Vertex-disjoint copies of K_4^- in graphs

Shinya Fujita

Department of Applied Mathematics Science University of Tokyo 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601 Japan

Abstract

Let K_4^- denote the graph obtained from K_4 by removing one edge. Let k be an integer with $k \geq 2$. Kawarabayashi conjectured that if G is a graph of order $n \geq 4k+1$ with $\sigma_2(G) \geq n+k$, then G has k vertex-disjoint copies of K_4^- . In this paper, we settle this conjecture affirmatively.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no loops and no multiple edges. For a graph G, we denote by V(G) and E(G) the vertex set and the edge set of G, respectively. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and we let $d_G(x) := |N_G(x)|$. For a noncomplete graph G, let $\sigma_2(G) := \min\{d_G(x) + d_G(y) | xy \notin E(G)\}$; if G is a complete graph, let $\sigma_2(G) := \infty$. Let K_4^- be the graph obtained from K_4 by removing one edge, and let S denote the graph obtained from K_4 by removing two edges which have a common vertex.

For a given connected graph F, a spanning subgraph of a graph G is called an F-factor if all of its components are isomorphic to F. Thus the statement that G has an F-factor is equivalent to the statement that |V(G)| is a multiple of |V(F)| and G contains $\frac{|V(G)|}{|V(F)|}$ vertex-disjoint copies of F. There are many results concerning degree conditions for the existence of vertex-disjoint copies of F. As for the existence of an F-factor, Alon and Yuster [1] proved the general result that under the assumption that |V(G)| is a multiple of |V(F)|, the condition that $\delta(G) \geq (\frac{\chi(F)-1}{\chi(F)} + o(1))|V(G)|$ guarantees the existence of an F-factor in G, where $\chi(F)$ denotes the chromatic number of F and o refers to order of magnitude as |V(G)| tends to infinity. In the case $F = K_l$, Hajnal and Szemerédi [3] proved that if |V(G)| is a multiple of l and $\delta(G) \geq \frac{l-1}{l}|V(G)|$, then G has a K_l -factor.

In this paper, we are concerned with conditions on $\sigma_2(G)$ for the existence of vertex-disjoint subgraphs. As examples of results concerning such conditions, we mention that it is proved in Justesen [4] that a graph G of order at least 3k with

 $\sigma_2(G) \ge |V(G)| + k$ contains k vertex-disjoint triangles (see also Theorem 2 below), and it is proved in Enomoto [2] and in Wang [7] that a graph G of order at least 3k with $\sigma_2(G) \ge 4k - 1$ contains k vertex-disjoint cycles.

The main purpose of this paper is to prove the following theorem, which was conjectured by Kawarabayashi in [5] and [6].

Theorem 1 Let k be an integer with $k \geq 2$, and let G be a graph of order $n \geq 4k+1$ with $\sigma_2(G) \geq n+k$. Then G contains k vertex-disjoint copies of K_4^- .

In Theorem 1, the condition on $\sigma_2(G)$ is best possible in the following sense. Let k,n be integers with $k\geq 2$ and $n\geq 4k+1$ such that n-k is odd, and let $G=\overline{K_{k-1}}+(\overline{K_{n-k+1}\over 2}+\overline{K_{n-k+1}\over 2})$. Then $\sigma_2(G)=n+k-1$, but G contains at most k-1 vertex-disjoint triangles, and hence G does not contain k vertex-disjoint K_4^- . Note also that the conclusion of Theorem 1 does not hold when n=4k. To see this, let $k\geq 4$ be an integer and let $l=\lceil\frac{8k-2}{3}\rceil$, and let $G=(K_1\cup K_{l-1})+\overline{K_{4k-l}}$. Then $\sigma_2(G)=8k-l-2\geq 5k=|V(G)|+k$, but G does not contain k vertex-disjoint K_4^- .

In the proof of Theorem 1, we make use of the following theorem.

Theorem 2 ([6]) Let k be an integer with $k \geq 2$, and let G be a graph of order $n \geq 4k$ with $\sigma_2(G) \geq n + k$. Then G contains k vertex-disjoint copies of S.

Our notation is standard except possibly for the following. Let G be a graph. For a subset A of V(G), the subgraph induced by A is denoted by $\langle A \rangle$. For a subgraph H of G, we let $G - H = \langle V(G) - V(H) \rangle$ and, for a vertex x of G, we let $G - x = \langle V(G) - \{x\} \rangle$. For disjoint subsets A and B of V(G), we let E(A, B) denote the set of edges of G joining a vertex in A and a vertex in B. When A or B consists of a single vertex, say $A = \{x\}$ or $B = \{y\}$, we write E(x, B) or E(A, y) for E(A, B). For a subgraph H of G and for a vertex x of G with $x \notin V(H)$, we let $N_H(x) = N_G(x) \cap V(H)$; thus $|N_H(x)| = |E(x, V(H))|$.

2 Preparation for the proof of Theorem 1

Let G be a graph of order $n \geq 4k+1$ with $\sigma_2(G) \geq n+k$. Since G has k vertex-disjoint copies of S by Theorem 2, we can choose k vertex-disjoint induced subgraphs S_1, \ldots, S_k such that for each $1 \leq i \leq k'$, S_i contains K_4^- as a spanning subgraph and, for each $k'+1 \leq i \leq k$, $S_i \cong S(0 \leq k' \leq k)$. Let $H:=\langle \bigcup_{i=1}^k V(S_i) \rangle$. For $i=1,\ldots,k$, write $V(S_i)=\{a_i,b_i,c_i,d_i\}$ so that $d_{S_i}(a_i) \geq d_{S_i}(b_i) \geq d_{S_i}(c_i) \geq d_{S_i}(d_i)$. Note that $d_{S_i}(a_i)=d_{S_i}(b_i)=3$ and $d_{S_i}(c_i)=d_{S_i}(d_i)\geq 2$ for each $1 \leq i \leq k'$, and $d_{S_i}(a_i)=3, d_{S_i}(b_i)=d_{S_i}(c_i)=2$ and $d_{S_i}(d_i)=1$ for each $k'+1 \leq i \leq k$. If k'=k, then the desired conclusion holds. Thus we may assume that $k' \leq k-1$. We may also assume that S_1,\ldots,S_k are chosen so that

- (a) k' is maximum; and,
- (b) subject to (a), $\sum_{j=1}^{k} |E(S_j)|$ is maximum.

We start with easy lemmas.

Lemma 2.1. Let $v \in V(G - H)$.

- (i) For each i with $S_i \cong K_4^-$, $|E(v, V(S_i))| \leq 3$, with equality only if $|E(v, \{a_i, b_i\})| =$ 1.
- (ii) For each i with $S_i \cong S$, $|E(v, V(S_i))| \leq 2$, with equality only if $vd_i \in E(G)$.

