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Abstract

There are many results on edge-magic, and vertex-magic, labellings of
finite graphs. Here we consider magic labellings of countably infinite
graphs over abelian groups. We also give an example of a finite connected
graph that is edge-magic over one, but not over all, abelian groups of the
appropriate order.

1 Introduction

Throughout this paper, G is a graph, and V and E are the sets of vertices and edges
of G, with cardinalities |V | and |E|, respectively. We shall assume throughout that
E �= ∅, and we let |G| = |E|+ |V |. Briefly, a labelling λ of a finite graph is a function
that attaches distinct integers to the edges and (or) the vertices of the graph, and
different algebraic constraints on λ correspond to different types of labelling. There
are many ways to label graphs; indeed, according to Gallian [2], “over the past three
decades in excess of 500 papers have spawned a bewildering array of graph labeling
methods”.

Let E(v) be the set of edges that have a vertex v as an end-point, and V (e) the
pair of distinct vertices that are the end-points of the edge e (for simplicity, we shall
exclude graphs with loops, that is with edges whose two end-points coincide). Then
an edge-magic total labelling of a graph G is a bijection λ from E∪V to {1, 2, . . . , |G|}
such that the weight

ω(e) = λ(e) +
∑

v∈V (e)

λ(v) (1.1)

of an edge e is the same for all edges. Likewise, λ is a vertex-magic total labelling if
the weight

ω(v) = λ(v) +
∑

e∈E(v)

λ(e) (1.2)

of a vertex v is the same for all vertices. In each case, the constant value of the
weight is called the magic constant of the labelling. The notion of an edge-magic
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total labelling was introduced by Kotzig and Rosa in 1970 [4], and the vertex-magic
total labellings were introduced in 1999 by MacDougall, Miller, Slamin and Wallis
[5]. For a recent survey on edge-magic, and vertex-magic, finite graphs, see [8].

A labelling of a graph G attaches values to the vertices and edges of G, and these
values lie in some set L which we call the set of labels. It is clear that in order to
define any of the standard labellings of graphs it is only necessary to assume that
L supports some associative and commutative binary operation, and the insistence
that the set of labels should be {1, . . . , |G|} seems to be more in recognition of their
origins in magic squares than for any deeper mathematical reason. Moreover, any
attempt to generalize these ideas to the labelling of infinite graphs by the positive
integers will necessarily fail. For this reason alone, it seems preferable to seek other
sets of labels. Diana Combe has recently introduced and studied labellings over finite
abelian groups [1], and once this step has been taken it is natural to seek labellings of
infinite graphs with labels in an infinite group. As far as I know, such a study has not
been made before, and in this paper we shall undertake a preliminary investigation
into magic labellings of infinite graphs over abelian groups. The natural starting
point seems to be to try to label countably infinite graphs by the additive group Z

of integers, and most of this paper is on this topic. It is worth noting that if a finite
graph G has an edge-magic labelling with labels 1, . . . , |G|, then it automatically has
an edge-magic labelling with labels in the cyclic group of order |G|; thus, in this
sense, the earlier ideas of edge-magic labellings are subordinate to the labellings over
abelian groups. However, many new questions arise, and the labelling of a graph over
a group seems to depend on some type of compatibility between the combinatorics
of the graph and the relations within the group. For these (and other) reasons, we
suggest that the labelling of graphs by abelian groups is more natural than the more
traditional forms of labelling. Moreover, by studying labellings over abelian groups
we may possibly gain more insight into the number theoretic criteria that occur in
certain results in this topic.

In Section 2 we introduce some terminology, assumptions and definitions. In
order to give the reader some familiarity with these ideas we devote Section 3 to
some examples of labellings (and non-labellings) of finite graphs over finite groups. In
Section 4 we discuss infinite graphs. We are going to construct edge-magic labellings
of infinite graphs over the additive group Z of the integers, and the technique that
we use is (very roughly) analogous to the construction of harmonic functions on a
non-compact surface. This construction is based on an exhaustion of a non-compact
surface by an increasing sequence of compact sets; in our analogy, finite graphs
correspond to compact sets, and we shall view an infinite graph as the limit of an
increasing sequence of finite graphs. If we pursue this analogy still further, it suggests
that the magic-labelling of infinite graphs may actually be easier than that of finite
graphs, and this is consistent with our results. For example, there is an unsolved
conjecture that all finite trees can be given an edge-magic total labelling [2], [6]. We
shall show (among other things) that every countably infinite tree that contains an
infinite path supports an edge-magic total labelling over Z.

Section 5 contains two examples. In the first of these we show that the semi-
infinite path supports uncountably many bijective edge-magic Z-labellings, and this
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example embodies (in its simplest form) the main idea in this paper. The proof of our
main result on edge-magic infinite graphs is given in Section 6. This paper presents
a technique rather than a complete, formal result, and in Section 7 we illustrate
this technique by giving a proof of the existence of edge-magic labellings of certain
countably infinite trees. We extend these ideas still further in Section 8, and our
investigations raise several open questions which we discuss in Section 9. Finally, in
Section 10, we end with a brief discussion of vertex-magic countably infinite graphs.
I am grateful to Diana Combe for introducing me to this subject.

