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Abstract

In this paper we introduce the class of composite access structures for
secret sharing. We also provide secret sharing schemes realizing these
structures and study their information rates. As a particular case of this
construction, we present the subclass of iterated threshold schemes, a
large class of ideal secret sharing schemes.

1 Introduction

Secret sharing schemes are methods for distributing a secret K among a set P of
participants. Each participant receives a piece of the secret, or share, in such a way
that only specified subsets of P are able to reconstruct the secret by pooling their
shares. If non-allowed coalitions cannot obtain any information about the secret then
the scheme is said to be perfect.

The family of qualified subsets Γ ⊆ 2P is called the access structure of the scheme.
It is considered to be monotone, that is, if A ⊆ B ⊆ P and A ∈ Γ, then also B ∈ Γ.
Thus the set of minimal elements in Γ, denoted Γm, determines the whole structure
Γ and is called the basis of Γ.

One of the basic parameters of a secret sharing scheme Σ is its information rate,
which is the rate between the length (in bits) of the secret and the maximum length
of the shares of the participants:

ρ(Σ, Γ,K) = ρ(Σ) =
log2 |K|

maxP(log2 |S(P )|) .

Here K is the set of all possible secrets for Σ and S(P ) is the set of all possible shares
for P ∈ P. A scheme Σ is called ideal if ρ(Σ) = 1 (notice that always ρ(Σ) ≤ 1).
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Project VA020/02 and by MCyT under project BFM2001-2251. Second author partially supported
by the “Junta de Castilla y León” under Project VA56/00B.
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An access structure Γ is called ideal if there is an ideal scheme realizing it. More
generally we define the optimal information rate of the structure Γ as

ρ∗(Γ) = sup(ρ(Σ, Γ,K))

where the supremum is taken over all possible Σ and K for Γ.

The problems of characterizing ideal access structures and finding ideal schemes
for them are important and they have received great attention in the literature (see
for example [3, 4]).

A particular interesting class of secret sharing schemes is the class of threshold
schemes, which were the first secret sharing schemes introduced independently by
Blakley [1] and Shamir [8] in 1979. The access structure of a (t, n)-threshold scheme
consists of all subsets of P with at least t out of n participants. Threshold schemes
are ideal and admit a vector space construction (see Section 3). In what follows, for
short we shall denote a (t, n)-threshold scheme simply by (t, n).

In the case of threshold schemes all the participants have the same opportunity for
accessing the secret. This property does not hold for general access structures: some
participants have a greater chance than others. This difference among participants
is not unsuitable in practice. On the contrary, it can be useful as it reflects that
usually in real life participants are, in a natural way, in a hierarchy and not on equal
terms. Then, structures in which participants are divided into several classes abound
in the literature: Simmons’ multilevel/multipart schemes, [9], sums and products,
bipartite structures, [7], compartmented schemes, [2], etc. In this paper we present a
very general construction of this type. Participants are divided into several groups,
each of them having their own family of authorized coalitions. As a particular case
of this construction we introduce the class of iterated threshold schemes. We show
that all schemes in this class are ideal and admit a vector space construction. We
also show that many ideal schemes (all ideal schemes in the case of 4 participants
and most ideal schemes in the case of 5 participants) in fact belong to this class.

The organization of the paper is as follows: composite access structures are de-
fined in Section 2, where some of their main properties are also stated. In Section
3 we show how to construct secret sharing schemes for these structures. Section 4
is devoted to study of a particular type of composite structure, the so-called class-
reducible structures. Finally, in Section 5 we study the particular interesting case
in which all the structures involved are either threshold or composition of threshold
structures.

2 Composition of access structures

Let P be a set of participants and let P = P1 ∪ · · · ∪ Pr, (r > 1) be a partition of

P (that is, ∅ �= Pi �= P and Pi ∩ Pj = ∅ if i �= j). Let us write Pi = {P (i)
1 , . . . , P

(i)
ni }

and n = n1 + · · · + nr. For a set A ⊆ P we denote Ai = A ∩ Pi. Obviously
A = A1 ∪ · · · ∪ Ar. For i = 1, . . . , r, let Γi be an access structure on Pi, and let Γ0

be an access structure on the participant set P = {P1, . . . ,Pr}.
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Definition 1. With the notation as above, we define the composite access struc-
ture of Γ1, Γ2, . . . , Γr, following Γ0, denoted Γ0[Γ1, Γ2, . . . , Γr], as

Γ0[Γ1, Γ2, . . . , Γr] = {A ⊆ P | ∃B ∈ Γ0 such that Ai ∈ Γi for all Pi ∈ B}
=

⋃
B∈Γ0

{A ⊆ P | Ai ∈ Γi for all Pi ∈ B}.
That is, each of the sets Pi plays the role of a participant for Γ0. A coalition

A ⊆ P is authorized if and only if it includes, as subsets, authorized coalitions in
enough of the components Γ1, Γ2, . . . , Γr to constitute an authorized subset for Γ0.

