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Abstract

A 4-restricted edge cut is an edge cut of a connected graph which dis-
connects the graph, where each component has order at least 4. Graphs
that contain 4-restricted edge cuts are characterized in this paper. As a
result, it is proved that a connected graph G of order at least 10 contains
4-restricted edge cuts if and only if it contains no cut-vertex u where
every component of G \ v has order at most 3.

1 Introduction

All graphs considered in this paper are simple and connected with order at least 8.
When studying network reliability, one often considers a network model whose nodes
never fail but whose edges fail independently with equal probability. Let M be such
a kind of network, and denote by C} the number of its edge cuts of size h. If M has
size e and edge failure probability p, then its reliability is

R(M,p) =1="_ Cyp"(1—p)*™".

h=1

If one can determine all the coefficients C},, then one can determine the reliability.
But, unfortunately, Provan proved in [1] that it is NP-hard to determine all these
coefficients. Employing super edge connectivity, Bauer [2] calculated the first A
coefficients C},, where X is the edge connectivity of M. To estimate more precisely the
reliability, Esfahanian introduced the concepts of restricted edge cut and restricted
edge connectivity in [3].
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Definition 1.1 A restricted edge cut is an edge cut of a connected graph which
separates this graph into components without isolated vertices. Restricted edge
connectivity is the size of a minimum restricted edge cut.

With the properties of restricted edge cut and restricted edge connectivity, Li
determined the first Ay — 1 coefficients C}, of circulant graphs in [4], where A, denotes
the restricted edge connectivity. As was pointed out by Esfahanian, the restricted
edge cut is also a useful tool for fault-tolerance analysis. But their results are fairly
approximate. For more accurate results, we generalized these concepts in [5].

Definition 1.2 An m-restricted edge cut, or simply an R,,-edge cut, is an edge cut
of a connected graph which separates this graph into components each having order
at least m. The size of an m-restricted edge cut of graph G is called its m-restricted
edge connectivity.

Denote by A, (G) the m-restricted edge connectivity of a graph G. Clearly,
a 2-restricted edge cut is the so-called restricted edge cut, and 2-restricted edge
connectivity is restricted edge connectivity. For networks with the topology of regular
graphs, Meng calculated the first A3 — 1 coefficients in [6] with the properties of
3-restricted edge cut and 3-restricted edge connectivity; Wang proved in [7] that
networks with greater than 3-restricted edge connectivity and less than 3-restricted
edge cut are more reliable under some reasonable conditions. Since R,,-edge cut
and connectivity are important in their own right in the analysis of reliability and
fault-tolerance, they draw a lot of attention; so we suggest that the reader refers to
[8,9] for example. But so far no general criterion for the existence of an R,,-edge cut
has been found apart from m = 2,3 for some special graphs [10]. In this paper, we
characterize those graphs that contain an R4-edge cut by presenting the following:

Theorem 3.4 Let G be a connected graph of order at least 8. Then G contains no
Ry-edge cut if and only if G € F,,UQ5UQS U QY.

These four graph collections are defined in Definitions 2.5, 3.1, 3.2 and 3.3 respec-
tively. Before proceeding, we shall introduce some more symbols and terminology.
Write |S| for the cardinality of a set S or the order of a graph S. Let ¢ = |E(G)]
denote the size of a graph G and ¢(G) its circumference. For two disjoint subsets A
and B of V(G), or two disjoint subgraphs of G, we denote by [A, B] the set of edges
with one endpoint in A and the other in B. Let G\ A denote the graph obtained by
removing all the vertices of A from G; we simplify [A, G\ A] to I(A). When A is an
edge-set, G — A means deleting the edges of A from G but leaving their endpoints.
For a connected subgraph H of G, call every component of G\H a bridge of H, or
simply an H-bridge. If B is an H-bridge, we refer to the vertices of H adjacent to B
as the attachments of B. Write A(B) for the set of attachments of a bridge B. For
other symbols and terminology not explicitly stated, we follow [11].
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2 Preliminaries

We begin with an interesting combinatorial phenomenon, which is the basis of the
main result.

Lemma 2.1 If we arrange n +t bozes around a circle and put 2n balls into these
bozes in such a way that no box is empty, then there are some consecutive boxes
containing precisely n balls in total, where n >t > 1.

Proof Denote by f an arbitrary arrangement of the 2n balls into these boxes. Since
n >t > 1, we deduce from the pigeonhole principle that there are at least two boxes
in f containing exactly one ball each. Label one of these two boxes with the number
0, and label the remaining boxes clockwise with 1,2, ..., n+t—1, respectively. Write
f(m) for the number of balls in the box labelled m (simply Box m). Define

Fom)= Y56, Blm)= 3 1)+ 5(0)

Let r and s be two integers in {0,1,2,...,n + ¢ — 1} such that

F(s) =max{F(m):n > F(m)}, B(r)=max{B(m):n > B(m)}.

Proposition A One of the following two statements is true.

1 F(s)=nor B(r) =n.
2r=s+2,n—1>F(s),n—12> B(r).
Suppose Statement 1 is not true in some arrangement f. According to the definitions

of F(s) and B(r), the two inequalities in Statement 2 are both true.

We claim first that » > s+ 2. If this is not the case, then F(s) + B(r) > 2n +1,
which implies either F'(s) > n+ 1 or B(r) > n + 1, contradicting the choice of s
and ¢.

We claim secondly that r < s+2. If not, r > s+3, and then F(s+1)+B(r—1) <
2n 4+ 1, since f(0) contributes twice to F(s+ 1) + B(r — 1) and f(m) contributes at
most once for every m # 0. This implies that

F(s+1)<n or B(r—1)<n. (1)
But on the other hand, from the definition of F(s) and B(r), we have
F(s+1)>n+1 and B(r—1)>n+1. (2)

The contradiction between (1) and (2) establishes the second claim. Proposition A
follows from these two claims.