2 Definitions and assumptions

Throughout this paper we shall restrict ourselves to those graphs that have at most
one edge joining any two vertices of G (that is, graphs with no multi-edges), and we
have already excluded graphs with loops. If the vertices u and v are the end-points
of a single (unique) edge, this edge is denoted by [u, v] or [v, u]. It is convenient
to modify the usual terminology for labellings. Our definitions are based on the
standard definitions, but we find it more convenient to address each of the properties
of the labelling map λ separately. Let G be a graph (possibly infinite, and not
necessarily connected), and Γ an abelian group. A Γ-labelling of G, or a labelling
of G over Γ, is simply a map λ : E ∪ V → Γ, so it is clear what is meant by an
injective, surjective, or bijective, Γ-labelling of G. The definitions of edge-magic, and
vertex-magic, Γ-labellings of a graph are exactly as described above in (1.1) and
(1.2), and these apply whether or not λ is injective, surjective or bijective. Here, we
are considering Γ as an additive group, but we can (and shall) also consider Γ to
be a multiplicative group if we make the obvious modifications to (1.1) and (1.2).
Clearly, the existence (or otherwise) of an edge-magic, or a vertex-magic, labelling
of a graph depends only on the isomorphism class of the group.

Given a general graph G, the sets V or E may be uncountable. Naturally, we say
that G is finite if and only if E ∪ V is finite, and that G is countably infinite if and
only if E ∪ V is countably infinite. Clearly, for a bijective Γ-labelling of a graph G
to exist, Γ and G must have the same cardinality. The main thrust of this paper is
to find those countable graphs that have a bijective edge-magic Z-labelling.

The degree of a vertex v is |E(v)|, and we say that the vertex has degree ℵ0

when this set is countably infinite. If G is countable then E is countable, so that
the degree of each vertex is at most ℵ0. Conversely, if each degree is at most ℵ0,
and if G is connected, then, as every vertex can be reached from any given vertex
by a finite chain of edges, we see that V is countable. Thus a connected graph G
with no multi-edges is countable if and only if the degree of each vertex is at most
ℵ0. It is known that a connected graph G is infinite if and only if it contains a semi-
infinite path, a doubly-infinite path, or an infinite star as a subgraph ([7], p.130).
In particular, an infinite connected graph in which every vertex has finite degree
contains a semi-infinite path.
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3 Finite graphs

Throughout this section we shall only consider finite graphs. We shall use Γn for the
generic cyclic group of order n. If a finite graph G has an edge-magic total labelling,
then this labelling induces an edge-magic labelling over the cyclic group Γn, where
|G| = n. In particular, if G does not have a Γn-labelling, then it does not have an
edge-magic total labelling. We now give some examples.

Example 3.1 This example is taken from [1]. For every n, n ≥ 1, the graph that
is the star with n spokes is edge-magic over any group of order 2n + 1. Indeed, a
group of odd order cannot contain an element of order two (by Lagrange’s Theorem)
so a group of order 2n+1 can be written as {e, g1, g

−1
1 , . . . , gn, g

−1
n }. We may take G

to have vertices at 0 and at the n-th roots of unity ωk, k = 1, . . . , n (in the complex
plane), and edges [0, ωk], and the labelling is defined by λ(0) = e, λ(ωk) = gk and
λ([0, ωk]) = g−1

k . �

Example 3.2 The complete graph K4 (the skeleton of a tetrahedron) is not edge-
magic over the cyclic group of order ten. Let Γ be the cyclic group of order ten,
and suppose that K4 has a labelling over Γ10 that is generated, say, by g. We let
the magic constant be gt, and we suppose that the product of the vertex labels is
gs. The product over all group elements is g5 so, by considering the product of the
weights of all six edges, we see that g6t = g2s+5. As 6t − (2s + 5) is odd, 6t is not
congruent to 2s + 5 modulo 10, so that such a labelling is not possible. This shows,
incidentally, that K4 has no edge-magic total labelling in the earlier sense (see [8],
p.19). �

Example 3.3 The graph P2 ∪ P2 (with V = {0, 1, 2, 3} and E = {[0, 1], [2, 3]}) is
not edge-magic over the cyclic group of order six. Indeed, if this graph is edge-
magic over Γ6, then there are choices of aj such that {a1, . . . , a6} = {0, 1, 2, 3,
4, 5} and a1 + a2 + a3 = a4 + a5 + a6 modulo 6. This cannot be so as one side
of this equation is odd, and the other even. �

Example 3.4 The complete graph K3 with V = {u, v, w} and E = {[u, v], [v, w],
[w, u]} has an edge-magic total labelling λ with λ(u) = 1, λ(v) = 2, λ(w) = 3 and
magic constant 9. �

Example 3.5 This is an interesting example of a graph G that is edge-magic over
some, but not all, abelian groups of order eight. The graph G is illustrated in Figure
1 with the vertices labelled a, b, c and d, and the edges labelled p, q, r and s.