We have a pictorial representation of the scheme as given in Figure 1.

Figure 1: Pictorial representation of composite structures
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Composite secret sharing schemes can be useful for sharing secrets when the set
of participants is divided into several groups, each of them with its own family of
authorized coalitions. The relation among these groups is given by the structure Γ0.

Example 1.

(a) Sums and products. Two typical compositions of access structures are sums
and products, defined as follows: given a partition P = P1∪· · ·∪Pr, and access
structures Γ1, . . . , Γr, the sum of Γ1, . . . , Γr is

Γ1 + · · · + Γr = {A ⊆ P | Ai ∈ Γi for some i}
and the product

Γ1 × · · · × Γr = {A ⊆ P | Ai ∈ Γi for all i}.

Since Γ1 + · · · + Γr = (1, r)[Γ1, . . . , Γr] and Γ1 × · · · × Γr = (r, r)[Γ1, . . . , Γr],
both are particular cases of our construction.

(b) Insertions. Let Γ1, Γ2 be two structures defined on the sets P1 and P2, and let
P ∈ P1. The insertion of Γ2 at P in Γ1, denoted Γ1(P 
→ Γ2), is defined to be
the structure on the set P1\{P}∪P2 such that for A ⊆ (P1\{P})∪P2, we have
A ∈ Γ1(P 
→ Γ2) if and only if A∩P1 ∈ Γ1, or (A∩P1)∪{P} ∈ Γ1 and A∩P2 ∈
Γ2 (see Martin [6]). It is clear that Γ1(P1 
→ Γ2) = Γ1[Γ2, (1, 1), . . . , (1, 1)].
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Let us see some first properties of composite structures.

Proposition 1. (Γ0[Γ1, Γ2, . . . , Γr])
m = Γm

0 [Γm
1 , Γm

2 , . . . , Γm
r ].

Proof. Let Γ = Γ0[Γ1, Γ2, . . . , Γr] and A ∈ Γm. Let C = {Pi | Ai ∈ Γi, i �= 0} ∈ Γ0.
Let us assume that C /∈ Γ0

m. Then there exists C ′ ∈ Γ0
m such that C ′ � C. Let us

consider the set
A′ = A ∩

⋃

Pi∈C′
Pi.

Then A′ ⊂ A and A′ ∈ Γm which contradicts the fact A ∈ Γm. Hence C ∈ Γ0
m.

Let fix i such that Pi ∈ C and let us suppose Ai /∈ Γm
i . Then there exists A′

i � Ai

such that A′
i ∈ Γm

i . Let D = Ai \ A′
i ⊂ Pi. Then A \ D ⊂ A and, since the Pi’s

are a partition on P , A \ D ∈ Γm. This contradicts that A ∈ Γm. Thus we have
Γm ⊆ Γm

0 [Γm
1 , Γm

2 , . . . , Γm
r ]. The other inclusion is straightforward.

Next we shall show that composition behaves well by duality. Let us remember
that for a given access structure Γ on P , the dual structure of Γ is defined as the set
of coalitions whose complement is not authorized,

Γ� = {A ⊆ P | P \ A /∈ Γ}.

Proposition 2. (Γ0[Γ1, Γ2, . . . , Γr])
� = Γ�

0[Γ
�
1, Γ

�
2, . . . , Γ

�
r].

Proof. Let Γ = Γ0[Γ1, Γ2, . . . , Γr], Γ̃ = Γ�
0[Γ

�
1, Γ

�
2, . . . , Γ

�
r] and let A ∈ Γ̃. There is

B ∈ Γ�
0 such that if Pi ∈ B then Ai ∈ Γ�

i (i �= 0). By definition, for this B, if Pi ∈ B
then Pi \ Ai /∈ Γi, i �= 0. If A /∈ Γ� then P \ A ∈ Γ. This means that there exists
B′ ∈ Γ0 such that if Pi ∈ B′ then (P \ A) ∩ Pi = Pi \ Ai ∈ Γi for i �= 0. Hence
B ∩ B′ = ∅ and so B′ ⊆ P \ B and P \ B ∈ Γ0. We arrive to a contradiction, and
therefore Γ̃ ⊆ Γ�.

