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Abstract

A 4-restricted edge cut is an edge cut of a connected graph which dis-
connects the graph, where each component has order at least 4. Graphs
that contain 4-restricted edge cuts are characterized in this paper. As a
result, it is proved that a connected graph G of order at least 10 contains
4-restricted edge cuts if and only if it contains no cut-vertex u where
every component of G \ u has order at most 3.

1 Introduction

All graphs considered in this paper are simple and connected with order at least 8.
When studying network reliability, one often considers a network model whose nodes
never fail but whose edges fail independently with equal probability. Let M be such
a kind of network, and denote by Ch the number of its edge cuts of size h. If M has
size e and edge failure probability p, then its reliability is

R(M, p) = 1 −
e∑

h=1

Chp
h(1 − p)e−h.

If one can determine all the coefficients Ch, then one can determine the reliability.
But, unfortunately, Provan proved in [1] that it is NP-hard to determine all these
coefficients. Employing super edge connectivity, Bauer [2] calculated the first λ
coefficients Ch, where λ is the edge connectivity of M . To estimate more precisely the
reliability, Esfahanian introduced the concepts of restricted edge cut and restricted
edge connectivity in [3].
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Definition 1.1 A restricted edge cut is an edge cut of a connected graph which
separates this graph into components without isolated vertices. Restricted edge
connectivity is the size of a minimum restricted edge cut.

With the properties of restricted edge cut and restricted edge connectivity, Li
determined the first λ2−1 coefficients Ch of circulant graphs in [4], where λ2 denotes
the restricted edge connectivity. As was pointed out by Esfahanian, the restricted
edge cut is also a useful tool for fault-tolerance analysis. But their results are fairly
approximate. For more accurate results, we generalized these concepts in [5].

Definition 1.2 An m-restricted edge cut, or simply an Rm-edge cut, is an edge cut
of a connected graph which separates this graph into components each having order
at least m. The size of an m-restricted edge cut of graph G is called its m-restricted
edge connectivity.

Denote by λm(G) the m-restricted edge connectivity of a graph G. Clearly,
a 2-restricted edge cut is the so-called restricted edge cut, and 2-restricted edge
connectivity is restricted edge connectivity. For networks with the topology of regular
graphs, Meng calculated the first λ3 − 1 coefficients in [6] with the properties of
3-restricted edge cut and 3-restricted edge connectivity; Wang proved in [7] that
networks with greater than 3-restricted edge connectivity and less than 3-restricted
edge cut are more reliable under some reasonable conditions. Since Rm-edge cut
and connectivity are important in their own right in the analysis of reliability and
fault-tolerance, they draw a lot of attention; so we suggest that the reader refers to
[8,9] for example. But so far no general criterion for the existence of an Rm-edge cut
has been found apart from m = 2, 3 for some special graphs [10]. In this paper, we
characterize those graphs that contain an R4-edge cut by presenting the following:

Theorem 3.4 Let G be a connected graph of order at least 8. Then G contains no
R4-edge cut if and only if G ∈ Fn,4 ∪ Ω8

4 ∪ Ω8
3 ∪ Ω9

3.

These four graph collections are defined in Definitions 2.5, 3.1, 3.2 and 3.3 respec-
tively. Before proceeding, we shall introduce some more symbols and terminology.
Write |S| for the cardinality of a set S or the order of a graph S. Let ε = |E(G)|
denote the size of a graph G and c(G) its circumference. For two disjoint subsets A
and B of V (G), or two disjoint subgraphs of G, we denote by [A, B] the set of edges
with one endpoint in A and the other in B. Let G\A denote the graph obtained by
removing all the vertices of A from G; we simplify [A, G \A] to I(A). When A is an
edge-set, G − A means deleting the edges of A from G but leaving their endpoints.
For a connected subgraph H of G, call every component of G\H a bridge of H, or
simply an H-bridge. If B is an H-bridge, we refer to the vertices of H adjacent to B
as the attachments of B. Write A(B) for the set of attachments of a bridge B. For
other symbols and terminology not explicitly stated, we follow [11].
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2 Preliminaries

We begin with an interesting combinatorial phenomenon, which is the basis of the
main result.