Now there are three abelian groups of order eight, namely Γ8, Γ2 × Γ4, and
Γ2 × Γ2 × Γ2, and we shall show that G is edge-magic over the first two of these
groups, but not over the third. First, G has an edge-magic total labelling with magic
constant 11, namely (a, b, c, d) = (3, 1, 2, 4) and (p, q, r, s) = (7, 8, 5, 6). It follows
from this that G has an edge-magic labelling over Γ8.
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Figure 1

Next, we write Γ2 × Γ4 in the form {(−1u, iv : u = 0, 1; v = 0, 1, 2, 3}. Then there is
an edge-magic labelling over this group with labels given by a = (1,−1), b = (1, 1),
c = (1, i), d = (1,−i), and edge-magic constant (−1, 1). Finally, we show that G
does not have an edge-magic labelling Γ2 × Γ2 × Γ2. Suppose that such a labelling
exists with magic constant k. Then, by considering the product of the four edge
weights, and using the labels in Figure 1, we have

k4 = (apb)(bqc)(crd)(dsb) = (abcdpqrs)b2cd.

Now every element in Γ2 × Γ2 × Γ2 has order two, and the product of all group
elements is the identity e. Thus cd = e and hence c = d, which is a contradiction. �

It would be particularly interesting to find a finite graph that has an edge-magic
labelling over a non-cyclic group, but not over the cyclic group, of the appropriate
order (and hence no edge-magic total labelling). We have noted that if G has an
edge-magic total labelling then it has an edge-magic labelling over the appropriate
cyclic group. Is the converse true?

Some of the standard results on edge-magic total labellings hold in the context
of labelling by groups (see [1]), and we give just one (new) example of this here.
Let G be a finite graph that is edge-magic over the cyclic group Γn, where |V | = v,
|E| = e and e + v = n. Suppose that g generates Γn, and let the magic constant k
be gt. Next, let the j-th vertex have degree dj and label gaj . Then, by considering
the product of the weights of all edges, we have

(gt)e =
∏

j

g
(dj−1)aj

j g0+1+···+(n−1).

This implies that

te ≡
∑

j

(dj − 1)aj + 1
2
n(n − 1)

modulo n. Now suppose that each dj is odd and that e and v are even. Then n
(= e + v) is even, and 1

2
n(n − 1) is even. If we let n = 2q we see that q must be

even and we have proved the following result (see [8], Theorem 2.1, for a result of
this type with labels 1, . . . , n).

Theorem 3.6. Suppose that G is a finite graph, that |E| and |V | are even, and that
every vertex has odd degree. If G has an edge-magic labelling over a cyclic group
then |G| is divisible by 4.
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This result provides many examples of graphs that have no edge-magic labellings
over cyclic groups. It shows, for example, that the union of a p-star and a q-star has
no such labelling if p + q is even. It also shows that the skeletal graph of a pyramid
whose base is a q-gon, where q = 4m + 3 for some m, has no such labellings. These
applications generalize Examples 3.2 and 3.3.

Finally, let G be a graph with |G| = 2m, where m ≥ 3. We shall suppose that
|E| is even, and that among the vertices of G there are exactly two, say v1 and v2, of
even degree. Now suppose that G has an edge-magic labelling, with magic constant
k, over the m-fold product Γ = Γ2 × · · · × Γ2 of cyclic groups of order two. Then,
by considering the product of the weights of all edges, and using the fact that every
element of Γ has order two, we see that

k|E| =
( ∏

g∈Γ

g
)
λ(v1)λ(v2).

As |E| is even, k|E| is the identity e of Γ. Next, if write the elements of Γ in the form
(ε1, . . . , εm), where each εj is ±1, it is evident that the product of all elements in Γ
is e. Thus

λ(v1) = λ(v2)
−1 = λ(v2),

which is false. Thus we have proved the following result.

Theorem 3.7. Suppose that G is a finite graph with |G| = 2m, where m ≥ 3, and
that |E| even. Suppose also that among the vertices of G, exactly two have even
degree. Then G does not support an edge-magic labelling over the m-fold product of
cyclic groups of order two.

It is easy to construct, for each m ≥ 4, a graph of the type described in Theorem
3.7. Let r = 2m−2, so that r ≥ 4, and form a regular polygon with r sides, and r
vertices, say v1, . . . , vr. At each vertex vj we add a side, say [vj , v

′
j ]; this gives a ‘sun’

with r rays [vj , v
′
j ]. Now remove the ray [v1, v

′
1], and adjoin it to the vertex v′

2 and
let the resulting graph be G. Then |G| = 2m, |E| = 2r, and v1 and v′

2 are the only
vertices of even degree so that Theorem 3.7 is applicable to G.

In conclusion, we remark that the existence, or non-existence, of edge-magic
labellings of a graph G over a group Γ seems somehow to reflect the compatibility
(or otherwise) of the combinatorics of G with the relations that exist in Γ.