Proof.

- (i) If $|E(v,V(S_i))| \geq 3$ and $a_i,b_i \in N_G(v)$, then replacing S_i by $\langle \{v,a_i,b_i,c_i\} \rangle$ or $\langle \{v,a_i,b_i,d_i\} \rangle$, we get a contradiction to the maximality of $\sum_{j=1}^k |E(S_j)|$. (ii) If $|E(v,\{a_i,b_i,c_i\})| \geq 2$, then replacing S_i by $\langle \{v,a_i,b_i,c_i\} \rangle$, we get a contradic-
- tion to the maximality of k'.

For later reference, we restate the case i = k of Lemma 2.1(ii) in the following form (see the first paragraph of Section 3).

Lemma 2.2. Let $v \in V(G-H)$. Then precisely one of the following six statements holds:

- (1) $N_{S_k}(v) = \{a_k\};$
- (2) $N_{S_{k}}(v) = \emptyset$;
- (3) $N_{S_k}(v) = \{d_k\}$:
- (4) $N_{S_k}(v) = \{b_k\} \text{ or } N_{S_k}(v) = \{c_k\};$
- (5) $N_{S_k}(v) = \{b_k, d_k\}$ or $N_{S_k}(v) = \{c_k, d_k\}$; or

(6)
$$N_{S_k}(v) = \{a_k, d_k\}.$$

Lemma 2.3. Let i be an integer with $1 \le i \le k-1$. Let S', X be subgraphs of $\langle V(S_i) \cup V(S_k) \cup V(G-H) \rangle$ such that $S' \cong K_3$, $X \cong K_4^-$ or K_4 , and $V(S') \cap V(X) = \emptyset$. Then for each $x \in (V(S_i) \cup V(S_k) \cup V(G-H)) - V(X) - V(S'), |E(x, V(S'))| \le 1.$

Proof. Suppose not. Then $\langle \{x\} \cup V(S') \rangle \supset K_4^-$. Hence by replacing S_i and S_k by X and $(\{x\} \cup V(S'))$, respectively, we get a contradiction to the maximality of k'. \square

Lemma 2.4. Let $v \in \{d_k\} \cup V(G-H)$. Let $1 \leq i \leq k-1$, and suppose that $S_i \cong K_4^ \ and \ |E(v,V(S_i))| \ \geq \ 2. \ \ Then \ |E(c_i,\{a_k,b_k,c_k\})| \ \leq \ 2 \ \ and \ |E(d_i,\{a_k,b_k,c_k\})| \ \leq \ 2.$ Further if $N_G(v) \cap \{a_i, b_i\} \neq \emptyset$, then $|E(\{c_i, d_i\}, \{a_k, b_k, c_k\})| \leq 3$.

Proof. If $|E(c_i, \{a_k, b_k, c_k\})| = 3$, then by replacing S_i and S_k by $\{v\} \cup V(S_i - s_i)$ (c_i) and $(\{c_i, a_k, b_k, c_k\})$, respectively, we get a contradiction to the maximality of $\sum_{i=1}^k |E(S_i)|$ because $E(v, V(S_i - c_i)) \neq \emptyset$. Thus $|E(c_i, \{a_k, b_k, c_k\})| \leq 2$ and, by symmetry, we similarly obtain $|E(d_i, \{a_k, b_k, c_k\})| \leq 2$. Now assume that $N_G(v) \cap \{a_i, b_i\} \neq \emptyset$. Then we have $\langle \{v\} \cup V(S_i - c_i) \rangle \supset K_4^-$ or $\langle \{v\} \cup V(S_i - d_i) \rangle \supset K_4^-$. We may assume $\langle \{v\} \cup V(S_i - d_i) \rangle \supset K_4^-$. Then by applying Lemma 2.3 with $S' = \langle \{a_k, b_k, c_k\} \rangle$ and $X = \langle \{v\} \cup V(S_i - d_i) \rangle$, we obtain $|E(c_i, \{a_k, b_k, c_k\})| \leq 1$, which implies $|E(\{c_i, d_i\}, \{a_k, b_k, c_k\})| \leq 3$.

3 Proof of Theorem 1

We continue with the notation of the preceding section. For convenience, when (m) of Lemma 2.2 holds for a vertex $v \in V(G-H)$, we say that the preference index of v is m, and write $\operatorname{pr}(v) = m$. Define $\alpha = \max\{\operatorname{pr}(v) | v \in V(G-H)\}$. We henceforth assume that we have chosen S_1, \ldots, S_k so that α is as large as possible subject to conditions (a) and (b) stated at the end of the first paragraph of Section 2.

Lemma 3.1. Let $v \in \{d_k\} \cup V(G-H)$. Let $1 \le i \le k-1$, and suppose that $S_i \cong K_4$.

- (i) If $|E(v, V(S_i))| \ge 3$, then $|E(V(S_i), \{a_k, b_k, c_k\})| \le 4$.
- (ii) If $|E(v, V(S_i))| = 2$, then $|E(V(S_i), \{a_k, b_k, c_k\})| \le 8$ and $|E(V(S_i), \{b_k, c_k\})| \le 6$.
- (iii) If $v \in V(G H)$, $|E(v, V(S_i))| = 4$ and $\alpha \le 2$, then $E(V(S_i), \{b_k, c_k, d_k\}) = \emptyset$.
- (iv) If $v \in V(G H)$, $|E(v, V(S_i))| = 3$ and $\alpha \leq 2$, then $|E(x, \{a_k, b_k, c_k\})| \leq 1$ for each $x \in N_{S_i}(v)$ and, for the vertex z in $V(S_i) N_G(v)$, we have $E(z, \{b_k, c_k, d_k\}) = \emptyset$ (so $|E(V(S_i), \{b_k, c_k\})| \leq 3$).