Lemma 2.1 If we arrange n + t boxes around a circle and put 2n balls into these
boxes in such a way that no box is empty, then there are some consecutive boxes
containing precisely n balls in total, where n ≥ t ≥ 1.

Proof Denote by f an arbitrary arrangement of the 2n balls into these boxes. Since
n ≥ t ≥ 1, we deduce from the pigeonhole principle that there are at least two boxes
in f containing exactly one ball each. Label one of these two boxes with the number
0, and label the remaining boxes clockwise with 1, 2, . . . , n+t−1, respectively. Write
f(m) for the number of balls in the box labelled m (simply Box m). Define

F (m) =
m∑

i=0

f(i), B(m) =
n+t−1∑

i=m

f(i) + f(0).

Let r and s be two integers in {0, 1, 2, ..., n + t − 1} such that

F (s) = max{F (m) : n ≥ F (m)}, B(r) = max{B(m) : n ≥ B(m)}.

Proposition A One of the following two statements is true.

1 F (s) = n or B(r) = n.

2 r = s + 2, n − 1 ≥ F (s), n − 1 ≥ B(r).

Suppose Statement 1 is not true in some arrangement f . According to the definitions
of F (s) and B(r), the two inequalities in Statement 2 are both true.

We claim first that r ≥ s + 2. If this is not the case, then F (s) + B(r) ≥ 2n + 1,
which implies either F (s) ≥ n + 1 or B(r) ≥ n + 1, contradicting the choice of s
and t.

We claim secondly that r ≤ s+2. If not, r ≥ s+3, and then F (s+1)+B(r−1) ≤
2n + 1, since f(0) contributes twice to F (s + 1) + B(r − 1) and f(m) contributes at
most once for every m �= 0. This implies that

F (s + 1) ≤ n or B(r − 1) ≤ n. (1)

But on the other hand, from the definition of F (s) and B(r), we have

F (s + 1) ≥ n + 1 and B(r − 1) ≥ n + 1. (2)

The contradiction between (1) and (2) establishes the second claim. Proposition A
follows from these two claims.

We continue to prove the lemma by induction on n. It is not difficult to check
the truth of Lemma 2.1 when n = 1 or 2. Assume Lemma 2.1 holds for any number
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less than n. Clearly, it also holds when Statement 1 of Proposition A is true. Hence
we need only consider the case when Statement 2 of Proposition A is true. Since
F (s + 1) > n and F (s) ≤ n − 1, we have f(s + 1) ≥ 2. Take away from Box s + 1
a ball, say b, and remove Box 0 together with its ball to get a new arrangement g of
n + t − 1 boxes and 2n − 2 balls. By the induction hypothesis, there is a set M of
consecutive boxes that contains precisely n − 1 balls in total.

We claim that at least one of Box 1 and Box s +1 is contained in M . Otherwise,
we have M ⊂ {Box 2, . . . , Box s} or M ⊂ {Box s + 2, . . . , Box n + t− 1}. It follows
from Statement 2 of Proposition A that

g(M) =
∑

i∈M

g(i) ≤ max{B(s + 2) − 1, F (s) − 2}

≤ max{n − 1 − 1, n − 1 − 2} = n − 2.