4 Infinite graphs

We want to consider an infinite graph as the limit of an increasing sequence of finite
graphs. Consider any sequence Gn of graphs, and let Vn and En be the sets of
vertices and edges, respectively, of Gn. The sequence Gn is increasing if, for each
n, Vn ⊂ Vn+1 and En ⊂ En+1. If Gn is increasing, we let G∞ be the graph whose
sets of vertices and edges are ∪nVn, and ∪nEn, respectively, and we write limn Gn for
G∞. It is clear that if each Gn is countable, connected and without multi-edges, then
so is limn Gn. The essence of our construction is to start with an infinite sequence
G′

1, G
′
2, . . ., of finite graphs, join them sequentially to form an increasing sequence
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{Gn} of finite graphs, and then obtain a bijective edge-magic Z-labelling of the limit
graph limn Gn.

The process of joining two graphs together will be called amalgamation, and
is as follows. Let G and G′ be any two graphs. We may assume that G and G′

have no common vertices or edges (for if they are not disjoint, we replace G′ by an
isomorphic copy G′′ that is disjoint from G, form the amalgamation of G and G′′,
and then revert back to G′). Select a vertex v of G and a vertex v′ of G′. Then
the amalgamation G#G′ of G and G′ is formed by taking the disjoint union of G
and G′ (the union of the two sets of vertices, and the two sets of edges) and then
identifying v with v′. If [v, v] is an edge of G and [v′, v′] is an edge of G′, we must
also identify these two edges (as otherwise, G#G′ will have multi-edges contrary to
our global assumptions). The graph G#G′ is the amalgamation of G and G′ across
v and v′. This process is a special case of the general construction of a ‘quotient’
graph which mimics the construction of quotient (and covering) spaces in topology
(see [3], Chapter 6). Given a graph G, suppose that R is an equivalence relation on
the set V (G) of vertices of G. Then the quotient graph G/R has vertex set V (G)/R
(so each that vertex of G/R is an equivalence class of vertices of G), and two vertices
of G/R are adjacent (that is, joined by an edge) if and only if each equivalence class
contains a vertex where these two vertices are adjacent in G. If G and G′ are disjoint
graphs, containing vertices v and v′, respectively, we may take their union and then
define the equivalence relation R on V (G) ∪ V (G′) by saying that each equivalence
class contains exactly one vertex except for the equivalence class {v, v′}.

Now let G′
1, G

′
2, . . . be an infinite sequence of graphs. We shall define a new

sequence Gn inductively by G1 = G′
1, and Gn+1 = Gn#G′

n+1 (the details of these
amalgamations will be given later). Then the sequence Gn is increasing, and, un-
der certain assumptions, we can construct, by induction, a bijective edge-magic Z-
labelling λ of limn Gn. The key step here is to show that any injective edge-magic
Z-labelling λn of Gn can be extended to an injective edge-magic Z-labelling λn+1

of Gn+1. Given this, we define a Z-labelling λ of limn Gn by λ = λn on Gn, and
the injectivity of λ follows directly from the injectivity of the λn. A quite different
technique is needed to ensure that λ : limn Gn → Z is surjective, and this will be
achieved (essentially) by making a completely unrestricted choice of one value of λn

for each n.

5 Two examples

In this section we give two examples of edge-magic labellings of infinite graphs. The
first example is a tree; the second is not.

Example 5.1: the semi-infinite path
Let G be the graph (in the complex plane C) whose vertices are at 0, 1, 2, . . ., and
whose edges are [0, 1], [1, 2] and so on. We shall now construct a bijective edge-magic
Z-labelling of G with magic constant zero. We need to list the integers in some way,
and we choose the listing

Z = {0, 1,−1, 2,−2, . . .}. (5.1)
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Let λ(0) = 0. Now let λ(2) = t, where t is to be determined shortly. To achieve our
objective we must define (for some s) λ(1) = s, λ([0, 1]) = −s and λ([1, 2]) = −t− s.
First, we select t to be the first integer in the list (5.1) that has not already been
allocated; thus λ(2) = 1. Next, we choose s so that the values taken by the functions
s, −s and −s − 1 are distinct from each other, and from any of the labels allocated
so far (namely, 0 and 2). The value s = 2 will suffice, so we have now defined

λ(0) = 0, λ([0, 1]) = −2, λ(1) = 2, λ([1, 2]) = −3, λ(2) = 1.

Next, we define λ(4) = p, say and λ(3) = q. We choose p to be the first integer in
the list (5.1) that has not yet been allocated; thus p = −1. We now choose q so
that the labels q, −q − 1 and 1 − q are distinct from each other and from the labels
that have been allocated so far. For example, q = −4 will suffice, and we have now
achieved the labelling illustrated in Figure 2.