Proof. Assume that $|E(v,V(S_i))| \geq 2$. We first claim that $|E(x,\{a_k,b_k,c_k\})| \leq 1$ for each $x \in V(S_i)$ such that $|E(v,V(S_i-x))| \geq 2$. To see this, take $x \in V(S_i)$ such that $|E(v,V(S_i-x))| \geq 2$. Then $\langle \{v\} \cup V(S_i-x) \rangle \supset K_4^-$. Hence by applying Lemma 2.3 with $S' = \{a_k,b_k,c_k\}$ and $X = \langle \{v\} \cup V(S_i-x) \rangle$, we obtain $|E(x,\{a_k,b_k,c_k\})| \leq 1$, as claimed. Thus if $|E(v,V(S_i))| \geq 3$, then $|E(x,\{a_k,b_k,c_k\})| \leq 1$ for each $x \in V(S_i)$, which proves (i) and the first assertion of (iv). Assume now that $|E(v,V(S_i))| = 2$. By symmetry, we may assume $N_{S_i}(v) = \{a_i,b_i\}$. Then by the above claim, $|E(\{c_i,d_i\},\{a_k,b_k,c_k\})| \leq 2$. Therefore, we obtain

$$|E(V(S_i), \{a_k, b_k, c_k\})| = |E(\{a_i, b_i\}, \{a_k, b_k, c_k\})| + |E(\{c_i, d_i\}, \{a_k, b_k, c_k\})| \le 6 + 2 = 8$$

and, since we clearly have $|E(\{c_i, d_i\}, \{b_k, c_k\})| \leq |E(\{c_i, d_i\}, \{a_k, b_k, c_k\})|$, we also obtain $|E(V(S_i), \{b_k, c_k\})| = |E(\{a_i, b_i\}, \{b_k, c_k\})| + |E(\{c_i, d_i\}, \{b_k, c_k\})| \leq 4 + 2 = 6$. Thus (ii) holds. Finally assume that $v \in V(G - H)$, $|E(v, V(S_i))| \geq 3$ and $\alpha \leq 2$, and take $z \in V(S_i)$ such that $|E(v, V(S_i - z))| = 3$. If $E(z, \{b_k, c_k, d_k\}) \neq \emptyset$, then replacing S_i by $\langle \{v\} \cup V(S_i - z) \rangle$ and v by z, we get a contradiction to the maximality of α . Thus $E(z, \{b_k, c_k, d_k\}) = \emptyset$, which proves (iii) and the second assertion of (iv). \square

Lemma 3.2. Let $v \in V(G-H)$. Let $1 \le i \le k-1$, and suppose that $S_i \cong K_4^-$ and $|E(v, V(S_i))| \ge 3$. Then the following hold.

- (i) We have $|E(V(S_i), \{a_k, b_k, c_k\})| \le 6$ and $|E(V(S_i), \{b_k, c_k\})| \le 5$.
- (ii) If $\alpha \leq 4$, then $|E(V(S_i), V(S_k))| \leq 7$.
- (iii) If $\alpha \leq 2$, then $|E(u, V(S_i))| \leq 1$ for each $u \in \{b_k, c_k, d_k\}$.

Proof. By Lemma 2.1(i) and by symmetry, we may assume $N_{S_i}(v) = \{a_i, c_i, d_i\}$. Then for each $x \in \{b_i, c_i, d_i\}$, we get $|E(x, \{a_k, b_k, c_k\})| \le 1$ by applying Lemma 2.3 with $S' = \langle \{a_k, b_k, c_k\} \rangle$ and $X = \langle \{v\} \cup V(S_i - x) \rangle$. Hence we may deduce that $|E(\{b_i, c_i, d_i\}, \{a_k, b_k, c_k\})| \le 3$. Consequently,

$$|E(V(S_i), \{a_k, b_k, c_k\})| \le |E(a_i, \{a_k, b_k, c_k\})| + |E(\{b_i, c_i, d_i\}, \{a_k, b_k, c_k\})| \le 3 + 3 = 6$$

and, since we clearly have $|E(\{b_i,c_i,d_i\},\{b_k,c_k\})| \leq |E(\{b_i,c_i,d_i\},\{a_k,b_k,c_k\})|$, we similarly obtain $|E(V(S_i),\{b_k,c_k\})| \leq 2+3=5$. Now assume that $\alpha \leq 4$. Take $x \in \{b_i,c_i,d_i\}$. If $|E(x,V(S_k))| \geq 2$, then replacing S_i by $\langle \{v\} \cup V(S_i-x) \rangle$ and v by x, we get a contradiction to the maximality of α . Thus $|E(x,V(S_k))| \leq 1$ for each $x \in \{b_i,c_i,d_i\}$, and hence $|E(V(S_i),V(S_k))| \leq 4+3=7$. Finally assume that $\alpha \leq 2$, and let $u \in \{b_k,c_k,d_k\}$. Take $x \in \{b_i,c_i,d_i\}$. If $xu \in E(G)$, then as above, we get a contradiction to the maximality of α . Thus $xu \notin E(G)$ for each $x \in \{b_i,c_i,d_i\}$, which implies $|E(u,V(S_i))| \leq 1$.

Now fix $v \in V(G - H)$ such that $pr(v) = \alpha$. We divide the proof of Theorem 1 into four cases according to the value of $\alpha = pr(v)$.

Case 1: The case where $N_{S_k}(v) = \{a_k, d_k\}$ (i.e., $\alpha = 6$)

Lemma 3.3. For each i with $1 \le i \le k-1$, $|E(\{b_k, c_k, d_k, v\}, V(S_i))| \le 10$.

Proof. By way of contradiction, suppose that

$$|E(\{b_k, c_k, d_k, v\}, V(S_i))| \ge 11.$$
 (A)

We consider three subcases separately according as $S_i \cong K_4, K_4^-$ or S.

Subcase 1: $S_i \cong K_4$.

We first claim that if $N_{S_i}(d_k) \cap N_{S_i}(v) \neq \emptyset$, then $|E(x, V(S_i - y))| \leq 1$ for each $y \in N_{S_i}(d_k) \cap N_{S_i}(v)$ and each $x \in \{b_k, c_k\}$. To see this, let $y \in N_{S_i}(d_k) \cap N_{S_i}(v)$ and $x \in \{b_k, c_k\}$. Then $\langle \{y, a_k, d_k, v\} \rangle \supset K_4^-$. Hence applying Lemma 2.3 with S' = S - y and $X = \langle \{y, a_k, d_k, v\} \rangle$, we obtain $|E(x, V(S_i - y))| \leq 1$, as claimed. Now suppose that $N_{S_i}(b_k) \cap N_{S_i}(c_k) \neq \emptyset$ and $N_{S_i}(d_k) \cap N_{S_i}(v) \neq \emptyset$. Then by the above claim, $|E(x, V(S_i))| \leq 2$ for each $x \in \{b_k, c_k\}$ and, by the symmetry of the roles of $\{b_k, c_k\}$ and $\{d_k, v\}$, we similarly obtain $|E(x, V(S_i))| \leq 2$ for each $x \in \{d_k, v\}$. Hence $|E(\{b_k, c_k, d_k, v\}, V(S_i))| \leq 8$, which contradicts (A). Thus we have $N_{S_i}(b_k) \cap N_{S_i}(c_k) = \emptyset$ or $N_{S_i}(d_k) \cap N_{S_i}(v) = \emptyset$. We may assume

 $N_{S_i}(b_k) \cap N_{S_i}(c_k) = \emptyset$. Then $|N_{S_i}(b_k)| + |N_{S_i}(c_k)| \le 4$, and hence $|N_{S_i}(d_k)| + |N_{S_i}(v)| \ge 7$ by (A), which implies $|N_{S_i}(d_k) \cap N_{S_i}(v)| \ge 3$. Therefore it follows from the claim made at the beginning of this subcase that $|E(x, V(S_i))| \le 1$ for each $x \in \{b_k, c_k\}$, and hence $|E(\{b_k, c_k\}, V(S_i))| \le 2$. Consequently $|E(b_k, c_k, d_k, v\}, V(S_i)| = |E(\{b_k, c_k\}, V(S_i))| + |E(\{d_k, v\}, V(S_i))| \le 2 + 8$, which contradicts (A).

