(v) + de(dy)) + del(ag) + dg(c1) < 15(k —2) +2(n — 4k — 1) + 2(3 4+ 3) +
8+ 6 = 2n+ 7k — 6. On the other hand, by the assumption that o2(G) > n + k,
2(dg(v)+de(dy))+de(ag)+de(cr) > 3n+3k. Sincen > 4k+1, this is a contradiction.

This completes the proof of Theorem 1.

References

[1] N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory Ser. B 66
(1996), 269-282.

[2] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18
(1998), 487-492.

[3] A. Hajnal and Szemerédi, Proof of a conjecture of P. Erdés, Collog. Math. Soc.
Jdnos Bolyai 52 (1987), 213-220.

[4] P. Justesen, On Independent Circuits in Finite Graphs and a Conjecture of
Erdés and Pésa, Ann. Discrete Math. 41 (1989), 299-306.

[6] K. Kawarabayashi, K -factor in a graph, J. Graph Theory 39 (2002), 111-128.

[6] K. Kawarabayashi, F-factor and vertex-disjoint F in a graph, Ars Combinatoria
62 (2002), 183-187.

[7] H. Wang, On the maximum number of independent cycles in a graph, Discrete
Math. 205 (1999), 183-190.

(Received 17 May 2003; revised 10 Oct 2003)