0 12 −1−4
−2 −3 3 5

Figure 2

This process can now be continued indefinitely, where next we define the label
on 6, then (simultaneously) on 5, [4, 5], [5, 6]; then on 8, and so on. The labels
λ(2n) are always chosen to be the first integer in the list (5.1) that has not yet
been allocated, and this guarantees that the resulting map λ : G → Z is surjective.
By construction, λ is also edge-magic and injective. Note that in this construction
(and in many others) we have to make an infinite number of choices; thus there are
uncountably many ways to construct a bijective edge-magic Z-labelling of this graph.
This suggests that not all such labellings can be described by a simple algebraic rule,
nor need they have any symmetry. �

It is worthwhile to isolate the key ideas here. First, the edge-magic properties of
the labelling are guaranteed by the construction. In order to guarantee surjectivity
of the labelling we need an infinite supply of vertices that we can label without
constraint (except, of course, that the labels must not have already been allocated);
here these vertices are 0, 2, 4, . . .. The injectivity of the labelling depends on the fact
that given two linear distinct polynomials p1(s) and p2(s), and a finite set, say Z0,
of integers (the labels that have already been allocated), there is always a choice of
s such that the values p1(s) and p2(s) are distinct from each other, and from the
integers in Z0. We shall see that this part of the argument holds more generally, and
this will enable us to construct many edge-magic labellings of many other countably
infinite graphs.

Example 5.2
Let G be the infinite graph illustrated in Figure 3 and lying in C. The vertices are
at 0, 2, 4, . . ., and 1± i, 3± i, . . ., and the edges are as illustrated. We shall construct
a bijective edge-magic Z-labelling λ of G with edge-magic constant zero, and again
we use the listing (5.1).



MAGIC LABELLINGS OF INFINITE GRAPHS 125

Figure 3

Let λ(0) = 0; this is the first integer in the list (5.1). Next, let λ(2) be the
first integer in (5.1) that has not already been allocated; thus λ(2) = 1. We now
let λ(1 − i) = t and λ(1 + i) = s, where the parameters t and s are to be defined
shortly. In order to have edge-magic constant zero, we must label the first four edges
as follows:

λ([0, 1+i]) = −s, λ([1+i, 2]) = −s−1, λ([0, 1− i]) = −t, λ([1− i, 2]) = −t−1.
(5.2)

Now any value of s and t will suffice here provided only that the values t, −t, −1− t,
s, −s and −s− 1 are distinct, and have not already been allocated. This restriction
means that (s, t) in Z × Z has only to avoid some finite set of lines, and so any
one of an infinite number of values of t and s are available here. We now make any
admissible choice of s and t; in this case we take t = 2 and s = 4, and we have now
allocated labels as in Figure 4.

0
1

2

−4 −5

−3−2

4

Figure 4

The process continues by induction. Next, we let λ(4) be the first integer in (5.1)
that has not yet been allocated; thus λ(4) = −1. Then we let λ(3 − i) = p and
λ(3 + i) = q, and assign integers to the edges from the vertices 3 ± i so that these
edges have weight zero. We then choose p and q appropriately, and move on to define
λ(6). The process continues, and in this way we construct an injective Z-labelling λ
of G. Because at each stage we choose λ(2n) to be the first integer in the list (5.1)
that has not yet been allocated, λ : G → Z is surjective. �

The method that we are using here is more flexible than these two examples might
suggest. Consider, for example, the graph which begins in a manner illustrated in
Figure 5.
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Figure 5

In this case, we define λ(0) = 0, λ(2) = 1, λ(1 − i) = t and λ(1 + i) = s
as before, and then use the same values as in (5.2). In addition, we now need
λ([1 − i, 1 + i]) = −s − t. Once again, there are infinitely many choices of s and
t available, and we can now choose s and t so that these polynomials in s and t
take values that are distinct from each other, and from all integers that have been
allocated so far. Now consider the vertex 2 + i and the edge [2, 2 + i]. We allocate
a label m to the vertex 2 + i, and the label −1 − m to the edge [2, 2 + i] and then
choose m so that these values have not yet been allocated. Clearly this process can
be continued as before. �

There are two features of this extension of Example 5.2 that are worth noting.
First, this example provides an example of a polynomial attached to an edge, namely
−s− t, in more than one variable. Second, the inclusion of vertices of degree one (for
example, the vertex 2 + i) does not invalidate the technique.

6 The main result

We shall now exploit the ideas discussed above to obtain a general result on edge-
magic labellings. The main part of this argument is contained in the following lemma.

Lemma 6.1. Let λ0 be an injective edge-magic Z-labelling of a finite graph G0 with
magic constant zero. Let Z0 be the set of (integer) values taken by λ0 on G0, and
suppose that m ∈ Z\Z0. Now let G be any finite connected graph, and form an
amalgamated graph G0#G by identifying a vertex v of G with a vertex v0 of G0. If G
has a vertex u that is not joined by an edge in G to v, then λ0 extends to an injective
edge-magic Z-labelling λ of G0#G with magic constant zero and λ(u) = m.

Proof We have to construct an injective edge-magic map λ : G0#G → Z, with
magic constant zero, that satisfies λ = λ0 on G, and λ(u) = m. We therefore define
λ to have these values on G0 ∪ {v, u} (where v is now identified with v0). Now let
v1, . . . , vk be the vertices in G other than u and v (there is at least one such vj as u
and v are not joined by an edge in G, and G is connected). We define λ(vi) = mi,
where the mi are to be regarded as parameters (to be chosen shortly) and, finally, we
define λ on the unlabelled edges of G in such a way that the λ-weight of each edge
is zero. Now, for any choice of the parameters mi, this defines an edge-magic map λ
of G0#G into Z with magic constant zero, and with λ = λ0 on G, and λ(u) = m.