Conversely, consider now A ∈ Γ�, that is, P \ A /∈ Γ. By definition, for every
B ∈ Γ0 there exists Pi ∈ B such that Pi \ Ai /∈ Γi. If A /∈ Γ̃ then for every B′ ∈ Γ�

0

there exists Pi ∈ B′ such that Pi \Ai ∈ Γi. Let Γm
0 = {Bj}j∈J be the basis of Γ0. For

each j ∈ J there exists Pij ∈ Bj such that Pij \ Aij /∈ Γi. Let B′ = {Pij}j∈J . Then

Bj is not contained in P \ B′ because B′ ∩Bj �= ∅ for all j ∈ J . Therefore, B′ ∈ Γ�
0.

On the other hand, for all Pi ∈ B′ we have Pi \ Ai /∈ Γi which is a contradiction.
Hence Γ̃ ⊇ Γ�.

From this result, in particular we have that the dual of the sum is the product of
the duals, and the dual of the product is the sum of the duals.

Corollary 1. The dual of a composite access structure is also a composite access
structure.

Obviously, every structure Γ can be expressed as a composition in the ways
Γ = Γ[(1, 1), · · · , (1, 1)] and Γ = (1, 1)[Γ]. These compositions are called trivial.
We shall not consider trivial compositions any more. A structure that cannot be
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expressed as a nontrivial composition is called indecomposable. For example, it is easy
to see that threshold access structures (t, n) are indecomposable whenever 1 < t < n.

On the other hand, the expression Γ0[Γ1, Γ2, . . . , Γr] of a structure as a compo-
sition is in general not unique, because the Γi, i = 1, . . . , r, can be, themselves,
decomposable. We have the following result.

Proposition 3. Let Γ = Γ0[Γ1, Γ2, · · · , Γr]. Assume that for i = 1, . . . , r, we have

Γi = ∆
(i)
0 [∆

(i)
1 , ∆

(i)
2 , . . . , ∆

(i)
ji

]. Then

Γ = Γ0[∆
(1)
0 [∆

(1)
1 , ∆

(1)
2 , . . . , ∆

(1)
j1

], . . . , ∆
(r)
0 [∆

(r)
1 , ∆

(r)
2 , . . . , ∆

(r)
jr

]]

= (Γ0[∆
(1)
0 , ∆

(2)
0 , . . . , ∆

(r)
0 ]) [∆

(1)
1 , . . . , ∆

(1)
j1

, . . . , ∆
(r)
1 , . . . , ∆

(r)
jr

].

The proof is straightforward. The iterative application of this result yields the
following corollary.

Corollary 2. Let Γ be a decomposable structure. Then Γ can be written as Γ =
Γ0[Γ1, . . . , Γr] where all the structures Γ1, . . . , Γr are indecomposable.

3 Composite schemes for composite structures

Let Γ = Γ0[Γ1, . . . , Γr] be a composite access structure on P . In order to construct a
secret sharing scheme for Γ, we can compose secret sharing schemes for each Γi, i =
0, . . . , r. Following Martin, [6], if the set K of secrets to share has cardinality q, then
a perfect secret sharing scheme for Γ will be denoted PS(Γ, q). Let us remember
that for a participant P ∈ P, S(P ) denotes the set of all possible shares for P , and
that the insertion schemes were introduced in Example 1. The following result can
be found in [6].

Theorem 1. Let Γ1, Γ2 be access structures defined on participant sets P1 and P2,
and let P ∈ P1. If there is a PS(Γ1, q) and a PS(Γ2, |S(P )|), then there exist a
PS(Γ1(P 
→ Γ2), q).

Let Γ = Γ0[Γ1, · · · , Γr]. It is clear that Γ can be obtained from Γ0 after r insertions
at the participants P1, . . . ,Pr. Thus, the above Theorem can be generalized to the
following.

Proposition 4. Let Γ = Γ0[Γ1, . . . , Γr] be as above. If there exist a PS(Γ0, q) and
for i = 1, . . . , r, a PS(Γi, |S(Pi)|), then there exists a PS(Γ, q).

The proof is obvious from Theorem 1. Furthermore, since the proof of the The-
orem in [6] is constructive, we can effectively give the PS(Γ, q). For the conve-
nience of the reader let us present the idea of this construction: we want to share
K ∈ K among the participants in P . By using the PS(Γ0, q) we compute the
shares s1, . . . , sr of P1, · · · ,Pr. Now, by using the PS(Γi, |S(Pi)|) we share each si

among the participants in Pi: s
(i)
1 , · · · , s

(i)
ni . Then the shares given by PS(Γ, q) are

s
(1)
1 , . . . , s

(1)
n1 , . . . , s

(r)
1 , . . . , s

(r)
nr .