This is a contradiction. If M contains exactly one of Box 1 and Box s+1, we can get
our desired consecutive boxes that contain exactly n balls in total in arrangement f
by putting back ball b to Box s + 1 or adding Box 0 together with its ball to M . If
both Box 1 and Box s + 1 are contained in M , then {Box 1, . . . , Box s + 1} ⊂ M or
{Box s + 1, Box s + 2, . . . , Box n + t− 1, Box 1} ⊂ M . Suppose {Box s + 1, Box s +
2, . . . , Box 1} ⊂ M ; then g(M) ≥ B(s + 1) − 1 − f(0) + f(1) ≥ n, contradicting
the fact that M contains precisely n − 1 balls in total. This contradiction implies
{Box 1, . . . , Box s + 1} ⊂ M . Suppose {Box 1, . . . , Box s + 2} ⊂ M ; then g(M) ≥
F (s + 2) − 1 − f(0) ≥ n, a contradiction. For the same reason, it is also impossible
for {Box n + t− 1, Box 1, . . . , Box s + 1} ⊂ M . Hence M = {Box 1, . . . , Box s + 1}.
Now we can get the desired consecutive boxes that contain n balls in total from M
by putting back ball b to Box s + 1. Our proof is complete. �

Definition 2.2 Let r and s be two integers such that r ≥ 0, m + r ≥ s ≥ 1, and
define the graph collection

Ψ2m+r
m+s = {G : G is a connected graph with c(G) = m + s

and ε(G) = |G| = 2m + r};
Ψ =

⋃

r≥0,s≥1

Ψ2m+r
m+s .

Lemma 2.3 If G ∈ Ψ, then G contains Rm-edge cuts.

Proof The proposition is trivial when m + r ≥ s ≥ m, so assume, in the rest of the
proof, that m− 1 ≥ s ≥ 1. We are going to show that there are Rm-edge cuts in any
graph G belonging to Ψ2m+r

m+s , using induction on r. When r = 0, let C be the unique
cycle in G. If we regard every subgraph induced by the union of a C-bridge and its
attachments as a box and the vertices it contains as balls, then, by Lemma 2.1, the
preceding assertion is true. Suppose it is also true for any number less than r, r ≥ 1.
Since m − 1 ≥ s and r ≥ 1 in this case, there is at least one Box B that contains at
least two balls by the pigeonhole principle. Hence the graph induced by the vertices
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in B is a tree T with order at least 2. Clearly, T contains at least one leaf u such
that G\u ∈ Ψ2m+r−1

m+s . By the induction hypothesis, G\u contains an Rm-edge cut S;
S is clearly an Rm-edge cut of G. �

Lemma 2.4 Let G be a connected graph of order at least 2m. If c(G) ≥ m+1, then
G contains Rm-edge cuts.

Proof Let C be a longest cycle of G. By removing an edge-set S from G but
conserving cycle C and the connecting property of G, we get a spanning subgraph
H of G belonging to Ψ2m+r

m+s for some r and s. The graph H contains an Rm-edge cut
T by Lemma 2.3, which implies that the union of T and S is an Rm-edge cut of G.

�

Definition 2.5 A flower F is a connected graph of order at least 8 which contains
a cut-vertex w such that each component of F\w has order at most 3. We refer to
vertex w as its stamen and the components of F\w as its petals.

Write Fn,4 for the set of flowers of order n. It is not difficult to see that every
flower has only one stamen and at least three petals.

Lemma 2.6 Let G be a tree of order at least 8. Then G contains R4-edge cuts if
and only if G is not a flower.

Proof The necessity is obviously true. For the sufficiency, choose an edge e = uv
such that the order difference of the two components of G−e is minimum. We claim
that {e} is an R4-edge cut of G.

Suppose, to the contrary, that this is not the case. Assume without loss of
generality that u ∈ H and v ∈ Q, where H and Q are the two components of G − e
such that |H| < |Q|. Then |H| < 4. If there is a component D in G \ v such that
|D| > |H|, then |D| < 4. Otherwise, ||D|− |G\D|| < |G\H|− |H|, which contradicts
the choice of edge e. But now we see that G is a flower with stamen v. Our claim
follows from this contradiction. �

3 Characterization

Definition 3.1 Let P5 = uvxyz be a path of length 4. Let w be an arbitrary
vertex of another connected graph H of order 3. Then Ω8

4 is the collection of graphs
obtained from one of the following two different ways.

Method 1. Step 1 Join the graph H and path P5 by adding two edges wv and wy
to obtain a new graph N . This step results in three distinct graphs according
to the choice of H and w.