Subcase 2: $S_i \cong K_4^-$.

By (A) and Lemma 2.1 and by symmetry, we may assume that $|E(v, V(S_i))| = |E(b_k, V(S_i))| = 3$. Then $|E(\{b_k, c_k\}, V(S_i))| \le 5$ by Lemma 3.2(i) and, by symmetry, we similarly obtain $|E(\{v, d_k\}, V(S_i))| \le 5$. Thus, $|E(\{b_k, c_k, d_k, v\}, V(S_i))| \le 10$, which contradicts (A).

Subcase 3: $S_i \cong S$.

By Lemma 2.1 and by symmetry, $|E(x, V(S_i))| \le 2$ for each $x \in \{b_k, c_k, d_k, v\}$, which implies that $|E(\{b_k, c_k, d_k, v\}, V(S_i))| \le 8$, a contradiction.

Now for each $x \in V(G-H-v)$, Lemma 2.1(ii) implies that $|E(\{b_k,c_k\},x)| \le 1$, and we also have $|E(\{d_k,v\},x)| \le 1$ by symmetry. Hence by Lemma 3.3, $d_G(b_k) + d_G(c_k) + d_G(d_k) + d_G(v) \le 10(k-1) + 2\{n-(4k+1)\} + 8 = 2n+2k-4$. On the other hand, $d_G(b_k) + d_G(c_k) + d_G(d_k) + d_G(v) \ge 2\sigma_2(G) \ge 2n+2k$, which is a contradiction. This completes the proof for Case 1.

Case 2: The case where $N_{S_k}(v) = \{b_k, d_k\}, \{c_k, d_k\}, \{b_k\}, \{c_k\} \text{ or } \{d_k\} \text{ (i.e., } 3 \le \alpha \le 5)$

By the symmetry of the roles of b_k and c_k , we may assume $N_{S_k}(v) = \{b_k, d_k\}, \{b_k\}$ or $\{d_k\}$.

Lemma 3.4. For each i with $1 \le i \le k-1$, $2|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 15$.

Proof. By way of contradiction, suppose that

$$2|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \ge 16.$$
(B)

As in Lemma 3.3, we consider three subcases separately.

Subcase 1: $S_i \cong K_4$.

Suppose that $|E(v,V(S_i))| \geq 3$ or $|E(d_k,V(S_i))| \geq 3$. Then by Lemma 3.1(i), $|E(V(S_i),\{a_k,b_k,c_k\})| \leq 4$. By assumption (B), this implies that $|E(v,V(S_i))| = 4$, $|E(V(S_i),\{a_k,b_k,c_k\})| = 4$ and $|E(d_k,V(S_i))| = 4$. From $|E(V(S_i),\{a_k,b_k,c_k\})| = 4$, we see that there exist $x,y \in V(S_i)$ such that $N_G(x) \cap \{a_k,b_k,c_k\} \cap N_G(y) \neq \emptyset$. Now by replacing S_i by $\langle V(S_i-x) \cup \{v\} \rangle$ and v by x, we see from the maximality of α that $\alpha=5$, that is to say, $N_{S_k}(v)=\{b_k,d_k\}$. This implies $\langle \{d_k,v\} \cup (V(S_i)-\{x,y\}) \rangle \cong K_4$. Consequently by replacing S_i,S_k and v by $\langle \{d_k,v\} \cup (V(S_i)-\{x,y\}) \rangle$, $\langle \{x,b_k,c_k,a_k\} \rangle$ and y, we get a contradiction to the maximality of α . Thus $|E(v,V(S_i))| \leq 2$ and $|E(d_k,V(S_i))| \leq 2$. If $|E(v,V(S_i))| = 2$ or $|E(d_k,V(S_i))| = 2$, then $|E(V(S_i),\{a_k,b_k,c_k\})| \leq 8$ by Lemma 3.1(ii), and

hence $2|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 4+2+8=14$, a contradiction. Thus $|E(v,V(S_i))| \le 1$ and $|E(d_k,V(S_i))| \le 1$. Consequently, $2|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 2+1+12=15$, which contradicts (B).

Subcase 2: $S_i \cong K_4^-$.

By Lemma 2.1, $|E(v, V(S_i))| \leq 3$. We divide the proof into two subcases according as $b_k \notin N_{S_k}(v)$ or $b_k \in N_{S_k}(v)$.

Subcase 2.1: $N_{S_k}(v) = \{d_k\}.$

First let $|E(v, V(S_i))| = 3$. Then by Lemma 3.2(ii), $|E(V(S_i), \{a_k, b_k, c_k, d_k\})| \le 7$. Consequently, $2|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \le 6 + 7$, which contradicts (B).

Next assume that $|E(v,V(S_i))|=2$. If $|E(v,\{a_i,b_i\})|=2$, then arguing as in the proof of Lemma 3.2(ii), we see from the maximality of α that $|E(\{c_i,d_i\},V(S_k))|\leq 2$, and hence $2|E(v,V(S_i))|+|E(\{a_k,b_k,c_k,d_k\},V(S_i))|\leq 4+8+2=14$, a contradiction. Thus $|E(v,\{a_i,b_i\})|\leq 1$. Assume for the morment that $|E(v,\{a_i,b_i\})|=1$, say, $va_i,vc_i\in E(G)$. Then by the maximality of α , $|E(d_i,V(S_k))|\leq 1$. If $|E(b_i,V(S_k))|\geq 3$, then replacing S_i,S_k and v by $\langle \{b_i,a_k,b_k,c_k\}\rangle$, $\langle \{a_i,c_i,d_i,v\}\rangle$ and d_k , respectively, we get a contradiction to the maximality of α . Thus we also have $|E(b_i,V(S_k))|\leq 2$. Consequently, $2|E(v,V(S_i))|+|E(\{a_k,b_k,c_k,d_k\},V(S_i))|\leq 4+8+2+1=15$, a contradiction.

