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Abstract

A Bilinski diagram (respectively, B∗-diagram) is a labeling of a planar
map with respect to the regional distance of its vertices and faces from
a central vertex (respectively, face). Such diagrams are concentric if for
each k ≥ 1, the set of vertices at regional distance k from the central
vertex or face induces a circuit. The class Ga,b consists of all 1-ended,
3-connected planar maps with the property that every valence is finite
and at least a and every covalence is finite and at least b. A map in the
subclass Ga,b+ of Ga,b contains no adjacent b-covalent faces, and dually a
map in Ga+,b contains no adjacent a-valent vertices. It is shown that all
Bilinski diagrams and all B∗-diagrams of all maps in G6,3, G4,4, G3,6, G5,3+

and G3+,5 are concentric.

1 Introduction

A Bilinski diagram is a labeling of the sets of vertices and faces of a planar map
with respect to a given vertex x, called its center, and the regional distance of the
other vertices of the map from x. Bilinski diagrams are of particular interest when
this labeling corresponds to a planar embedding wherein the sets of vertices at the
same regional distance from the center induce a sequence of concentric circuits about
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the center. A concentric Bilinski diagram is one with this property. If all Bilinski
diagrams of a map, i.e., for every choice of center, are concentric, then we say that
the map is uniformly vertex-concentric. This manner of labeling infinite planar maps
has been utilized by Bilinski [1], Grünbaum and Shephard [4], Niemeyer and Watkins
[6], and Brand, Morton, and Vertigan [2]. Such a labeling may also be performed
with respect to a central face, in which case we also seek maps that are uniformly
face-concentric.

Bilinski diagrams with such concentric properties are not only aesthetically ap-
pealing but are also an essential tool in constructing geodetic paths, rays, and double
rays in planar maps (as in [6] and [3]). The purpose of this article is to establish tight
sufficient conditions for an infinite, locally finite planar map to be both uniformly
vertex-concentric and uniformly face-concentric. In the final section some necessary
conditions for uniform concentricity are considered.

Portions of this article appear in the first author’s doctoral dissertation [3] written
under the supervision of the second author.

2 Definitions and Notation

It will be assumed in this article that a map is a planar map whose underlying graph
is connected and locally finite (i.e., all valences are finite) without loops or multiple
edges. The valence of a vertex v with respect to a map X will be denoted by ρX(v),
or simply ρ(v) if the context is clear, and the covalence of any face f of the map
will be denoted by ρ∗

X(f) or ρ∗(f). To assure uniqueness of the embedding of this
underlying graph, it suffices to assume that it is 3-connected (cf. [8] and [5]). Thus
ρ(v) ≥ 3 for all v in the set V X of vertices of a map X , and ρ∗(f) ≥ 3 for all f in
the set FX of faces of X .

Following [6], a Bilinski diagram (or briefly, B-diagram) Bx with center x ∈ V X
of a map X is defined inductively as follows:

U0 = {x}.
F1 is the set of faces incident with x.

For r ≥ 1, Ur is the set of those vertices not in Ur−1 that are incident with a face
in Fr.

For r ≥ 1, Fr+1 is the set of those faces not in Fr that are incident with a vertex
in Ur.

A B-diagram of a map is concentric if each of the induced subgraphs 〈Ur〉, r ≥
1, is a circuit. A map is uniformly vertex-concentric if all of its B-diagrams are
concentric.

Proposition 2.1. If a map is uniformly vertex-concentric, then its underlying graph
is 3-connected.
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Proof. Let X be the underlying graph of a uniformly vertex-concentric map. Then
X is connected by definition. Let S be a smallest separating set of X and let v ∈ S.
Let Y1 and Y2 be distinct components of X − S. By the minimality of S, the vertex
v has neighbors y1 ∈ V Y1 and y2 ∈ V Y2. With respect to the Bilinski diagram Bv,
we have y1, y2 ∈ U1. If |S| < 3, then |S ∩ U1| < 2. Since 〈U1〉 is 2-connected, there
would exist a y1y2-path in X − S, which is impossible.