By studying the proof of the Theorem, we also conclude the following.
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Corollary 3. Let Γ = Γ0[Γ1, · · · , Γr]. With the notations above, we have

ρ(PS(Γ, q)) = min{ρ(PS(Γ0, q)) · ρ(PS(Γi, |S(Pi)|)) | 1 ≤ i ≤ r}.
Thus ρ∗(Γ) ≥ min{ρ∗(Γ0) · ρ∗(Γi) | 1 ≤ i ≤ r}.

In particular, if all the structures Γi, i = 0, . . . , r, are ideal, then Γ is ideal.

A particular interesting kind of access structures is formed by those admitting a
Brickell’s vector space construction. Let us remember that a structure Γ on P admits
a vector space construction over the finite field Fp if there is a map Φ : P −→ Fd

p

(d large enough) and a vector �v ∈ Fd
p, �v �= �0, such that for all A ⊆ P we have

�v ∈ 〈Φ(Pi) | Pi ∈ A〉 if and only if A ∈ Γ (see [2, 11]). Such a construction directly
provides an ideal PS(Γ, p). Unfortunately no criteria is known to decide when a
structure Γ admits a vector space construction.

In the above construction usually one takes �v = �e1 = (1, 0, . . . , 0). However it is
clear that the particular choice of �v is not relevant whenever �v �= 0.

It is well known that every (t, n)-threshold scheme admits a vector space con-
struction. Just take n different non-zero elements α1, . . . , αn ∈ Fp and define

Φ(Pi) = (1, αi, α
2
i , . . . , α

t−1
i ) ∈ Ft

p

for all i, 1 ≤ i ≤ n.

It is not clear when the composition of structures admitting a vector space con-
structions admits a vector space construction. At the moment we simply state the
following result.

Proposition 5. Let Γ = Γ0[Γ1, Γ2, · · · , Γr] be a composite access structure such
that Γi is a (ti, ni)-threshold structure for 1 ≤ i ≤ r. If Γ0 admits a vector space
construction, then also Γ admits a vector space construction.

Proof. For 1 ≤ i ≤ r, we shall consider the map Φi : Pi −→ Fti
p defined by

Φi(P
(i)
j ) = (1, αij , α

2
ij , . . . , α

ti−1
ij )

where Pi = {P (i)
1 , . . . , P

(i)
ni }. For Γ0 we have a map Φ0 : {P1, . . . ,Pr} −→ Fd

p that
defines its vector space construction. Consider the maps Ψi : Pi −→ Fti−1

p ,

Ψi(P
(i)
j ) = (αij , α

2
ij , . . . , α

ti−1
ij )

and let Φi :−→ Fd+t1+···+tr−r
p defined by

Φ(P
(i)
j ) = (Φ0(Pi),�0, · · · , Ψi(P

(i)
j ), . . . ,�0).

Let us show that Φ is a vector space construction for Γ. If A ∈ Γ, let B = {Pi |
A ∩ Pi ∈ Γi} be an element of Γ0. If Pi ∈ B, take {P (i)

j1
, · · · , P

(i)
jti
}, ti different

elements of A ∩ Pi. There exists a linear combination in Fti
p

−→e1 =

ti∑

k=1

λk · Φi(P
(i)
jk

)
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such that
∑ti

k=1 λk = 1. Then we have

ti∑

k=1

λk · Φ(P
(i)
jk

) = (Φ0(Pi),�0, . . . ,�0).

As −→e1 ∈ 〈Φ0(B)〉, it follows that −→e1 ∈ 〈Φ(A)〉. Conversely, let A ⊆ P = P1 ∪ · · · ∪Pr

be such that −→e1 ∈ 〈Φ(A)〉. Assume that all the coefficients in the linear combination
that gives −→e1 are non-zero. Take Ai = A ∩ Pi. If Ai �= ∅, then Ψi(Ai) is a set of
linearly dependent vectors. Thus there exist a linear combination

−→
0 =

∑

j

λij · Ψi(P
(i)
j )

with every λij �= 0. This means that ti ≤ |Ai|, and hence the vectors Φi(P
(i)
j ) span−→e1 . So Ai ∈ Γi. Moreover −→e1 must be generated by B = {Φ0(Pi) | Ai �= ∅} and then

B ∈ Γ0. This ends the proof.