Thus we are reduced to the case where $N_{S_i}(v) = \{c_i, d_i\}$. Suppose that $N_G(d_k) \cap \{a_i, b_i\} \neq \emptyset$. Then we see from the maximality of α that $|E(\{c_i, d_i\}, \{a_k, b_k, c_k\})| \leq 2$, and hence $2|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \leq 4 + 8 + 2 + 2 = 16$. In view of (B), this implies that $|E(d_k, \{c_i, d_i\})| = 2$ and $|E(\{a_k, b_k, c_k, d_k\}, \{a_i, b_i\})| = 8$. Consequently replacing S_i and S_k by $\langle \{v, d_k, c_i, d_i\} \rangle$ and $\langle \{b_i, a_k, b_k, c_k\} \rangle$, we get a contradiction to the maximality of k'. Thus $N_G(d_k) \cap \{a_i, b_i\} = \emptyset$, which implies that $|E(d_k, V(S_i))| = |E(d_k, \{c_i, d_i\})| \leq 2$. Since we are assuming $N_{S_i}(v) = \{c_i, d_i\}$, we also have $|E(\{c_i, d_i\}, \{a_k, b_k, c_k\}, \{a_i, b_i\})| \leq 4$ by Lemma 2.4. By (B), it follows that $|E(d_k, \{c_i, d_i\})| = 2$ and $|E(\{a_k, b_k, c_k\}, \{a_i, b_i\})| = 6$. Consequently by replacing S_i and S_k by $\langle \{v, d_k, c_i, d_i\} \rangle$ and $\langle \{b_i, a_k, b_k, c_k\} \rangle$, respectively, we get a contradiction to the maximality of k'. This concludes the discussion for the case where $|E(v, V(S_i))| = 2$.

Finally assume $|E(v, V(S_i))| \le 1$. If $|E(c_i, \{a_k, b_k, c_k\})| = 3$ or $|E(d_i, \{a_k, b_k, c_k\})| = 3$, then $|E(d_k, V(S_i))| \le 1$ by Lemma 2.4, and hence

 $2|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \le 2 + 1 + 12 = 15,$ a contradiction. Thus $|E(c_i, \{a_k, b_k, c_k\})| \le 2$ and $|E(d_i, \{a_k, b_k, c_k\})| \le 2$. By (B), this implies that $|E(d_k, V(S_i))| = 4$ and $|E(c_i, \{a_k, b_k, c_k\})| = 2$. Therefore replacing S_i and S_k by $\langle \{d_k, a_i, b_i, d_i\} \rangle$ and $\langle \{c_i, a_k, b_k, c_k\} \rangle$, we get a contradiction to the maximality of k'.

Subcase 2.2: $N_{S_k}(v) = \{b_k, d_k\}$ or $N_{S_k}(v) = \{b_k\}$.

By the symmetry of v and d_k in $\langle V(S_k) \cup \{v\} \rangle$, we have $|E(d_k, V(S_i))| \leq 3$ by Lemma 2.1. If $|E(v, V(S_i))| = 3$ or $|E(d_k, V(S_i))| = 3$, then $|E(V(S_i), \{a_k, b_k, c_k\})| \leq 6$ by Lemma 3.2(i), and hence $2|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \leq 6 + 6$

 $3+6=15, \text{ a contradiction.} \quad \text{Thus } |E(v,V(S_i))| \leq 2 \text{ and } |E(d_k,V(S_i))| \leq 2.$ Hence by (B), $|E(V(S_i),\{a_k,b_k,c_k\})| \geq 10.$ Now if $|E(c_i,\{a_k,b_k,c_k\})| = 3$ or $|E(d_i,\{a_k,b_k,c_k\})| = 3$, then $|E(v,V(S_i))| \leq 1$ and $|E(d_k,V(S_i))| \leq 1$ by Lemma 2.4, and hence $2|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \leq 3 + 12 = 15$, a contradiction. Thus $|E(c_i,\{a_k,b_k,c_k\})| \leq 2$ and $|E(d_i,\{a_k,b_k,c_k\})| \leq 2.$ Consequently $|E(c_i,\{a_k,b_k,c_k\})| = 2, |E(\{a_i,b_k\},\{a_k,b_k,c_k\})| = 6$ and $|E(v,V(S_i))| = |E(d_k,V(S_i))| = 2.$ If $va_i \in E(G)$, we get a contradiction to the maximality of k' by replacing S_i and S_k either by $\langle \{a_i,b_i,c_i,v\} \rangle$ and $\langle \{a_k,b_k,c_k,d_i\} \rangle$ or by $\langle \{a_i,b_i,d_i,v\} \rangle$ and $\langle \{a_k,b_k,c_k,c_i\} \rangle$. Thus $va_i \notin E(G)$. Similarly $vb_i \notin E(G)$. Hence $N_{S_i}(v) = \{c_i,d_i\}$. By symmetry, we similarly obtain $N_{S_i}(d_k) = \{c_i,d_i\}$. Since $|E(c_i,\{a_k,b_k,c_k\})| = 2$, we have $c_ia_k \in E(G)$ or $c_ib_k \in E(G)$. By the symmetry of a_k and b_k in $\langle V(S_k) \cup \{v\} \rangle$, we may assume $c_ib_k \in E(G)$. But then replacing S_i and S_k by $\langle \{a_i,c_i,b_k,v\} \rangle$ and $\langle \{b_i,d_i,a_k,c_k\} \rangle$, we obtain a contradiction to the maximality of k'.

Subcase 3: $S_i \cong S$.

First assume that $|E(v, V(S_i))| \leq 1$. Then by (B), $|E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \geq$ 14. If $|E(d_k, \{a_i, b_i, c_i\})| + |E(d_i, \{a_k, b_k, c_k\})| \ge 4$, then $E(d_k, \{a_i, b_i, c_i\}) \ne \emptyset$ and $E(d_i, \{a_k, b_k, c_k\}) \neq \emptyset$ and we have $|E(d_k, \{a_i, b_i, c_i\})| \geq 2$ or $|E(d_i, \{a_k, b_k, c_k\})| \geq 2$, and hence we get a contradiction to the maximality of k' by replacing S_i and S_k by $\{\{a_i, b_i, c_i, d_k\}\}\$ and $\{\{a_k, b_k, c_k, d_i\}\}\$. Thus $|E(d_k, \{a_i, b_i, c_i\})| + |E(d_i, \{a_k, b_k, c_k\})| \le$ 3. Hence $|E(V(S_k), V(S_i))| = |E(d_k, d_i)| + (|E(d_k, \{a_i, b_i, c_i\})| + |E(\{a_k, b_k, c_k\}, d_i)|) +$ $|E(\{a_k,b_k,c_k\},\{a_i,b_i,c_i\})| \leq 1+3+9$, which contradicts the earlier assertion that $|E(V(S_k),V(S_i))| \geq 14$. Next assume that $|E(v,V(S_i))| \geq 2$. By the maximality of α , this forces $|E(v,V(S_i))| = 2$, $N_{S_k}(v) = \{b_k,d_k\}$, $d_i \in N_{S_i}(v)$ and $|\{b_i,c_i\}\cap N_{S_i}(v)|=1$. Hence applying Lemma 2.1 with the roles of v and d_k interchanged we obtain $|E(d_k, \{a_i, b_i, c_i\})| \leq 1$. Further applying Lemma 2.1 to S_k with the roles of v and d_i interchanged, we obtain $|E(d_i, \{a_k, b_k, c_k\})| \leq 1$. Consequently $|E(V(S_k), V(S_i))| = |E(d_k, d_i)| + |E(d_k, \{a_i, b_i, c_i\})| + |E(\{a_k, b_k, c_k\}, d_i)| +$ $|E(\{a_k, b_k, c_k\}, \{a_i, b_i, c_i\})| \le 1 + 1 + 1 + 9$. In view of (B), this forces $d_k d_i \in E(G)$ and $|E(\{a_k, b_k, c_k\}, \{a_i, b_i, c_i\})| = 9$. Therefore $\langle \{a_i, d_i, v, d_k\} \rangle \supset S$ and $\langle \{b_i, a_k, b_k, c_k\} \rangle \cong$ K_4 , and hence we get a contradiction to the maximality of k' by replacing S_i and S_k by $\langle \{a_i, d_i, v, d_k\} \rangle$ and $\langle \{b_i, a_k, b_k, c_k\} \rangle$.