Bilinski and Grünbaum and Shephard also considered the dual situation of label-
ing maps with a central face rather than a central vertex. We thus have the following
dual definition.

A map X may be labeled as a B∗-diagram B∗
f with center f ∈ FX as follows:

F ∗
1 = {f}.

U ∗
1 is the set of vertices incident with f .

For r ≥ 1, F ∗
r+1 is the set of faces not in F ∗

r that are incident with a vertex in U ∗
r .

For r ≥ 1, U ∗
r+1 is the set of those vertices not in U ∗

r that are incident with a face
in F ∗

r+1.

With respect to this definition, the terms concentric B∗-diagram and uniformly
face-concentric map are defined analogously. A map X with planar dual X∗ is clearly
uniformly vertex-concentric if and only if X∗ is uniformly face-concentric. It is not
immediate whether X∗ is also uniformly vertex-concentric; we will partially address
this question in Corollary 4.2. A map will be called uniformly concentric if it is both
uniformly vertex-concentric and uniformly face-concentric.

Some aspects of B∗-diagrams arise in the study of nonperiodic tilings and their
relationships to quasicrystals (cf. [7]). In this context, the set F ∗

1 of faces in the
definition of a B∗-diagram corresponds to the “first corona” of the tile f . Similarly,
F ∗

2 is the “second corona” of f .

In a B-diagram (respectively B∗-diagram), let v ∈ Ur (respectively U ∗
r ). The

neighbors of v in Ur−1 (respectively U ∗
r−1) will be called the lower neighbors of v;

the neighbors of v in Ur (respectively U ∗
r ) will be called the level neighbors of v; and

the neighbors of v in Ur+1 (respectively U ∗
r+1) will be called the upper neighbors of

v. Given any vertex in a concentric B-diagram or B∗-diagram, its lower neighbors
lie on a circuit closer to the center, it’s level neighbors lie on the same circuit as the
given vertex (and there are exactly two of them), and its upper neighbors lie on a
circuit farther from the center.

For a locally finite graph X , the number of ends of X may be regarded as the
supremum of the number of infinite components of X − W as W ranges over all
finite subgraphs of X . In particular, an infinite, locally finite graph X is 1-ended
if for every finite subgraph W of X , the subgraph X − W has exactly one infinite
component. It is not hard to see that if the underlying graph of a connected map
has more than one end, then none of its B-diagrams is concentric. In fact, in this
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case, for all but finitely many r, the subgraph 〈Ur〉 is not even connected, let alone
an elementary circuit.

Let Ga,b denote the class of all 1-ended, 3-connected maps X such that a ≤ ρ(v) <
∞ for all v ∈ V X and b ≤ ρ∗(f) < ∞ for all f ∈ FX . We define Ga,b+ to be the
subclass of Ga,b of maps with no adjacent b-covalent faces. Similarly, Ga+,b denotes
the subclass of Ga,b of maps with no adjacent a-valent vertices.

Grünbaum and Shephard showed [4, 4.7.1] that the tiling [jk] (the map with con-
stant valence j and constant covalence k) is uniformly vertex-concentric whenever
1
j
+ 1

k
≤ 1

2
. (The essentially unique B-diagram of [63] is presented in Figure 1.) Note

that for j, k ≥ 3, equality holds here if and only if (j, k) = (3, 6), (4, 4) or (6, 3),
corresponding to the regular tilings of the Euclidean plane by hexagons, squares, or
triangles, respectively. These three regular tilings are examples of uniformly concen-
tric maps.

Figure 1: Bilinski diagram of [63].

In [6, Theorem 3.2] it was shown that all maps in G4,4 are uniformly vertex-
concentric. Brand et al. [2, Theorem 12] proved that maps in which all faces are ex-
actly 3-covalent and all vertices are at least 6-valent are uniformly vertex-concentric.
Our main result is that every map in G6,3, G3,6, G5,3+ and G3+,5 is uniformly con-
centric. Moreover, in certain respects, these conclusions are best possible.

