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Abstract

Let A be a finite set of positive integers, and let S(A) be the set of all
nonempty sums of distinct elements of A. In this paper, a conjecture on
the lower bound of |S(A)]| is given and a partial proof of the conjecture
is obtained.

1 Introduction

Let A be a finite set of integers, and denote by |A| the cardinality of A. The sumset
and the restricted sumset of A are defined as

2A={a+b:a,be A}, 2°A={a+b:a,b€ A and a#b},

respectively. Without loss of generality, we may assume that A has the normal form
(see [5]), namely, A C [0, I], |A| =n, gcd(A) =1 and 0,1 € A.
It was proved by G. Freiman over 30 years ago (see [5]) that

. Jl+n if 1 <2n -3,
|2A|me{l’2”_3}+”_{ 3n—3 ifl>2n—2.

For 2" A, Freiman and Lev conjectured independently (see [3]) that for n > 7,

. l+n—-2 ifl<2n-5
A _ _o_ < ,
[2"A| > min{l,2n — 5} +n — 2 {3n—7 1> m 4,
The first non-trivial result towards this problem was given by Freiman et al. [1] and
was improved by Lev [3]. Very recently, Schoen [6] proved the following theorem.
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Theorem A. Let A be a set of n > 7 integers such that A C [0, [], ged(A) =1 and
0,0l € A. Then
I+n—2  ifl<2n—5
A = ’
12 A|Z{3n+o(n) if 1 > 2n —4.
For a set A of k integers, denote by s(A’) the sum of the elements of a nonempty
subset A" of A and the subset sums set of A is defined as

S(A) = {s(4) | A C A A #0}.

For a set A of positive integers with |A| = k& > 3, Nathanson [4], and Ilie and Salomaa

[2] proved that
serz (31, 0

and the equality occurs if and only if A = {d,2d,...,kd} for some positive integer
d. Since |S(A)]| is invariant under scalar multiplication of A , we may freely assume
that ged(A) = 1. Under the assumption, the equality in (1) occurs if and only if
A={1,2,...,k}.

The subset sums are closely related to the restricted sums. In this paper, we first
give a conjecture on subset sums, which is parallel to the one on the restricted sums.

Conjecture. Let A be a set of k > 6 positive integers such that ged(A) = 1. Put
M = max(A). Then

S(a) > 2 TM o iATS R
Bk—1)+1  if M > £k2

This is the strongest possible assertion of this kind, as letting A = {1,2,...,k —
1, M}, we get

WS M if k< M < P

IS = { k(li —1) 41 Qf M > Bk

The condition & > 6 is necessary due to a singularity for & = 5: consider A =
{I,m+2,m+3,m+4,m-+5} with m > 2, in which |S(A)|=19<5(5—1)+ 1L

In addition, we prove following Theorem, which goes a bit further beyond (1),
and is intended to be a first step in the investigation of this problem.

Theorem 1. Let A be a set of k > 5 positive integers such that ged(A) = 1. Put
M = max(A). Then

k(k—1) . .
+M ifk<M<2k-3
A > 2 == ’ 2

and for k < M < 2k — 3, the equality holds if and only if A={1,2,--- k-1, M}.
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Corollary 1. Let A be a set of k > 5 positive integers and | > 5 negative integers.
Put M = max(A) and —m = min(A). If M < 2k — 3 and m < 21 — 3, then

B(k—1) 1(1-1)

IS(A)| 2 =+ =5 T+ MAm+, (3)
and the equality holds if and only if
A={1,2,--- k—=1,M}, B={-m,—(I-1),-(1-2),--+,—-1}.

2 Proof

In order to complete the proof of Theorem 1, we need the following lemma on re-
stricted sumsets.

Lemma 1. [5] Let k > 5, and let A be a set of k integers. Then
|27 A| > 2k — 3,
and the equality holds if and only if A is an arithmetic progression.
Proof of Theorem 1. Suppose A = {ai,as,...,a;}, where
1< <ax<...<ap=M.
Let Ay = {0,a1,a2,...,a;}, Ar—2 = {0,a1,a9,...,ar_2}, and
Bi={a1+ai+- +apas+ai+ - +ap a1 +ai+-+ag},

where ¢ = 2,3,...,k. It is readily seen that
k-3
S(A) 2 (QAAA) U (2/\14]9,2 + ag—1 + ak) U U Bi7 (4)
i=2
and 2" Ay, 2" Ap_» + ap1 + ay, Bi(i =2, ...,k — 3) are disjoint in pairs.
Case 1. k< M <2k — 3. Since ged(Ax) = ged(A) =1l and a, = M <2k -3 =
2(k + 1) — 5, it follows from Theorem A that
|28 > M+ (k+1)—2=M+k—1. (5)
By Lemma 1 we have

|2/\Ak72 +ag—1 + ak| = |2/\Ak72| Z Q(k - 1) —-3=2k—-5. (6)

Therefore
k-3

|S(A)] > (2" )| + (2" Ap—2 + a1 + ap)| + | U Bil

=2
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2M+k—1+2k—5+(k_4)2(k_3)zk(kz_l)+M. (7)

Now suppose that the equality in (7) holds. Then all inequalities in the above
argument must be equalities. In particular, we have from (6) that

|27 Ay = 2(k — 1) — 3.

It follows from Lemma 1 that Ay_» is an arithmetic progression. Since k — 2 <
ag—y < M —2 < 2k — 5, we have ged(Ay—2) =1, and so Ap_» ={0,1,2,---, k — 2}.
Hence

A={1,2,--,k—2,a5-1,M}.

This implies that
M ={1,2,-- k= 2+ M} U{ap_, + M}.
If a1 > k — 1, it is easily seen that
aj+ags+a,=1+k—-2+M € S(A),

but does not belong to the right-hand side of (4), a contradiction. Therefore a; =
E—1,andso A={1,2,---,k—1,M}.

Conversely, It is easy to check that the equality in (7) holds for A = {1,2,---,k—
1, M}.

Case 2. M > 2k — 2. Tt follows from Lemma 1 and Theorem A that
27 A4 2 3(k+1) + o(k),
and
122 Ay o+ ap 1 +ag| = 2" Ap o] > 2(k— 1) —3 =2k — 5.
Following from Case 1, we have
k-3
IS(A)] > 2" Al + 127 Apz + ap-r + ax] + Y | Byl

=2

(k—4)2(k—3) _ k2+?2)k+8+0(k).

Combining Case 1 and Case 2, Theorem 1 is proved.

>3(k+1)+o(k)+2k—5+

Proof of Corollary 1. Let A = A; U A, such that
Alz{a17a27”'7ak}7 AZZ{_bla"'7_b27_bl}7
where

O<a<m<---<ap=M, —m=-b<---<—=by<—b <0.
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Obviously, we have

S(A) D S(A1)US(As) U{as — bi},

and —b; < a; — by < ay. It follows from Theorem 1 that

IS(A)| > [S(A)] + |S(Ag)| +1 > @ + M+ it g D) +m+1.

Now suppose that the equality in (3) holds. Then we have that

k(k—1 (-1
st = 2ED s =
By Theorem 1 we have
A={1,2,---,k-1,M}, B={-m,—(1-1),—-(—-2),---,-1}.

Conversely, it is easy to check that the equality in (3) holds for

A={1,2,--- k-1,M}, B={-m,—(1-1),-(—-2),---,-1}.
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