Let us note that the above proof is constructive. Thus, if we have a scheme for
Γ0, then we can effectively construct a secret sharing scheme for Γ.

4 Reducible structures

In this section we briefly study a type of decomposable structures which will be useful
for us in the sequel.

Definition 2. Let Γ be an access structure on the set of participants P. We say that
two participants Pi, Pj are related, denoted Pi ∼ Pj, if for every A ∈ Γm we have:
a) if Pi ∈ A then (A \ {Pi}) ∪ Pj ∈ Γ; and conversely
b) if Pj ∈ A then (A \ {Pj}) ∪ Pi ∈ Γ.

Let us note that ∼ is an equivalence relation on P . We say that the structure Γ
admits a class reduction (or shortly that it is reducible) if at least one of the equiv-
alence classes of ∼ has more than one participant. In this case, the class reduction
allows us to define a new access structure on the set of participants P∼ = P/ ∼
given by Γ∼ = Γ/ ∼.

Remark 1. If two participants Pi, Pj are related, then the set {Pi, Pj} cannot be
extended to a minimal coalition A ∈ Γ. In fact, if A = {Pi, Pj} ∪ B ∈ Γm then,
by definition, {Pi, Pj} ∪ B = {Pi} ∪ B ∈ Γm, which contradicts the fact of A being
minimal. Conversely, if Pi ∼ Pj it is easy to see that {Pi, Pj} ⊆ A for all A ∈ Γ�

such that Pi ∈ A or Pj ∈ A.

The relationship between reducibility and decomposability is given by the follow-
ing result.
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Proposition 6. Let P = {P1, · · · , Pn}. For every equivalence class [P ] ∈ P∼, fix a
representative Q ∈ [P ] so that P∼ = {Q1, . . . , Qr}. If ni = |[Qi]|, then

Γ = Γ∼[(1, n1), (1, n2), . . . , (1, nr)].

In particular, all reducible structures on n ≥ 3 participants are decomposable.

Proof. It is a direct consequence of Proposition 1, the definition of related partici-
pants and the above Remark.

The converse of Proposition 6 is not true in general, that is, there exist decom-
posable structures which are irreducible.

The structures Γ and Γ∼ have similar properties. Let us see some of them. To
that end we shall use the following notation: for a participant Pi, we shall denote
by [Pi] its equivalence class in P∼ and by Σ(Pi) its share given by the secret sharing
scheme Σ that realizes Γ.

Lemma 1. Let Γ be an access structure on the set P. There is a secret sharing
scheme Σ realizing Γ, such that:
a) ρ(Σ) = ρ∗(Γ); and
b) if Pi ∼ Pj then Σ(Pi) = Σ(Pj).

Proof. Keeping the notations as above, for every equivalence class [P ] ∈ P∼, fix
a representative Q ∈ [P ] so that P∼ = {Q1, · · · , Qr}. Let Σ′ be a secret sharing
scheme that realizes Γ and such that ρ(Σ′) = ρ∗(Γ). We define Σ(P1), · · · , Σ(Pn),
as Σ(Pi) = Σ′(Qj) if [Pi] = [Qj ]. Let us consider the projection map π : P → P∼,
π(Pi) = Qj if [Pi] = [Qj]. If A ∈ Γm then A does not contain related participants,
hence π(A) ∈ Γm. Furthermore the shares given by Σ to the participants in A are
the same as the shares given by Σ′ to the participants in π(A). Thus Σ is a sharing
scheme realizing Γ. Clearly Σ verifies b). Moreover ρ(Σ) ≤ ρ(Σ′) hence we get
equality here because ρ(Σ′) = ρ∗(Γ).

Remark 2. The above Lemma show the following nice characterization of related
participants: Let Γ be an access structure on P; two participants, Pi and Pj, are
related if and only if there is a secret sharing scheme Σ realizing Γ such that Σ(Pi) =
Σ(Pj).

A secret sharing scheme is said to be regular if it is optimal and gives equal shares
to related participants. From Proposition 6 and Lemma 1, given an access structure
Γ, there is a one-to-one correspondence between regular sharing schemes realizing Γ
and optimal sharing schemes realizing Γ∼.

Proposition 7. Let Γ be an access structure on the set P. Then
a) ρ∗(Γ) = ρ∗(Γ∼).
b) Γ admits a vector space construction iff Γ∼ admits a vector space construction.
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Proof. a) Let Σ be a regular secret sharing scheme for Γ. Then we define a secret
sharing scheme on P∼ as

Σ∼([Pi]) = Σ(Pi), i = 1, . . . , n.