3 Preliminary Results

The five statements of the following lemma describe certain combinations of proper-
ties that no finite map can possess. This lemma will be used to prove that certain
maps are uniformly concentric by showing that the assumption to the contrary pro-
duces one of these “forbidden submaps”. The proofs of the five statements are
similar; assuming the map to exist as described, we count its edges in two ways and
apply Euler’s formula to arrive at a contradiction.

Lemma 3.1. No finite map Y with at least four vertices and no pendant vertex has
any of the following five sets of properties:
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1. All vertices incident with the exterior face are at least 4-valent with at most
three exceptions, at most two of which are 2-valent. Furthermore, all vertices
not incident with the exterior face are at least 6-valent.

2. All vertices not incident with the exterior face and at least two vertices incident
with the exterior face are at least 6-valent. All other vertices incident with the
exterior face are at least 4-valent with at most four exceptions.

3. All vertices incident with the exterior face are at least 4-valent with at most
three exceptions. All vertices not incident with the exterior face are at least
5-valent. Every interior edge is incident with at most one 3-covalent face.

4. All vertices incident with the exterior face are at least 3-valent with d ≤ 2
exceptions ( 2-valent vertices). The number of 3-valent vertices incident with
the exterior face can exceed the number of (≥ 5)-valent vertices incident with
the exterior face by at most 4 − d. All vertices not incident with the exterior
face are at least 5-valent. In addition, every interior edge is incident with at
most one 3-covalent face.

5. All vertices not incident with the exterior face and at least two vertices incident
with the exterior face are at least 5-valent. All vertices incident with the exterior
face are at least 3-valent with d ≤ 4 exceptions ( 2-valent vertices). The number
of 3-valent vertices incident with the exterior face can exceed the number of
(≥ 5)-valent vertices incident with the exterior face by at most 3 − d. In
addition, every interior edge is incident with at most one 3-covalent face.

Proof. Let ν0, ν1 and ν2 denote the numbers of vertices, edges and faces, respectively,
of a finite planar map. Let p denote the covalence of the exterior face of Y and let
t denote the number of 3-covalent faces of Y . In statements (3), (4), and (5) of the
lemma we assume that each interior edge is incident with at most one 3-covalent
face; thus t ≤ ν1−p

3
+ 1 ≤ ν1

3
.

Only the proof of statement (4) is provided, as the proof of (5) is very similar
and the proofs of the first three statements are simpler. Assume that the conditions
in (4) hold. Let a, b, and c denote respectively the numbers of 3-valent, 4-valent,
and (≥ 5)-valent vertices incident with the exterior face. Counting ν1 in two ways,
we obtain:

2ν1 ≥ 5(ν0 − p + c) + 4b + 3a + 2d;

2ν1 ≥ 4(ν2 − 1 − t) + p + 3t.

Since p = a + b + c + d, after adding the two inequalities we have

0 ≥ 5(ν0 − ν1 + ν2) + ν1 − ν2 − a + c − 2d − t − 4.

Applying Euler’s Formula and the inequality t ≤ ν1/3, we have:

0 ≥ 6 +
2

3
ν1 − ν2 − a + c − 2d.
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By assumption, a − c ≤ 4 − d and d ≤ 2, and therefore

0 ≥ 2 − d +
2

3
ν1 − ν2 ≥ 2

3
ν1 − ν2. (1)

Since ν0 ≥ 4 and no edge is incident with more than one 3-covalent face, there exists
a face of covalence at least 4. Thus

3ν2 <
∑

f∈FY

ρ∗(f) = 2ν1,

contrary to inequality (1).

Notation. Let Bx be a concentric B-diagram of a map X . Given any two vertices
v1 and v2 of Ur, r ≥ 1, dr(v1, v2) will denote the distance in 〈Ur〉 between v1 and v2

and Ur[v1, v2] will denote a v1v2-path in 〈Ur〉 of length dr(v1, v2).

One of our main results will also require the following technical lemma.

Lemma 3.2. Let X ∈ G5,3+ and suppose that Bx is a concentric B-diagram of X
with center x. Suppose also that each vertex of Bx has at most two lower neighbors.
Then on every 〈Uj〉, between any pair of vertices with exactly two lower neighbors
each lies a vertex with no lower neighbors.