Step 2 Add at most one of the two edges wx and vy to the graph N .
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Method 2. Step 1 When H is a path with w as one of its pendants, join x to the
degree 2 vertex of H after performing Step 1 of Method 1.

Step 2 Add at most one edge between w and x.

Definition 3.2 Graphs in the collection Ω8
3 can be obtained as follows. Let A and

B be two connected graphs of order 3, and let C be an isolated edge. Take three
arbitrary vertices, one each from these three graphs, and join them into a 3-cycle.

Definition 3.3 The collection Ω9
3 consists of graphs obtained by joining three ver-

tices, one each from three arbitrary connected graphs of order 3, into a 3-cycle.

Remark It is not difficult to see that Ω8
4 contains exactly eleven graphs of order 8

and circumference 4, Ω8
3 contains precisely six graphs of order 8 and circumference

3, and Ω9
3 contains in total ten graphs of order 9 and circumference 3.

Theorem 3.4 A connected graph G of order at least 8 contains no R4-edge cut if
and only if G ∈ Fn,4 ∪ Ω8

4 ∪ Ω8
3 ∪ Ω9

3.

Proof The sufficiency is obviously true. According to Lemma 2.6, the necessity is
also true when G is a tree. Assume G is not a tree in the rest of this proof. From
Lemma 2.4, it follows that c(G) < 4 + 1 = 5.

Case 1 Circumference c(G) = 4.
Let C = uvxyu be a longest cycle of G. Suppose G is not a flower; we shall prove
G ∈ Ω8

4 by the following eleven claims.

Claim 1 No C-bridge has order more than 3; G contains at least two C-bridges.

If G contains a C-bridge B of order at least 4, then [B, C] is an R4-edge cut.
Claim 1 follows from this contradiction.

Claim 2 There are at least two C-bridges B1 and B2 in G such that |A(B1) ∪
A(B2)| ≥ 2.

Otherwise, according to the first part of Claim 1, G would be a flower with the
unique attachment as its stamen, a contradiction.

Claim 3 The graph G contains no C-bridge of order more than 2.

If B is a counterexample, by Claim 2, the bridge B has an attachment u different
from an attachment w of another C-bridge. Let z be a neighbour of u in B. Then
{[B, C] − uz} ∪ {uv, uy} is an R4-edge cut, a contradiction.

Claim 4 Let w be an arbitrary vertex in C. Then the C-bridges having attach-
ment w have order sum at most 2.

Suppose, to the contrary, that the C-bridges having attachment w = u have order
sum at least 3. Call bridge B a k-bridge if it has exactly k attachments. If every
C-bridge having attachment u is a 1-bridge, by Claim 2, {uv, uy} is an R4-edge cut.
This contradiction shows that at least one of these C-bridges, say bridge B, is not a
1-bridge. Since c(G) = 4, bridge B is a 2-bridge. Assume without loss of generality
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that A(B) = {u, x}, and that |B| = min{|H| : H is a 2-bridge with A(H) = {u, x}}.
If there exists a C-bridge having vertex v or y as its attachment, then the edge-set

that separates G into two components, one of which is the subgraph induced by the
union of u and all the C-bridges having attachment u, would be an R4-edge cut of
G. This contradiction shows that neither v nor y is an attachment of any C-bridge.
Similarly, no C-bridge has x as its unique attachment.

Now we can construct an R4-edge cut S as follows. If |B| = 1, let S = [H, G\H],
where H is the subgraph of G induced by the union of V (B) and {v, x, y}. If |B| > 1,
by Claim 3, |B| = 2; let S = [Q, G\Q], where Q = G[V (B)∪ {x, y}. Claim 4 follows
from these contradictions.

Claim 5 Any C-bridge is neither a 3-bridge nor a 4-bridge.

Otherwise we would obtain the contradiction that c(G) > 4.

Subcase 1.1 There exists a C-bridge B with |A(B)| = 2.