For each $x \in V(G-H-v)$, $2|E(v,x)|+|E(\{a_k,b_k,c_k,d_k\},x)| \le 4$ by Lemma 2.1 and, if equality holds, then $d_k, v \in N_G(x)$ by Lemma 2.1, and $N_{S_k}(v) = \{b_k,d_k\}$ (and $|N_G(x) \cap \{b_k,c_k\}| = 1$) by the maximality of $\operatorname{pr}(v)$. Thus if there exist two vertices $x,y \in V(G-H-v)$ such that $2|E(v,x)|+|E(\{a_k,b_k,c_k,d_k\},x)|=2|E(v,y)|+|E(\{a_k,b_k,c_k,d_k\},y)|=4$, then by replacing S_k by $\langle \{x,y,v,d_k\}\rangle$, we get a contradiction to the maximality of k'. Consequently, by Lemma 3.4, $2d_G(v)+d_G(a_k)+d_G(b_k)+d_G(c_k)+d_G(d_k) \le 15(k-1)+3(n-4k-1)+1+14=3n+3k-3$. On the other hand, by the assumption that $\sigma_2(G) \ge n+k$, $2d_G(v)+d_G(a_k)+d_G(b_k)+d_G(c_k)+d_G(d_k) \le 3n+3k$. This is a contradiction, and this completes the proof for Case 2.

Case 3: The case where $N_{S_k}(v) = \emptyset$ (i.e., $\alpha = 2$)

Lemma 3.5. For each i with $1 \le i \le k-1$, $4|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 20$.

Proof. By way of contradiction, suppose that

$$4|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \ge 21.$$
(C)

Then $|E(v,V(S_i))| \geq 2$. By the maximality of α , this implies that $S_i \ncong S$.

Subcase 1: $S_i \cong K_4$.

If $|E(v,V(S_i))| = 4$, then by Lemma 3.1(iii), $E(\{b_k,c_k,d_k\},V(S_i)) = \emptyset$, which implies that $4|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 16+4$, a contradiction. If $|E(v,V(S_i))| = 3$, then $|E(V(S_i),\{a_k,b_k,c_k\})| \le 4$ by Lemma 3.1(i), and hence $4|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 12+4+4=20$, a contradiction. Finally if $|E(v,V(S_i))| = 2$, then $|E(V(S_i),\{a_k,b_k,c_k\})| \le 8$ by Lemma 3.1(ii), and hence $4|E(v,V(S_i))| + |E(\{a_k,b_k,c_k,d_k\},V(S_i))| \le 8+4+8=20$, a contradiction.

Subcase 2: $S_i \cong K_4^-$.

By Lemma 2.1, $|E(v, V(S_i))| \le 3$. If $|E(v, V(S_i))| = 3$, then by Lemma 3.2(ii), $|E(V(S_i), \{a_k, b_k, c_k, d_k\})| \le 7$ and hence

$$4|E(v, V(S_i))| + |E(\{a_k, b_k, c_k, d_k\}, V(S_i))| \le 12 + 7 = 19,$$

a contradiction. Thus $|E(v, V(S_i))| = 2$. By Lemma 2.4, $|E(c_i, \{a_k, b_k, c_k\})| \le 2$ and $|E(d_i, \{a_k, b_k, c_k\})| \le 2$. Since we clearly have $|E(\{a_i, b_i\}, \{a_k, b_k, c_k\})| \le 6$, this together with (C) implies that we have $|E(c_i, \{a_k, b_k, c_k\})| = 2$ or $|E(d_i, \{a_k, b_k, c_k\})| = 2$, and $|E(d_k, V(S_i))| \ge 3$. By the symmetry of the roles of c_i and d_i , we may assume $|E(c_i, \{a_k, b_k, c_k\})| = 2$. Then replacing S_i and S_k by $\langle \{d_k, a_i, b_i, d_i\} \rangle$ and $\langle \{c_i, a_k, b_k, c_k\} \rangle$, we get a contradiction to the maximality of k'.

Let $x \in V(G-H-v)$. By the maximality of $\operatorname{pr}(v)$, $N_{S_k}(x) \subset \{a_k\}$. Further if $xa_k, xv \in E(G)$, then by replacing S_k by $\langle \{x\} \cup V(S_k-d_k) \rangle$, we get a contradiction to the maximality of α . Hence $4|E(v,x)|+|E(\{a_k,b_k,c_k,d_k\},x)| \leq 4$. Consequently, by Lemma 3.5, $4d_G(v)+d_G(a_k)+d_G(b_k)+d_G(c_k)+d_G(d_k) \leq 20(k-1)+4(n-4k-1)+8=4n+4k-16$. On the other hand, by the assumption that $\sigma_2(G) \geq n+k$, $4d_G(v)+d_G(a_k)+d_G(b_k)+d_G(c_k)+d_G(d_k) \geq 4n+4k$. This is a contradiction, and this completes the proof for Case 3.

Case 4: The case where $N_{S_k}(v) = \{a_k\}$ (i.e., $\alpha = 1$)

Lemma 3.6. For each i with $1 \leq i \leq k-1$, $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \leq 16$, and equality holds only if $S_i \cong K_4^-$, $N_{S_i}(v) = N_{S_i}(d_k) = \{c_i,d_i\}$, $N_G(b_k) \supset V(S_i)$ and $N_G(c_k) \supset V(S_i)$.