Proof. Let X ∈ G5,3+ and assume Bx satisfies the hypotheses of the lemma. (It is
necessary at this point to postulate that each vertex has at most two lower neighbors.
However, we will prove in Theorem 4.1 that this condition always holds for maps
in G5,3+.) Note that this implies that every vertex has at least one upper neighbor.
We first show that if a vertex v ∈ Uj has exactly two lower neighbors w and z, then
these three vertices induce the boundary of a 3-covalent face of X . Were this not
the case, then consider the circuit C consisting of [v, w],[v, z] and the wz-path in
〈Uj−1〉 chosen so that x is exterior to C . By assumption, the interior of C must
contain at least one vertex and both 〈Uj−1〉 and 〈Uj〉 are circuits. Thus this interior
vertex cannot be in Uj−1 or Uj. However, if this vertex is in Uj+1 then 〈Uj+1〉 is not
connected, also a contradiction.

We proceed by double induction on r and k := dr(u, v), where both u and v are
in Ur and each has exactly two lower neighbors. Since U1 contains no vertices with
two lower neighbors, our claim holds vacuously when r = 1.

Suppose that s is the least integer such that Us contains a pair u, v of adjacent
vertices (i.e., k = 1) such that each has exactly two lower neighbors. Thus s ≥ 2.
We may assume that u and v have no common lower neighbor v′; otherwise the edge
[u, v′] would be incident with two 3-covalent faces, violating the definition of G5,3+.
Thus u and v have adjacent lower neighbors, u′ and v′ , respectively. Since u′ and v′

each have exactly one upper neighbor, each has exactly two lower neighbors, contrary
to the minimality of s. Hence there are no adjacent vertices on Ur both of which
have two lower neighbors, proving the claim for k = 1 and all r ≥ 1.
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To continue the inductive proof, assume that for some integer k ≥ 1 and any
r ≥ 2, if u and v are both vertices with exactly two lower neighbors satisfying
dr(u, v) ≤ k, then Ur[u, v] contains a vertex with no lower neighbors.

Suppose for some r ≥ 2 that dr(u, v) = k + 1. Let u′ and v′ be the lower-
neighbors of u and v, respectively, such that the path Ur−1[u

′, v′] contains no other
lower neighbors of u or v.

Suppose that u′ = v′, and let w be the level neighbor of u in Ur[u, v]. By the
induction hypothesis, w has at most one lower neighbor. If indeed w had a lower
neighbor, then its lower neighbor would be u′ and the edge [u, u′] would be incident
with two 3-covalent faces, contradicting the definition of G5,3+. Thus w has no lower
neighbor.

Figure 2: The inductive step in the proof of Lemma 3.2.

If d(u′, v′) = 1, then by the foregoing argument, we may assume without loss of
generality that u′ has at most one lower neighbor. Thus u′ has at least two upper
neighbors u and t such that no other upper-neighbor of u′ lies in Ur[u, t] (see Figure
2). Consider the unique face f in Fr incident with [u, u′] and [u′, t]. If f were 3-
covalent, then [u, u′] would be incident with two 3-covalent faces. Thus f must be at
least 4-covalent, and therefore u has a level-neighbor in Ur[u, t] which has no lower
neighbor.

Now suppose that dr−1(u
′, v′) ≥ 2 and that every vertex of Ur[u, v] has at least

one lower neighbor. By the induction hypothesis, each nonterminal vertex of Ur[u, v]
has exactly one lower neighbor. There are two possibilities: either dr−1(u

′, v′) = k+1
and the set of edges with one endpoint in each of Ur[u, v] and Ur−1[u

′, v′] determines
a perfect matching between the sets of vertices in these paths, or dr−1(u

′, v′) < k+1.

Suppose that the first possibility holds. Consider w, the level neighbor of u in
Ur[u, v]. Its unique lower neighbor w′ is a level neighbor of u′. Since w′ has only
one upper neighbor, it must have exactly two lower neighbors. However, u′ also has
exactly one upper neighbor and so it, too, has two lower neighbors, a contradiction.