Σ∼ is well defined, realizes Γ∼ and, obviously, has the same information rate as Σ.
Conversely, for a secret sharing scheme Π realizing Γ∼, we define the scheme Π∼ on
P as

Π∼(Pi) = Π([Pi]), i = 1, . . . , n.

In the same way, Π∼ realizes Γ and has the same information rate as Π. Then ρ∗(Γ) =
ρ∗(Γ∼). The same argument proves b). (Furthermore, note that one implication also
follows from Proposition 5).

5 Iterated threshold schemes

In this section we introduce an interesting class of composite secret sharing schemes.
This class is formed by composing threshold schemes or compositions of threshold
schemes. More formally, we define the class of iterated threshold access structures as
the smallest class C of access structures such that:

1. All threshold access structures are in C .

2. The composition of elements in C is also in C; that is, if Γ0, Γ1, · · · , Γr ∈ C,
then Γ0[Γ1, Γ2, . . . , Γr] ∈ C (when this composition makes sense).

Schemes realizing iterated threshold access structures are called iterated threshold
schemes. As we shall see below, iterated threshold schemes can be also found by
composition of threshold schemes.

As composite structures, iterated threshold access structures have a pictorial
representation. In this case they can also be represented as labeled trees in the
obvious way. For example consider the structure on a set of 5 participants given by
Γm = {P1P2P3P4, P1P5}. It can also be realized as the labeled tree shown in Figure
2, where as usual (t, n) means a t-threshold scheme on n participants. We will denote

Figure 2: Labeled tree for an iterated access structure.
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this iterated threshold scheme as (2, 2)[(1, 1), (1, 2)[(3, 3), (1, 1)]]. Observe that this
representation is not unique. For example the schemes (2, 2)[(2, 2), (1, 2)[(2, 2), (1, 1)]]
and (3, 3)[(1, 1), (1, 1), (1, 2)[(2, 2), (1, 1)]] realize the same structure. In general we
have (j, j)[(t, t), ∆] = (j + t− 1, j + t− 1)[(1, 1), · · ·(t), (1, 1), ∆] and (1, j)[(1, t), ∆] =
(1, j + t − 1)[(1, 1), · · ·(t), (1, 1), ∆].

Iterated threshold schemes have some nice properties. Let us study some of them.

Proposition 8. The dual of an iterated threshold access structure is an iterated
threshold access structure.

Proof. It follows from Proposition 2 and the fact that the dual of a threshold access
structure is also a threshold access structure.

Proposition 9. Every iterated threshold access structure admits a vector space con-
struction. In particular every iterated threshold access structure is ideal.

Proof. It suffices to prove the first fact. Let Γ = Γ0[Γ1, . . . , Γr] be an iterated
threshold access structure. According to Corollary 2, Γ admits a representation
Γ

(1)
0 [Γ

(1)
1 , · · · , Γ

(1)
r1 ], where Γ

(1)
1 , · · · , Γ

(1)
r1 are indecomposable, and hence threshold ac-

cess structures. Then, according to Proposition 5, it suffices to prove that Γ
(1)
0 admits

a vector space construction. But Γ
(1)
0 is again an iterated threshold access structure.

Thus we can apply again the above argument to Γ
(1)
0 . By iterating this reasoning

a number of times, we shall arrive to an expression Γ
(m−1)
0 = Γ

(m)
0 [Γ

(m)
1 , · · · , Γ

(m)
rm ],

where Γ
(m)
1 , · · · , Γ

(m)
rm are threshold access structures and Γ

(m)
0 is an indecomposable

iterated threshold access structures, that is, also a threshold access structure. Since
(classical) threshold structures admit a vector space construction (as the one seen

in Section 3) then, according to Proposition 5, Γ
(m−1)
0 also admits a vector space

construction, and so, the same happens for Γ.

Let us note that, as in the case of Proposition 5, the above proof is constructive.
Thus, we can effectively give vector space constructions for all iterated threshold
schemes.

Many ideal secret sharing schemes (all of them admitting a vector space con-
struction) are in fact iterated threshold schemes. These include all ideal schemes on
participant set with n ≤ 4 participants and most ideal schemes on n = 5 participants.
To see this we shall use the results developed in Section 4.

Proposition 10. Let Γ be an access structure on the set P. If Γ∼ is an iterated
threshold access structure, then Γ is also an iterated threshold access structure.

Proof. It is a direct consequence of Proposition 6.