Proof. Suppose that

$$2|E(\{v, d_k\}, V(S_i))| + |E(\{b_k, c_k\}, V(S_i))| \ge 16.$$
(D)

Then we have $|E(v, V(S_i))| \ge 2$ or $|E(d_k, V(S_i))| \ge 2$. By the symmetry of the roles of v and d_k , we may assume that $|E(v, V(S_i))| \ge 2$. Then by the maximality of α , $S_i \ncong S$.

Subcase 1: $S_i \cong K_4$.

If $|E(v,V(S_i))| = 4$, then $E(V(S_i),\{b_k,c_k,d_k\}) = \emptyset$ by Lemma 3.1(iii), and hence $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \le 8$, a contradiction. Thus $|E(v,V(S_i))| \le 3$ and, by symmetry, we similarly obtain $|E(d_k,V(S_i))| \le 3$. If $|E(v,V(S_i))| = 3$, then $|E(V(S_i),\{b_k,c_k\})| \le 3$ by Lemma 3.1(iv), and hence $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \le 12 + 3 = 15$, a contradiction. Thus $|E(v,V(S_i))| = 2$, and we similarly obtain $|E(d_k,V(S_i))| \le 2$. Now by Lemma 3.1(ii), $|E(V(S_i),\{b_k,c_k\})| \le 6$, and hence $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \le 8 + 6 = 14$, a contradiction. Subcase 2: $S_i \cong K_4^-$.

By Lemma 2.1, $|E(v,V(S_i))| \leq 3$. By symmetry, we also have $|E(d_k,V(S_i))| \leq 3$. If $|E(v,V(S_i))| = 3$, then $|E(V(S_i),\{b_k,c_k\})| \leq 2$ by Lemma 3.2(iii), and hence $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \leq 12 + 2 = 14$, a contradiction. Thus $|E(v,V(S_i))| = 2$. By symmetry, we similarly obtain $|E(d_k,V(S_i))| \leq 2$. In view of (D), this implies that $|E(d_k,V(S_i))| = 2$, $N_G(b_k) \supseteq V(S_i)$ and $N_G(c_k) \supseteq V(S_i)$. If $N_G(v) \cap \{a_i,b_i\} \neq \emptyset$, then $|E(\{c_i,d_i\},\{b_k,c_k\})| \leq 3$ by Lemma 2.4, which contradicts the assertion that $N_G(b_k) \supseteq V(S_i)$ and $N_G(c_k) \supseteq V(S_i)$. Thus $N_{S_i}(v) = \{c_i,d_i\}$, and we similarly obtain $N_{S_i}(d_k) = \{c_i,d_i\}$.

Note that for each $x \in V(G-H-v)$, $N_G(x) \cap \{v,b_k,c_k,d_k\} = \emptyset$ by the maximality of $\operatorname{pr}(v)$. Suppose that $2|E(\{v,d_k\},V(S_i))| + |E(\{b_k,c_k\},V(S_i))| \leq 15$ for each i with $1 \leq i \leq k-1$. Then $2(d_G(v)+d_G(d_k))+d_G(b_k)+d_G(c_k) \leq 15(k-1)+8=15k-7$. On the other hand, by the assumption that $\sigma_2(G) \geq n+k$, $2(d_G(v)+d_G(d_k))+d_G(b_k)+d_G(c_k) \geq 3(n+k) \geq 15k+3$. This is a contradiction. Thus we may assume that $2|E(\{v,d_k\},V(S_1))| + |E(\{b_k,c_k\},V(S_1))| \geq 16$. Then by Lemma 3.6, $2|E(\{v,d_k\},V(S_1))| + |E(\{b_k,c_k\},V(S_1))| = 16$, $S_1 \cong K_4^-$, $N_{S_1}(v) = N_{S_1}(d_k) = \{c_1,d_1\}$, $N_G(b_k) \supset V(S_1)$ and $N_G(c_k) \supset V(S_1)$. If $a_kc_1 \in E(G)$, then by replacing S_1 and S_k by $\{\{v,c_1,a_k,d_k\}\}$ and $\{\{b_k,a_1,b_1,d_1\}\}$, we get a contradiction to the maximality of k'. Thus $a_kc_1 \notin E(G)$. Now we prove the following lemma.

Lemma 3.7. For each i with $2 \le i \le k - 1$, $2|E(\{v, d_k\}, V(S_i))| + |E(\{a_k, c_1\}, V(S_i))| \le 15$.

Proof. By way of contradiction, suppose that

 $2|E(\{v, d_k\}, V(S_i))| + |E(\{a_k, c_1\}, V(S_i))| \ge 16.$ (E) By the symmetry of the roles of v and d_k , we may assume that $|E(v, V(S_i))| \ge |E(d_k, V(S_i))|$.

Subcase 1: $S_i \cong K_4$.

First we consider the case $|E(v, V(S_i))| = 4$. By Lemma 3.1(iii), $E(d_k, V(S_i)) = \emptyset$. In view of (E), this forces $|E(a_k, V(S_i))| = 4$ and $|E(c_1, V(S_i))| = 4$. Hence by replacing S_1, S_i and S_k by $\langle \{a_1, b_1, b_k, c_k\} \rangle$, $\langle \{c_1, a_i, b_i, c_i\} \rangle$ and $\langle \{d_i, v, a_k, d_k\} \rangle$,