Finally suppose dr−1(u
′, v′) < k + 1. By assumption, all vertices of Ur[u, v] have

lower neighbors. Thus if u′ had more than one upper neighbor, [u′, u] would be
incident with two 3-covalent faces, and similarly for v′. Thus both u′ and v′ must
have two lower neighbors, and by the induction hypothesis, Ur−1[u

′, v′] contains a
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vertex z with no lower neighbors. Since ρ(z) ≥ 5, z must have at least three upper
neighbors in Ur[u, v]. However, if all vertices of Ur[u, v] had lower neighbors, then
z and three of its upper neighbors would induce a pair of adjacent 3-covalent faces.
Hence Ur[u, v] must contain a vertex with no lower neighbors.

4 Main Results

We are now ready to state and prove the first of our two main results, the second
being obtainable from the first via a duality argument.

Theorem 4.1. All B-diagrams and all B∗-diagrams of a map in G6,3 ∪ G5,3+ satisfy
the following two conditions:

1. They are concentric: thus every map in G6,3 ∪ G5,3+ is uniformly concentric.

2. Every vertex in Ur or U ∗
r has at most two lower neighbors.

Proof. We will use induction to prove that properties (1) and (2) hold simultaneously.
Intuitively, B-diagrams and B∗-diagrams of the same map should differ only locally
(near the center), and should have many of the same properties elsewhere. Thus we
investigate separately what happens near the centers of the two kinds of diagrams,
and then examine them simultaneously when considering what happens away from
the center.

Let X ∈ G6,3 ∪ G5,3+ and let Bx be a B-diagram of X with center x. For r ≥ 1,
let A(r) denote the two-fold proposition that 〈Ur〉 is a circuit and that every vertex
in Ur has at most two lower neighbors.

Clearly every vertex in U1 is incident with at most one vertex (namely x) in U0.
Since all valences and covalences are finite and at least 3, 〈U1〉 contains a circuit C
such that x is the only vertex interior to C and the edges interior to C are exactly
those incident with x. Suppose 〈U1〉 also contains an edge [v, w] not in C. Let S
denote the vw-subpath of C such that the circuit S ∪ [v, w] does not contain x in its
interior. S has length at least 2. Let Y denote the submap consisting of the circuit
S ∪ [v, w] together with its interior. We then have ρY (v) ≥ 2 and ρY (w) ≥ 2.

If X ∈ G6,3, then all nonterminal vertices of S are at least 5-valent in Y . Since
S contains at least one nonterminal vertex, |V Y | ≥ 6. By Lemma 3.1(1), Y cannot
exist.

If X ∈ G5,3+, then all nonterminal vertices of S are at least 4-valent in Y . All
interior vertices of Y are at least 5-valent. Since S contains at least one non-terminal
vertex, it follows that |V Y | ≥ 5. By Lemma 3.1(3), such a map cannot exist. Thus
A(1) holds.

Let X ∈ G6,3 ∪ G5,3+ and let B∗
f be a B∗-diagram of X with center f . For r ≥ 1,

let B(r) denote the two-fold proposition that 〈U ∗
r 〉 is a circuit and that every vertex

in U ∗
r has at most two lower neighbors.
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Clearly, the vertices in U ∗
1 have no lower neighbors. Since all covalences are finite,

the boundary ∂f of f is a circuit and is contained in 〈U ∗
1 〉. Suppose 〈U ∗

1 〉 also contains
an edge [t, u] not in ∂f . Let R denote the tu -subpath of ∂f such that the circuit
R∪ [t, u] does not contain f in its interior. R has length at least 2. Let Z denote the
submap consisting of the circuit R ∪ [t, u] together with its interior. We then have
ρZ(t) ≥ 2 and ρZ(u) ≥ 2.

If X ∈ G6,3, then Lemma 3.1(1) implies as above that Z cannot exist. If X ∈ G5,3+,
then Lemma 3.1(3) again implies that Z cannot exist, establishing B(1).

The remainder of the proof is identical for B-diagrams and B∗-diagrams. To
avoid repetitious notation, each time we refer to Ur, Fr, etc., one may substitute the
corresponding notation for B∗ -diagrams (U ∗

r , F ∗
r , etc.).