As there is no edge [u, v0] in G, each edge in G is of one of the forms [v0, vi], [vi, vj ]
(where i �= j) or [vi, u]. As these edges have been allocated weights −λ(v0) − mi,
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−mi − mj and −mi − m, respectively, we see that each edge e in G is labelled by
a non-constant linear polynomial pe(m1, . . . , mk) in the variables mi. Moreover, it
is clear that if e �= e′ then (as polynomials) pe(m1, . . . , mk) �= pe′(m1, . . . , mk). We
want to ensure that λ is injective and for this it suffices to choose the mi so that
(i) for each e, pe(m1, . . . , mk) /∈ Z0 ∪ {m}, and
(ii) for each e and e′, pe(m1, . . . , mk) �= pe′(m1, . . . , mk), when e �= e′.
Now the condition pe(m1, . . . , mk) ∈ Z0∪{m} is equivalent to the statement that the
lattice-point (m1, . . . , mk) in Z

k lies on one of a finite number of given hyperplanes
in R

k. Thus (i) holds if (m1, . . . , mk) is chosen to be in the complement of these
hyperplanes. A similar argument holds for (ii); thus there is some choice (in fact,
infinitely many choices) of (m1, . . . , mk) that makes the function λ : G0#G → Z

injective. �
We note that the ideas in this proof of Lemma 6.1 show that any finite graph G

(with no loops or multi-edges) supports an injective edge-magic Z-labelling λ with
magic constant zero. Indeed, for each vertex vi we let λ(vi) = mi, i = 1, . . . , |V |,
and we define λ on the edges of G so as to ensure that it is edge-magic with magic
constant zero. Thus each edge has a label of the form −mi−mj, and each label (on an
edge or a vertex) is a polynomial in the variables mi. Clearly these |G| polynomials,
say p1, . . . , p|G|, are distinct (as polynomials); thus each polynomial in the finite set
of polynomials of the form pi − pj is non-constant. We now select m1, . . . , m|V | so
that for i �= j,

pi(m1, . . . , m|V |) − pj(m1, . . . , m|V |) �= 0,

and the resulting labelling is injective, and edge-magic with magic constant zero.
We come now to the main theorem on edge-magic labellings. The proof of this

is by induction (using Lemma 6.1 together with the argument used in Example 5.1)
and is omitted.

Theorem 6.2. Let G′
n be an infinite sequence of finite, connected graphs (with no

loops or multi-edges). Let G1 = G′
1 and, for each n, let Gn+1 = Gn#G′

n+1, where
this is an amalgamation of the form described in Lemma 6.1. Then limn Gn has a
bijective edge-magic Z-labelling.

Theorem 6.2 can be generalized in the following way. We recall that after dis-
cussing Example 5.2, we showed how this could be modified by (in our new termi-
nology) amalgamating some graph Gn with a graph that consists of a single edge.
We can even make this modification infinitely often provided that there is an infinite
sequence of amalgamations of the type described in Lemma 6.1 (for it is this infinite
sequence that guarantees surjectivity). Thus we have the following result.

Theorem 6.3. Let G′
n be an infinite sequence of finite, connected graphs (with no

loops or multi-edges). Let G1 = G′
1 and, for each n, let Gn+1 = Gn#G′

n+1. Suppose
that for each n, G′

n+1 is a single edge, or that the amalgamation Gn#G′
n+1 is of the

form described in Lemma 6.1, and that this latter case occurs infinitely often. Then
limn Gn has a bijective edge-magic Z-labelling.

We end this section by showing that the results we have proved so far apply equally
well to any countably infinite abelian group Γ as they do to Z. Indeed, the argument
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holds in this more general case without change except for the last paragraph in the
proof of Lemma 6.1, and this can be generalized as follows.

Lemma 6.4. Let Γ be an infinite abelian group (written additively), and let Γ0 be a
finite subset of Γ. Consider, for m1, . . . , mk in Γ, the 3k − 1 non-trivial expressions
of the form

Lj(m1, . . . , mk) = aj1m1 + · · · + ajkmk,

where each aij is 1, 0 or −1. Then there exists a choice of m1, . . . , mk in Γ such that
no Lj(m1, . . . , mk) is in Γ0.

Proof It is convenient to define −Γ0 so that x ∈ −Γ0 if and only if −x ∈ Γ0. The
proof is by induction on k (for all choices of Γ0). First, the conclusion is obvious if
k = 1 for, regardless of Γ0, we need only select m1 to be outside of Γ0 ∪ (−Γ0).

Suppose now that the conclusion holds, for every finite subset Γ0, for k = 1, . . . , s.
Now consider the variables m1, . . . , mk, mk+1 and any finite subset, say Γ1, of Γ.
Choose any value of ms+1 that lies outside the finite set Γ1∪(−Γ1). By the induction
hypothesis we can now choose m1, . . . , ms such that, for each j, Lj(m1, . . . , ms) /∈ Σ,
where

Σ = Γ1 ∪
(
ms+1 + Γ1

) ∪ ( − ms+1 + Γ1

)
.