Remark 3. Let Γ be an access structure. If Γ� is class reducible and it reduces to
an iterated threshold structure, then, in light of Propositions 8 and 10, we have that
Γ is also an iterated threshold structure.
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Table 1: Ideal access structures on at most 4 participants.

n Γm Realization Dual

1 1 1 selfdual
2 12 (2,2) (1,2)
3 123 (3,3) (1,3)

12,23 (2,2)[(1,2),1] (1,2)[(2,2),1]
12,23,13 (2,3) selfdual

4 12,13,14 (2,2)[1,(1,3)] (1,2)[1,(3,3)]
12,14,23,34 (2,2)[(1,2),(1,2)] (1,2)[(2,2),(2,2)]

12,13,14,23,24 (2,3)[1,1,(1,2)] (2,3)[1,1,(2,2)]
12,13,14,23,24,34 (2,4) (3,4)

123,14 (2,2)[1,(1,2)[(2,2),1]] (1,2)[1,(2,2)[(1,2),1]]
123,124 (3,3)[1,1,(1,2)] (1,3)[1,1,(2,2)]

123,124,134 (2,2)[1,(2,3)] (1,2)[1,(2,3)]
1234 (4,4) (1,4)

Let us study now how many iterated threshold access structures exist on a set P
with at most five participants.

Proposition 11. All ideal access structures on a participant set with at most 4
participants are iterated threshold access structures.

Proof. For a list of all ideal access structures on at most 4 participants we refer to
[11]. Clearly all ideal access structures on 1 or 2 participants are threshold structures.
All ideal structures on 3 participants except the one having basis P1P2, P2P3, P3P1,
are class reducible and therefore can be realized as iterated threshold structures.
P1P2, P2P3, P3P1 is just (2, 3). On 4 participants we find again that all ideal structures
are class reducible except P1P2, P1P3, P1P4, P2P3, P2P4, P3P4 and its dual, that are
(2, 4) and (3, 4).

Table 1 contains all ideal access structures on n ≤ 4 participants and their real-
izations as iterated threshold schemes. For short, in the second column participant
Pi is simply denoted by i. Furthermore, the threshold scheme (1,1) is denoted by 1.

Let us examine now the case of n = 5 participants. For a list of all access
structures in this case to refer to [5]. There are 61 ideal structures, 49 of them being
reducible.

Proposition 12. On five participants there are 53 iterated threshold access structures
out of 61 ideal structures. These 53 structures are all the reducible ideal access
structures, the three threshold structures (2, 5), (3, 5), (4, 5), and the selfdual structure
(2, 3)[(1, 1), (1, 1), (2, 3)].
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Table 2: Iterated threshold schemes on 5 participants (up to equivalence).

Γm Realization Dual
12,13,14,15 (2,2)[1,(1,4)] (1,2)[1,(4,4)]

12,23,34,45,14,25 (2,2)[(1,2),(1,3)] (1,2)[(2,2),(3,3)]
12,14,23,24,25,34,45 (2,3)[1,1,(1,3)] (1,3)[1,1,(3,3)]

12,13,14,15,23,25,34,45 (2,3)[1,(1,2),(1,2)] (2,3)[1,(2,2),(2,2)]
12,13,14,15,23,24,25,34,35 (2,4)[1,1,1,(1,2)] (3,4)[1,1,1,(2,2)](5

2

)
(2,5) (4,5)

123,14,15 (2,2)[1,(1,3)[(2,2),1,1]] (1,2)[1,(3,3)[(1,2),1,1]]
123,145 (2,2)[1,(1,2)[(2,2),(2,2)]] (1,2)[1,(2,2)[(1,2),(1,2)]]

123,124,15 (2,2)[1,(1,2)[(2,2),1]] (1,2)[1,(2,2)[(1,2),1]]
123,124,35,45 (2,2)[(1,2),(1,2)[1,(2,2)]] (1,2)[(2,2),(2,2)[1,(1,2)]]

123,124,34,35,45 (2,3)[(1,2)[(2,2),1],1,1] (2,3)[(2,2)[(1,2),1],1,1]
123,124,125 (3,3)[1,(1,3)] (1,3)[1,(3,3)]

123,124,134,15 (2,2)[1,(1,2)[(2,3),1]] (1,2)[1,(2,2)[(2,3),1]]
123,124,125,34,35 (2,3)[(2,2),1,(1,2)] selfdual

123,124,125,34,35,45 (2,4)[(2,2),1,1,1] (3,4)[(1,2),1,1,1]
123,124,135,145 (3,3)[1,(1,2),(1,2)] (1,3)[1,(2,2),(2,2)]