For some r ≥ 1 assume A(j) (respectively B(j)) holds for 1 ≤ j ≤ r. Suppose
that z ∈ Ur+1 has more than two lower neighbors. Since 〈Ur〉 is a circuit, it is possible
to choose three lower neighbors v, u and w of z such that the following two conditions
are satisfied: (i) 〈Ur〉 contains a vw-path T which includes u, v and w but no other
neighbor of z, and (ii) the center (x or f , respectively) of the diagram lies outside of
the circuit [v, z]∪ [z, w]∪ T . Let L be the submap consisting of this circuit together
with its interior. Clearly ρL(v) ≥ 2, ρL(w) ≥ 2, and ρL(z) ≥ 3.

If X ∈ G6,3, then by the induction hypothesis, any vertex of T other than v or w
must be at least 4-valent in L. By Lemma 3.1(1) this submap cannot exist.

If X ∈ G5,3+, then by the induction hypothesis, any nonterminal vertex of T
must be at least 3-valent in L. Let T ′ denote the set of non-terminal vertices of T .
By Lemma 3.2, the number of vertices in T ′ with exactly two lower neighbors may
exceed the number of vertices in T ′ with no lower neighbors by at most one. The
latter type of vertex is at least 5-valent in L and the former is at least 3-valent in L,
contrary to Lemma 3.1(4). We conclude that every vertex in Ur+1 has at most two
lower neighbors.

It remains to show that 〈Ur+1〉 is a circuit. Once again let z ∈ Ur+1; thus z has
at most two lower neighbors.

If z has zero lower neighbors, then z is incident with a unique face f ∈ Fr+1 and
two edges e1, e2 ∈ E〈Ur+1〉 which are also incident with f . Otherwise z is incident
with distinct faces f1, f2 ∈ Fr+1 and distinct edges e1, e2 ∈ E〈Ur+1〉 incident with f1

and f2, respectively. Let z′ be any other vertex in Ur+1 which is not incident with e1

or e2. Define e′1, e
′
2, f

′, f ′
1, and f ′

2 in the same way with respect to z′ as the unprimed
symbols are defined with respect to z.

We suppose that an edge e3 joins z to z′ and derive a contradiction from this
assumption.

Let w and w′ denote the endvertices of ei and e′j other than z and z′, respectively,
for some i and some j in {1, 2}. Suppose fi and f ′

j are incident with a common vertex
v ∈ Ur+1. Let W denote the submap consisting of the circuit Ur+1[z, z′] ∪ e3 and its
interior (where v lies on Ur+1[z, z′]). Clearly ρW (z) ≥ 2 and ρW (z′) ≥ 2. If X ∈ G6,3,
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then ρW (v) ≥ 4 and all other vertices of Ur+1[z, z′] are at least 6-valent in W . If
X ∈ G5,3+ then ρW (v) ≥ 3 and all other vertices of Ur+1[z, z′] are at least 5-valent
in W . By Lemma 3.1(1,3), W cannot exist. Thus fi and f ′

j are not incident with a
common vertex of Ur+1.

(In the following construction, in the case where z or z′ has no lower neighbors,
respectively substitute f for fi or fj , or substitute f ′ for f ′

i or f ′
j.)

Construct a zz′-path P in 〈Ur ∪ Ur+1〉 as follows (see Figure 3):

Figure 3: A zz′-path in 〈Ur ∪ Ur+1〉.

Exit z via ei and continue along the boundary ∂fi of fi to Ur. By Lemma 3.1(1,3)
z and z′ are not incident with the same face in Fr+1; therefore z′ is not encountered
before Ur. Leaving ∂fi, continue along 〈Ur〉 to ∂f ′

j , then, leaving 〈Ur〉, continue
along the boundary of f ′

j to e′j to z′. It is possible to have chosen i, j ∈ {1, 2} and
the directions around the boundaries of the faces fi and f ′

j so that x, f1, f2, f
′
1, and

f ′
2 all lie outside of the circuit P ∪ e3. Let M be the submap of X consisting of this

circuit together with its interior, and let y and y′ (not necessarily distinct) be the
vertices in ∂fi and ∂f ′