Now any linear form in the variables m1, . . . , ms+1 is of the form Lr(m1, . . . , ms) +
ams+1, where a is 1, 0 or −1. Obviously, in each of these cases, Lr(m1, . . . , ms) +
ams+1 /∈ Γ1, for otherwise, Lr(m1, . . . , ms) ∈ Σ contrary to our choice of m1, . . . , ms.
The proof is complete. �

We return to the more general version of Theorem 6.2. First, we consider the
situation described in Lemma 6.1, except that we are now seeking injective edge-
magic Γ-labellings. As before, we assign to each vertex vj a label mj, and to each
edge e of G an edge polynomial pe(m1, . . . , mk), where each such polynomial is of the
form −mi − mj, or of the form −mi − c, where c is in Γ. These polynomials are of
the form described in Lemma 6.4, so that we can (as before) choose the mi so that
the extended labelling is injective and edge-magic with magic constant zero.

7 Countably infinite trees

A tree is a connected graph that has no cycles of length three or more, and it is clear
that each tree is one (and only one) of the following four types:
(a) a finite tree;
(b) a countably infinite tree with each vertex of finite degree;
(c) a countably infinite tree with some vertex of degree ℵ0;
(d) a tree with a vertex of uncountable degree.
It is conjectured that each finite tree is edge-magic (in the sense described in Section
1), and we can also ask whether each finite tree supports an edge-magic bijective
Γ-labelling for some finite abelian group Γ. We shall show that every tree of type
(b), and some trees of type (c), support a bijective edge-magic Z-labelling.
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Theorem 7.1. Let G be a countably infinite tree that contains a semi-infinite simple
path. Then G supports a bijective edge-magic Z-labelling.

Proof Let G be a countably infinite tree that contains a semi-infinite simple path
P . We can think of G as limn Gn where the Gn are constructed by amalgamation
from a sequence G′

n as described in Theorem 6.3. In fact, we can take the G′
n here

to be either a single edge (the graph P2), or the graph formed by joining two edges
together at a vertex (the graph P3). We use the copies of P3 to build the semi-infinite
path P (much as in Example 5.1), and all other edges of limn Gn are obtained by an
amalgamation with a single edge. This completes the proof of Theorem 7.1 subject
to showing that even in the case when some, or all, all vertices of G have degree
ℵ0, we can still construct limn Gn by a sequence of amalgamations. In effect, this
means that we have to define the countable sequence of amalgamations in such a way
that when we wish to adjoin a P2-edge, say e, to the partially constructed graph,
this partially constructed graph already includes one vertex of e. We can do this
as follows. At each vertex of G we label the incident edges either by a sequence
1, 2, . . . , N (for the appropriate N) or by the sequence 1, 2, . . .. Choose a root vertex
v0. The graph G is connected, and for each vertex v there is a unique simple path
in G from v0 to v. Each vertex v (other than v0) can now be represented by a finite
sequence [n0, n1, . . . , nk−1], where n0 specifies the edge from v0, n1 specifies the edge
from v1, and so on, and nk−1 specifies the edge from vk−1 to v. We now build the
graph limn Gn inductively from a sequence of amalgamations as follows. We start
with the P3 graph from the root vertex that constitutes the initial segment of P .
Assuming we have constructed the graph at the n-th stage we consider each vertex
that lies in this partially constructed graph. Let v be such a vertex. If v is the
vertex at the end of a finite sequence of abutting P3-graphs that constitute an initial
segment of P , then we add the next P3-graph that lies in P . For all other possibilities
of v, we add the next edge according to the listing of the edges incident to v by the
integers nj as described above. This completes the proof of Theorem 7.1. �

Theorem 7.1 has the following corollary.

Corollary 7.2. Let G be a countably infinite tree in which every vertex has finite
degree. Then G supports a bijective edge-magic Z-labelling.

This follows directly from Theorem 7.1 and the following result.

Lemma 7.3. Let G be a tree in which every vertex has finite degree. Then either G
is finite, or G has an infinite simple path.

Proof We choose any vertex, say v0, of G. Suppose that G is infinite; thus there
exist infinitely many simple paths from v0 (namely one to each vertex). As there
are only finitely many edges leaving v0, there is one such edge, say [v0, v1], with
the property that there exist infinitely many simple paths that start with v0, v1. As
there are only finitely many edges leaving v1, the same reasoning shows that there
is a vertex v2 with the property that infinitely many simple paths that start with
v0, v1, v2. We can define a sequence vn inductively in this way, and this sequence
defines an infinite simple path from v0. �
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8 Further extensions

The technique described earlier depends on the notion of the amalgamation of two
graphs, and clearly this can be generalized in the following way. Let G and G′ be
two graphs, and let θ be a map of some set of vertices of G′ into the set of vertices
of G. We can then form the sum G + G′, and then identify each vertex in the
domain of θ with its image in G. It is not necessary for θ to be injective here, so
that distinct vertices of G′ may be identified with the same vertex in G (and hence
with each other). If two vertices, say u and v, of G′ are in the domain of θ then
(in order to avoid multi-edges) it is necessary to identify the edge [u, v] in G′ with
the edge [θ(u), θ(v)] in G should both of these edges exist. With this more general
notion of amalgamation available, it is possible to prove a still more general version
of Theorem 5.3. However, we shall be content with the following example.