respectively, we get a contradiction to the maximality of $\sum_{j=1}^{k} |E(S_j)|$. Next we consider the case $|E(v,V(S_i))| = 3$. Note that we have $N_{S_i}(v) \supset N_{S_i}(d_k)$ by Lemma 3.1(iv). Assume first that $|E(d_k, V(S_i))| = 3$. Then $N_{S_i}(v) = N_{S_i}(d_k)$. Suppose that $N_{S_i}(v) \cap N_{S_i}(a_k) \neq \emptyset$, and let $y \in N_{S_i}(v) \cap N_{S_i}(a_k)$. Then by replacing S_1, S_i, S_k and v by $\langle \{c_k, a_1, b_1, d_1\} \rangle$, $\langle \{d_k\} \cup V(S_i - y) \rangle$, $\langle \{y, v, a_k, b_k\} \rangle$ and c_1 , respectively, we get a contradiction to the maximality of α . Thus $N_{S_i}(v) \cap N_{S_i}(a_k) = \emptyset$, which implies that $|E(a_k, V(S_i))| \leq 1$. If $|E(a_k, V(S_i))| = \emptyset$, then by replacing S_i by $\{v\} \cup N_{S_i}(v)\}$ and v by the vertex in $V(S_i) - N_G(v)$, we get a contradiction to the maximality of α . Thus $|E(a_k, V(S_i))| = 1$. Also, by (E), we have $|E(c_1,V(S_i))| \geq 3$. Take $y \in N_{S_i}(v) \cap N_{S_i}(d_k) \cap N_{S_i}(c_1)$. Then by replacing S_1,S_i,S_k and v by $\langle \{c_k, a_1, b_1, d_1\} \rangle$, $\langle \{y, v, d_k, c_1\} \rangle$, $\langle \{a_k\} \cup V(S_i - y) \rangle$ and b_k , respectively, we get a contradiction to the maximality of α because $|E(a_k, V(S_i) - \{x\})| = 1$ and $a_k b_k \in E(G)$. Assume now that $|E(d_k, V(S_i))| \leq 2$. Then by (E), $1 \leq 2$ $|E(d_k, V(S_i))| \le 2$ and $|E(c_1, V(S_i))| + |E(a_k, V(S_i))| \ge 6$. Suppose that $N_{S_i}(v) \cap$ $N_{S_i}(d_k) \cap N_{S_i}(c_1) \neq \emptyset$, and let $y \in N_{S_i}(v) \cap N_{S_i}(d_k) \cap N_{S_i}(c_1)$. Since $|E(c_1, V(S_i))| +$ $|E(a_k,V(S_i))| \geq 6$, we have $N_{S_i}(a_k) - \{y\} \neq \emptyset$. Hence by replacing S_1, S_i, S_k and v by $\langle \{c_k, a_1, b_1, d_1\} \rangle, \langle \{y, v, d_k, c_1\} \rangle, \langle V(S_i - y) \cup \{a_k\} \rangle$ and b_k , respectively, we get a contradiction to the maximality of α . Thus $N_{S_i}(v) \cap N_{S_i}(d_k) \cap N_{S_i}(c_1) = \emptyset$. Since $N_{S_i}(v) \supset$ $N_{S_i}(d_k)$, this together with (E) implies that $|E(d_k,V(S_i))| = |E(c_1,V(S_i))| = 2$ and $|E(a_k, V(S_i))| = 4$. Let $y \in N_{S_i}(v) \cap N_{S_i}(a_k) - N_G(c_1)$. Then by replac-respectively, we get a contradiction to the maximality of α because $d_1d_k, d_1v \in$ E(G). This concludes the discussion for the case $|E(v,V(S_i))|=3$. Finally we consider the case $|E(v,V(S_i))| \leq 2$. By (E), $|E(v,V(S_i))| = |E(d_k,V(S_i))| =$ $2, |E(\{a_k, c_1\}, V(S_i))| = 8.$ Let $y \in N_{S_i}(v) \cap N_{S_i}(a_k)$. Then by replacing S_1, S_i and S_k by $\langle \{a_1,b_1,b_k,c_k\} \rangle$, $\langle V(S_i-y) \cup \{c_1\} \rangle$ and $\langle \{y,v,a_k,d_k\} \rangle$, respectively, we get a contradiction to the maximality of $\sum_{j=1}^{k} |E(S_j)|$.

Subcase 2: $S_i \cong K_4^-$.

By Lemma 2.1, $|E(v, V(S_i))| \leq 3$. Suppose that $|E(v, V(S_i))| = 3$. Then $c_i, d_i \in N_G(v)$ by Lemma 2.1. By Lemma 3.2(iii), we also have $|E(d_k, V(S_i))| \leq 1$. By (E), this forces $|E(a_k, V(S_i))| = |E(c_1, V(S_i))| = 4$. Consequently by replacing S_1, S_i and S_k by $\langle \{c_k\} \cup V(S_1-c_1) \rangle$, $\langle \{c_1\} \cup V(S_i-c_i) \rangle$ and $\langle \{c_i, v, a_k, d_k\} \rangle$, we get a contradiction to the maximality of $\sum_{j=1}^k |E(S_j)|$. Thus $|E(v, V(S_i))| \leq 2$. By (E), this forces $|E(v, V(S_i))| = 2$, $|E(d_k, V(S_i))| = 2$, and $|E(\{a_k, c_1\}, V(S_i))| = 8$. Suppose that $N_{S_i}(v) \cap N_{S_i}(d_k) \neq \emptyset$, and take $y \in N_{S_i}(v) \cap N_{S_i}(d_k)$. Then replacing S_1, S_i and S_k by $\langle \{c_k, a_1, b_1, d_1\} \rangle$, $\langle \{a_k\} \cup V(S_i - y) \rangle$ and $\langle \{y, v, c_1, d_k\} \rangle$, we get a contradiction to the maximality of k'. Thus $N_{S_i}(v) \cap N_{S_i}(d_k) = \emptyset$. Since $|E(d_k, V(S_i))| = 2$ and $|E(v, V(S_i))| = 2$, we may assume $c_i d_k \in E(G)$ by symmetry. Then by replacing S_i by $\langle V(S_i - c_i) \cup \{v\} \rangle$ and v by c_i , we get a contradiction to the maximality of α .

Subcase 3: $S_i \cong S$.

By the maximality of α , $E(v, V(S_i)) \subset \{a_i v\}$ and $E(d_k, V(S_i)) \subset \{a_i d_k\}$, and hence $2|E(\{v, d_k\}, V(S_i))| + |E(\{a_k, c_1\}, V(S_i))| \le 4 + 8 = 12$. This is a contradiction.

For each $x \in V(G - H - v)$, $E(x, \{v, c_1, a_k, d_k\}) \subset \{xc_1, xa_k\}$ by the maximality of α , and hence $2|E(\{v, d_k\}, x)| + |E(\{a_k, c_1\}, x)| \le 2$. Consequently, by Lemma 3.7, $2(d_G(v) + d_G(d_k)) + d_G(a_k) + d_G(c_1) \le 15(k-2) + 2(n-4k-1) + 2(3+3) + 8 + 6 = 2n + 7k - 6$. On the other hand, by the assumption that $\sigma_2(G) \ge n + k$, $2(d_G(v) + d_G(d_k)) + d_G(a_k) + d_G(c_1) \ge 3n + 3k$. Since $n \ge 4k + 1$, this is a contradiction.

This completes the proof of Theorem 1.

References

- N. Alon and R. Yuster, H-factor in dense graphs, J. Combin. Theory Ser. B 66 (1996), 269–282.
- [2] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18 (1998), 487–492.
- [3] A. Hajnal and Szemerédi, Proof of a conjecture of P. Erdös, Colloq. Math. Soc. János Bolyai 52 (1987), 213–220.
- [4] P. Justesen, On Independent Circuits in Finite Graphs and a Conjecture of Erdös and Pósa, Ann. Discrete Math. 41 (1989), 299–306.
- [5] K. Kawarabayashi, K_4^- -factor in a graph, J. Graph Theory **39** (2002), 111–128.
- [6] K. Kawarabayashi, F-factor and vertex-disjoint F in a graph, Ars Combinatoria 62 (2002), 183–187.
- [7] H. Wang, On the maximum number of independent cycles in a graph, Discrete Math. 205 (1999), 183–190.

(Received 17 May 2003; revised 10 Oct 2003)