j which lie on P ∩ 〈Ur〉.
Since fi and f ′

j are not incident with a common vertex in Ur+1, their boundaries
are disjoint except possibly for the single vertex y = y′. We see that z, z′, y and
y′ are at least 2-valent in M , and w 	= w′. If X ∈ G6,3 then ρM(w), ρM(w′) ≥ 6.
By the induction hypothesis and Lemma 3.1(2), such a map M cannot exist. If
X ∈ G5,3+ then ρM(w), ρM(w′) ≥ 5 and we can apply Lemma 3.2 to the nonterminal
vertices of P ∩ 〈Ur〉 to conclude that the number of vertices with exactly two lower
neighbors (which are at least 3-valent in M) and the number of vertices with no
lower neighbors (which are (≥ 5)-valent in M) satisfy the hypotheses of Lemma
3.1(5). Thus M cannot exist and z has exactly two level neighbors.

It follows that the underlying graph of 〈Ur+1〉 is the union of one or more disjoint
circuits. It suffices to show that 〈Ur+1〉 is connected. If not, then 〈Ur+1〉 would consist
of at least two disjoint circuits which partition the plane into at least three regions.
Since X is 1-ended, exactly one of these regions contains an infinite submap of X .
By assumption, all covalences are finite, and by definition, 〈Ur+1〉 separates x from
Uj for all j > r + 1. Thus there is a region containing the finite connected submap
〈⋃r

i=0 Ui〉. Hence there is another region which, together with its boundary (one of
the disjoint circuits making up 〈Ur+1〉), is a finite component W of 〈⋃∞

i=r+1 Ui〉. Since
W is finite, there exists a largest value r̂ of r such that V W ∩Ur̂ 	= ∅. However, then
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no vertex in V W ∩Ur̂ has any upper neighbors (because V W ∩Ur̂ is separated from
Ur̂+1 by 〈Ur+1〉), giving a contradiction, and 〈Ur+1〉 is connected. By this inductive
argument, both Bx and B∗

f are concentric.

We use the dual relationship between B-diagrams of maps and B∗-diagrams of
their planar duals to show that the maps in G3,6 and G3+,5 are also uniformly con-
centric.

Corollary 4.2. All B-diagrams and all B∗-diagrams of a map in G3,6 ∪G3+,5 satisfy
the following:

1. They are concentric: thus every map in G3,6 ∪ G3+,5 is uniformly concentric.

2. Every vertex in Ur or U ∗
r has at most one lower neighbor.

3. Every face in Fr or F ∗
r is incident with at most two edges of 〈Ur−1〉 or 〈U ∗

r−1〉.

Proof. Any map Z ∈ G3,6 ∪G3+,5 is the dual of a map X ∈ G6,3 ∪G5,3+. By Theorem
4.1, a labeling of a concentric B-diagram Bx of X corresponds to a labeling of a
concentric B∗-diagram Bf of Z. In particular, x corresponds to the face f , the faces
in Fr become the vertices in U ∗

r , and the vertices in Ur become the faces in F ∗
r+1.

Since X is uniformly vertex-concentric and these diagrams are uniquely determined
by their centers, every B∗-diagram of Z is concentric, and so Z is uniformly face-
concentric.

Similarly, since X is uniformly face-concentric, a labeling of a concentric B∗-
diagram B∗

g of X corresponds to a labeling of a concentric B-diagram Bw of Z where
g corresponds to w, the vertices in U ∗

r correspond to the faces in Fr, and the faces
in F ∗

r correspond to the vertices in Ur−1. It follows similarly that Z is uniformly
concentric.

Since, by Theorem 4.1, all B-diagrams and all B∗-diagrams of X have the prop-
erty that each vertex has at most two lower neighbors, every such vertex has at least
one upper neighbor. Hence no face in Fr or F ∗

r can be incident with more than one
edge of 〈Ur−1〉 or 〈U ∗

r−1〉, respectively. Thus, given a B-diagram of X ∈ G6,3∪G5,3+, if
g ∈ Fr then the corresponding vertex in the dual map (labeled as a B∗-diagram) has
at most one lower neighbor. The argument proceeds similarly given a B∗-diagram of
X .