Example 8.1 Consider the graph G (in R2) whose vertices are the points in the
set Z × Z, and whose edges are the segments [a, a ± 1] and [a, a ± i], where a ∈ V .
We claim that G supports a bijective edge-magic Z-labelling with magic constant
zero. We shall use complex notation, and we start with the graph G1 that is the
part of G that lies in the square [−1, 1] × [−1, 1]. We let λ(0) = 0 and λ(1 + i) = 1;
these are arbitrary choices. As these two vertices are not joined by an edge, we can
complete the definition of λ on G1 so that it is an injective edge-magic Z-labelling
of G1. Now let Cn be the cycle that is the boundary of the square [−n, n] × [−n, n],
and let G2 be the part of G that lies between (and includes) C1 and C2. We can
form the amalgamated graph G2 = G1 + G2 by identifying the boundary C1 of G1

with the inner boundary of G2, and as the vertex 2 + 2i is not joined by an edge
to any vertex in C1, we can extend λ to an injective edge-magic Z-labelling of G2.
The process continues by induction, and ultimately provides a bijective edge-magic
Z-labelling of G. It is clear that the same idea will work in any dimension, and for
many other tesselations. �

In the next example we consider uncountable graphs.

Example 8.2 The uncountable graph consisting of all edges [0, z], where |z| = 1,
has a trivial bijective edge-magic R-labelling λ, for we simply take a bijection θ :
{z : |z| = 1} → R

+ and let λ(0) = 0, and λ(z) = θ(z) and λ([0, z]) = −θ(z), where
|z| = 1. The graph obtained by adding the additional edge [1, 2] to this graph also
supports a bijective edge-magic R-labelling with magic constant zero. To see this, let
ϕ(x) = 2− x, where x is real, and note that x and ϕ(x) are symmetric with respect
to the fixed point 1 of ϕ. Now let λ(0) = −2. Then, for each ray [0, z], we must have
λ(z) = x and λ([0, z]) = ϕ(x) for some real x. This means that we must also have

{λ(0), λ([1, 2]), λ(2)} = {−2, 1, ϕ(−2)} = {−2, 1, 4}.

We can now construct the map λ as follows. Let λ(0) = −2, λ([1, 2]) = 1 and
λ(2) = 4. Next, for each ray [0, z], where |z| = 1, we let λ(z) = x and λ([0, z]) = ϕ(x),
where x now ranges over the real numbers excluding −2, 1, 4. Finally, we insist that
λ(1) = −5, and λ([0, 1]) = 7 and the construction is complete. �
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9 Some open problems

We raise the following questions.

(1) Are there any countably infinite graphs that do not support a bijective edge-
magic Z-labelling? In particular, is the complete graph K∞ (with V = Z and and
every pair of vertices joined by an edge) edge-magic over Z?

(2) Do all countably infinite trees support a bijective edge-magic Z-labelling?

(3) Which groups provide a bijective edge-magic labelling of some graph, and which
do not? The constructions given here can be carried out for the additive group of
rationals and indeed for any countably infinite abelian group Γ. To what extent (if
any) is the group structure of Γ relevant to the subject of labellings of graphs? More
generally, to what extent is any algebraic structure on the set L of labels relevant?
Could it be, for example, that one obtains more (or fewer) labellings if one assumes
that L has a certain algebraic structure (for example, a semi-group), and if so, what
are the structures that are best suited to labelling graphs?

(4) Which uncountable graphs support a bijective edge-magic labelling over some
abelian group?

10 Vertex-magic labellings

The ideas described above can also be used to construct vertex-magic labellings of
countably-infinite graphs, and we shall confine ourselves to just one example of this,
namely the binary tree. It will be clear, however, that the same technique works for
many other graphs.

Example 10.1: the binary tree
We shall construct a bijective vertex-magic Z-labelling of the binary tree (illustrated
in Figure 6) with magic constant zero.

First, we give the root vertex v0 the value zero. The two edges leaving it must
be given the values x and −x, and we take x = 1. Next, we label the two vertices
at a distance one from v0 using the integers 2 and −2 (the first two integers in (4.1)
that have not been used so far). We now label the (four) edges leaving these two
vertices by the parameters a, b, c, d (see Figure 6) where these must be chosen so that
a + b = −3 and c + d = 3. We can choose any integers satisfying these equations
provided only that they have not been used so far. We choose a = −3, b = 6,
c = −4 and d = 7. Next we move on and label the four vertices of level two; then
the edges emanating from these and so on. Using arguments much the same as in
the edge-magic case, we can now construct a bijective vertex-magic Z-labelling of G.

�
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