123,124,134,125,135 (2,2)[1,(2,3)[1,1,(1,2)]] (1,2)[1,(2,3)[1,1,(2,2)]]
123,124,125,134,135,145 (2,2)[1,(2,4)] (1,2)[1,(3,4)]
124,125,135,134,234,235 (2,2)[(2,3),(1,2)] (1,2)[(2,3),(2,2)]

124,125,135,134,234,235,45 (2,3)[1,1,(2,3)] selfdual(
5
3

)
(3,5) selfdual

1234,15 (2,2)[1,(1,2)[(3,3),1]] (1,2)[1,(2,2)[(1,3),1]]
1234,125 (3,3)[1,1,(1,2)[(2,2),1]] (1,3)[1,1,(2,2)[(1,2),1]]
1234,1235 (4,4)[1,1,1,(1,2)] (1,4)[1,1,1,(2,2)]

1234,1235,145 (2,2)[1,(2,3)[(2,2),1,1]] (1,2)[1,(3,2)[(2,1),1,1]]
1234,1235,1345 (3,3)[1,1,(2,3)] (1,3)[1,1,(3,2)]

1234,1235,1245,1345 (2,2)[1,(3,4)] (1,2)[1,(2,4)](
5
5

)
(5,5) (1,5)

Proof. In view of Propositions 7, 10 and 11, clearly all threshold and class reducible
ideal access structures are iterated threshold. The selfdual structure with basis
124, 125, 134, 135, 234, 235, 45 is realized as (2, 3)[(1, 1), (1, 1), (2, 3)]. An exhaustive
search shows that there are no more iterated threshold structures.

Remark 4. Let us see with some detail how to find all iterated threshold access
structures on five participants. To that end we follow all possible partitions of P.

1,4 : (i, 2)[1, ∆], i = 1, 2. Clearly either the structure or its dual begins (1, 2)
and therefore has an isolated participant an is reducible to one with 4 partici-
pants.

2,3 : (i, 2)[(i, 2), ∆], i = 1, 2. The structure has a final branch (i, 2), hence is
reducible.
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1,1,3: (i, 3)[1, 1, ∆], i = 1, 2, 3. where ∆ is an iterated threshold scheme with
3 participants. There are 5 of such structures (see Table 1 in the appendix).
If i = 1, 3 we can rewrite it as (i, 2)[(i, 2), ∆] and therefore they are reducible.
Suppose i = 2:

(a) (2, 3)[1, 1, (1, 3)] is reducible.

(b) (2, 3)[1, 1, (1, 2)[(2, 2)(2, 2)] is reducible.

(c) (2, 3)[1, 1, (2, 3)] realizes the irreducible ideal structure 124, 125, 135, 134,
234, 235, 45.

1,2,2 : (i, 3)[1, (j, 2), (t, 2)], i = 1, 2, 3. They are reducible.

1,1,1,2 : (i, 4)[1, 1, 1, (t, 2)], i = 1, . . . , 4. They are reducible.

5 : They are ideal since they are threshold schemes.

On the other hand, the 8 structures on 5 participants that are not realizable as
iterated treshold schemes are the following:

123, 145, 24, 35 (Selfdual)

123, 124, 135, 25, 34 and its dual.

123, 134, 135, 145, 25, 34 and its dual.

123, 124, 125, 134, 135, 234, 45 (Selfdual)

123, 124, 125, 134, 135, 234, 235, 45 and its dual.

Table 2 contains all ideal access structures on n = 5 participants that are realiz-
able as iterated threshold schemes and their realizations.

6 Open problems

There are some open problems mentioned in the paper. In this section we summarize
them. All of them are related to the vector space construction defined in Section 3.
The first one is a classical problem in secret sharing schemes; the following ones have
a relation with the core of this paper.

Open Problem 1. Find a criteria to decide when a structure Γ admits a vector
space construction.

Open Problem 2. It seems “natural” to ask whether Proposition 5 is also true for
Γi, i = 1, . . . , r being structures with a vector space construction (although
we do not know any proof in the literature, it seems to be true). I.e., is the
following conjecture true?
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Conjecture. Let Γ = Γ0[Γ1, Γ2, · · · , Γr] be a composite access structure such
that Γi admits a vector space construction for 0 ≤ i ≤ r, then also Γ
admits a vector space construction.

Open Problem 3. If the above conjecture is true, is the class of iterated vector
space access structures larger than the class of iterated threshold access struc-
tures? (See Section 5.) Moreover, does this class cover all the ideal access
structures?
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