Claim 6 No other C-bridge is 2-bridge; |B| = 2. If A(B) = {u, x}, then neither
u nor x is an attachment of any other C-bridges.

Suppose, to the contrary, that the C-bridge H is another 2-bridge. Since c(G) =
4, the two attachments of B (or H) are not adjacent to each other in C. Similarly,
B and H have the same two attachments. Assume without loss of generality that
A(B) = A(H) = {u, x}. From Claim 4, we deduce that A(Q) ∩ {u, x} = ∅ for any
C-bridge Q /∈ {B, H}, and that |B| = 1 = |H|. If the vertex v is not an attachment
of any C-bridge, let P = G[V (B)∪ V (H)∪ {u, v}]; then S = [P, G\P ] is an R4-edge
cut. This contradiction shows that the vertex v is an attachment of a third C-bridge.
Similarly, vertex y is also an attachment of some fourth C-bridge. Now let Q be the
subgraph induced by the union of {v, u}, V (B) and the vertex set of C-bridges having
attachment v; S = [Q, G\Q] is again an R4-edge cut. This contradiction shows that
B is the unique 2-bridge.

If |B| �= 2, by Claim 3, we have |B| = 1. Suppose there exists another C-
bridge D such that z ∈ {u, x} ∩ A(D). By Claim 4, |D| = 1 and no other C-
bridge has attachment u or x. Construct the R4-edge cut S as follows. When
w ∈ {v, y} is not an attachment of some C-bridges, let S = [P, G\P ], where P =
G[V (B) ∪ V (D) ∪ {z, w}]. Otherwise, let S = [Q, G\Q], where Q is the subgraph
of G induced by the union of {v, z}, V (D) and the vertex set of C-bridges having
attachment v. These contradictions show that {u, x} ∩ A(D) = ∅ for any C-bridge
D �= B. Since |G| ≥ 8, the preceding observation implies that there is a vertex
h ∈ {v, y} such that C-bridges having attachment h have order sum at least 2. By
Claim 4, this order sum is 2. Let S = [T, G\T ], where T is the subgraph of G induced
by the union of {u, h} and the vertex set of C-bridges having attachment h. Clearly,
S is a 4-restricted edge cut. This contradiction shows that |B| = 2.

The third part follows directly from the combination of Claim 4 and the first two
parts of Claim 6.
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Claim 7 Let N(u) denote the neighbourhood of vertex u in graph G. Then
|N(u) ∩ V (B)| = 1, N(x) ∩ V (B) = N(u) ∩ V (B).

Otherwise, there is a path P = uwzx in G[{u, x}∪V (B)]. Clearly, C1 = uwzxvu
is a cycle of length 5. This is impossible since c(G) = 4.

Claim 8 G ∈ Ω8
4.

By Claims 4, 5, 6 and 7, it suffices to show that d(v) = d(y) = 3 and vy /∈ E(G).
The second part is obviously true since otherwise we would have c(G) ≥ 5. In order
to prove the first part, we show at first that d(v) ≥ 3 and d(y) ≥ 3. If this is not
the case, then d(v) or d(y) = 2, say d(v) = 2. Let H = G[{u, v} ∪ V (B)]. Then
S = [H, G\H] is an R4-edge cut, a contradiction. We show secondly that d(v) ≤ 3
and d(y) ≤ 3. If d(y) ≥ 4, the C-bridges having attachment y have order sum at
least 2. Let T be the subgraph of G induced by the union of {u, v}, V (B) and the
vertex sets of C-bridges that have attachment v. Then S = [T, G\T ] is an R4-edge
cut, also a contradiction. Claim 8 follows.

Subcase 1.2 No C-bridge is a 2-bridge.

Claim 9 There exists at least one vertex x in C such that no C-bridge has
attachment x.

Otherwise, an R4-edge cut can be easily found since every C-bridge is a 1-bridge
in this case.

Claim 10 Cycle C has a unique vertex u such that the C-bridges having attach-
ment u have order sum 2.