Niemeyer and Watkins [6] have shown that every map in G4,4 is uniformly vertex-
concentric. However, since G4,4 is closed with respect to planar duality, we have the
following result:

Corollary 4.3. Every map in G4,4 is uniformly concentric.
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5 Concluding Remarks

Are the foregoing results best-possible? Theorem 4.1 fails if the map is assumed to
be in G5,3\G5,3+. For example, the 5-valent tessellation of the plane shown in Figure 4
is neither uniformly vertex-concentric nor uniformly face-concentric. A B∗-diagram
of this map is concentric if the central face is 4-covalent but not if the central face is
3-covalent.

Figure 4: A map in G5,3 which is not uniformly concentric.

What can be said about the infinite maps in G4,3, G3,4, or G3,3? Some necessary
conditions for uniform concentricity of maps in these classes are presented below.

Theorem 5.1. If an infinite planar map X admits any of the following configura-
tions, then it is not uniformly concentric:

1. a 3-valent vertex incident with a 3-covalent face;

2. a 4-valent vertex incident with two nonadjacent 3-covalent faces;

3. an edge incident with two 3-valent vertices and two 4-covalent faces;

4. a 4-covalent face incident with two nonadjacent 3-valent vertices;

5. an edge incident with two 4-valent vertices and two 3-covalent faces.

Proof. Suppose that X is an infinite uniformly concentric map. By Proposition 2.1,
X is 3-connected.

(1) Let z be a 3-covalent vertex incident with a 3-covalent face g. Let u and v
be the other two vertices incident with g, and let f be the other face incident with
edge [u, v]. We show that B∗

f is not concentric.

Clearly u, v ∈ U ∗
1 and g ∈ F ∗

2 . If z ∈ U ∗
1 , then 〈U ∗

1 〉 contains edges [u, z] and [v, z]
not in ∂f . Hence z ∈ U ∗

2 . But then z has at most one neighbor in U ∗
2 , and so 〈U ∗

2 〉
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is not a circuit.

(2) Let z be a 4-valent vertex, and let g1 and g2 be nonadjacent 3-covalent faces
incident with z. For i = 1, 2, let ui and vi be the other two vertices incident with gi.
Let f be the other face incident with edge [u1, v1]. We again show that B∗

f is not
concentric.

As in (1), we have u1, v1 ∈ U ∗
1 , g1 ∈ F ∗

2 , and similarly we obtain that z ∈ U ∗
2 .

Since 〈U ∗
2 〉 is a circuit, it must contain the neighbors u2, v2 of z. But since g2 is 3-

covalent, the edge [u2, v2] exists and lies in 〈U ∗
2 〉, which therefore cannot be a circuit.

(3) Let X contain an edge whose incident vertices v1 and v2 are 3-valent and
whose incident faces g and h are 4-covalent. Let u1 and u2 be the other vertices
incident with g, and let f be the other face incident with edge [u1, u2]. If B∗

f were
concentric, then we would have g ∈ F ∗

2 and [v1, v2] ∈ 〈U ∗
2 〉. Since v1 and v2 are

3-valent and 〈U ∗
2 〉 must be a circuit, two other edges incident with h, say [v1, w1] and

[v2, w2] must also be in 〈U ∗
2 〉. But then the fourth edge [w1, w2] incident with h is in

〈U ∗
2 〉 as well, and 〈U ∗

2 〉 is exactly the boundary of h. It follows that either X is finite
or {v1, v2} is a separating set, giving a contradiction.

(4) If X satisfies the conditions of (4) then X∗ satisfies the conditions of (2).
Hence X∗ is not uniformly face-concentric, and so X is not uniformly vertex-
concentric.

(5) This is the dual situation of (3).

If X satisfies any of the first three conditions of this theorem and if y is any vertex
incident with f other than the vertices already named, then it is easy to verify that
By is not concentric, i.e., X is neither uniformly vertex-concentric nor uniformly
face-concentric. We do not know whether X is uniformly face-concentric when X
satisfies conditions (4) or (5), even though they are dual to conditions (2) and (3),
respectively.
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