By Claims 4 and 9, there is at least one such vertex in C. If C contains at least
two such vertices, the graph G contains an R4-edge cut no matter whether these two
vertices are adjacent to each other in C or not. This is a contradiction.

Claim 11 G ∈ Ω8
4.

Let u and x be the two vertices postulated in Claims 9 and 10. Then ux /∈ E(C),
or otherwise, S = [H, G\H] is an R4-edge cut, where H is the subgraph induced
by the union of {u, x} and the vertex sets of C-bridges that have attachment u, a
contradiction. By Claim 10, |G| = 8. Combining this result with Claims 9 and 10,
we conclude that each of the other two vertices in C \ {u, x} is an attachment of
exactly one C-bridge of order one. Let C \ {u, x} = {v, y}. Then ux /∈ E(G) or
vy /∈ E(G), or otherwise another R4-edge cut can be easily found. Claim 11 follows.

Case 2 Circumference c(G) = 3.
Assume that G is not a flower. We are going to show that G ∈ Ω8

3 or G ∈ Ω9
3. Let

C be a 3-cycle of G. Then every C-bridge is a 1-bridge.

Claim 12 Let x be a vertex of C and B a C-bridge having attachment x. Then
x has at most two neighbours in B.

If x has at least three neighbours in B, there is a path of length at least 2 joining
some two neighbours of x in B. Therefore the graph G has a cycle of length at least
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4. Claim 12 follows from this contradiction.

Consider at first the case when G contains only one C-bridge B. Let A(B) = {x}.
By Claim 12, |N(x) ∩ V (B)| ≤ 2. Suppose N(x) ∩ V (B) = {y}. Then B \ y has
a component F of order at least 4 since G is not a flower. It follows that I(F ) is a
4-restricted edge cut. This contradiction implies that N(x)∩V (B) = {y, z} for some
two vertices y and z. If y is not a cut-vertex, then N(y) = {x, z} since c(G) = 3. As
a result, I(B \ y) is an R4-edge cut. This contradiction shows that both y and z are
cut-vertices. If the union F of the components of G \ y not containing C has order
at least 3, then I(G[F ∪ {y}]) is a 4-restricted edge cut, a contradiction. Similarly,
the union of components of G \ z not containing C has order at most 2. Hence
8 ≤ |G| ≤ |C| + |{y, z}| + 2 + 2 = 9. From the above discussion, we conclude that
G ∈ Ω8

3 or Ω9
3.

Consider secondly that the graph G contains at least two C-bridges. In this case,
we have

Claim 13 Every C-bridge has order at most 3.

If all the C-bridges have a common attachment x, then G \ x contains no com-
ponents of order more than 3 by Claim 13. It follows that G is a flower with stamen
x. This contradiction shows that

Claim 14 There exist two C-bridges B and H such that A(B) �= A(H).

Claim 15 Let z be a vertex of C. Then the order sum of C-bridges that have
attachment z is not more than 2. Hence 8 ≤ |G| ≤ 9.

Let F be the subgraph induced by the union of vertex z and the C-bridges having
attachment z. Since G is not a flower, the component of G \ z that contains C \ z
has order at least 4 by Claim 13. It follows that if the first part of Claim 15 is not
true, then [F, G \ F ] is an R4-edge cut, which is a contradiction. The second part of
Claim 15 follows directly from the first one.

If |G| = 8, by Claim 14 and the first part of Claim 15, the cycle C contains a
unique vertex z such that the order sum of C-bridges having attachment z is equal
to one. Therefore G ∈ Ω8

3.

If |G| = 9, then, for any vertex z of C, the order sum of C-bridges that have
attachment z is 2 by Claim 14 and the first part of Claim 15. Therefore G ∈ Ω9

3.
Theorem 3.4 follows. �

The following corollary is a direct result of Theorem 3.4.

Corollary 3.5 Let G be a connected graph of order at least 10. Then G contains
an R4-edge cut if and only if G is not a flower.
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