We continue to prove the lemma by induction on n. It is not difficult to check
the truth of Lemma 2.1 when n =1 or 2. Assume Lemma 2.1 holds for any number
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less than n. Clearly, it also holds when Statement 1 of Proposition A is true. Hence
we need only consider the case when Statement 2 of Proposition A is true. Since
F(s+1) >nand F(s) <n—1, we have f(s+ 1) > 2. Take away from Box s + 1
a ball, say b, and remove Box 0 together with its ball to get a new arrangement g of
n +t — 1 boxes and 2n — 2 balls. By the induction hypothesis, there is a set M of
consecutive boxes that contains precisely n — 1 balls in total.

We claim that at least one of Box 1 and Box s+ 1 is contained in M. Otherwise,
we have M C {Box 2,...,Box s} or M C {Box s+2,...,Box n+1t—1}. It follows
from Statement 2 of Proposition A that

g(M)

Zg(i) < max{B(s+2) —1,F(s) — 2}
< ;nax{n—l—Ln—l—Q}:n—Q.

This is a contradiction. If M contains exactly one of Box 1 and Box s+ 1, we can get
our desired consecutive boxes that contain exactly n balls in total in arrangement f
by putting back ball b to Box s + 1 or adding Box 0 together with its ball to M. If
both Box 1 and Box s + 1 are contained in M, then {Box 1,...,Box s +1} C M or
{Box s+ 1,Box s+2,...,Box n+t—1,Box 1} C M. Suppose {Box s+ 1,Box s +
2,...,Box 1} C M; then g(M) > B(s+ 1) —1— f(0) + f(1) > n, contradicting
the fact that M contains precisely n — 1 balls in total. This contradiction implies
{Box 1,...,Box s + 1} € M. Suppose {Box 1,...,Box s + 2} C M; then g(M) >
F(s+2)—1— f(0) > n, a contradiction. For the same reason, it is also impossible
for {Box n+t—1,Box 1,...,Box s+ 1} C M. Hence M = {Box 1,...,Box s+ 1}.
Now we can get the desired consecutive boxes that contain n balls in total from M
by putting back ball b to Box s 4+ 1. Our proof is complete. ]

Definition 2.2 Let r and s be two integers such that r > 0, m+r > s > 1, and
define the graph collection

g2t = {G: G is a connected graph with ¢(G) =m + s
and ¢(G) = |G| =2m +r};
U v

r>0,s>1

v

Lemma 2.3 IfG € ¥, then G contains R,,-edge cuts.

Proof The proposition is trivial when m +r > s > m, so assume, in the rest of the
proof, that m —1 > s > 1. We are going to show that there are R,,-edge cuts in any
graph G belonging to 21" using induction on r. When r = 0, let C be the unique
cycle in G. If we regard every subgraph induced by the union of a C-bridge and its
attachments as a box and the vertices it contains as balls, then, by Lemma 2.1, the
preceding assertion is true. Suppose it is also true for any number less than r, r > 1.
Since m — 1 > s and r > 1 in this case, there is at least one Box B that contains at

least two balls by the pigeonhole principle. Hence the graph induced by the vertices
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in B is a tree T with order at least 2. Clearly, T contains at least one leaf u such
that G\u € ¥2""~! By the induction hypothesis, G'\u contains an R,,-edge cut S;

m+s

S is clearly an R,,-edge cut of G. ]

Lemma 2.4 Let G be a connected graph of order at least 2m. If ¢(G) > m+1, then
G contains Rp,-edge cuts.

Proof Let C' be a longest cycle of G. By removing an edge-set S from G but
conserving cycle C' and the connecting property of G, we get a spanning subgraph
H of GG belonging to \I/fn”ﬁs'r for some r and s. The graph H contains an R,,-edge cut

T by Lemma 2.3, which implies that the union of 7" and S is an R,,-edge cut of G.
O

Definition 2.5 A flower F is a connected graph of order at least 8 which contains
a cut-vertex w such that each component of F'\w has order at most 3. We refer to
vertex w as its stamen and the components of F\w as its petals.

Write F, 4 for the set of flowers of order n. It is not difficult to see that every
flower has only one stamen and at least three petals.

Lemma 2.6 Let G be a tree of order at least 8. Then G contains Ry-edge cuts if
and only if G is not a flower.

Proof The necessity is obviously true. For the sufficiency, choose an edge e = wv
such that the order difference of the two components of G — e is minimum. We claim
that {e} is an Ry-edge cut of G.

Suppose, to the contrary, that this is not the case. Assume without loss of
generality that w € H and v € @, where H and @) are the two components of G — e
such that |H| < |Q|. Then |H| < 4. If there is a component D in G \ v such that
|D| > |H|, then |D| < 4. Otherwise, ||D| —|G\D|| < |G\H|— |H|, which contradicts
the choice of edge e. But now we see that G is a flower with stamen v. Our claim
follows from this contradiction. 0

3 Characterization

Definition 3.1 Let Ps = wvzyz be a path of length 4. Let w be an arbitrary
vertex of another connected graph H of order 3. Then Qf is the collection of graphs
obtained from one of the following two different ways.

Method 1. Step 1 Join the graph H and path Ps by adding two edges wv and wy
to obtain a new graph N. This step results in three distinct graphs according
to the choice of H and w.

Step 2 Add at most one of the two edges wx and vy to the graph V.
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Method 2. Step 1 When H is a path with w as one of its pendants, join = to the
degree 2 vertex of H after performing Step 1 of Method 1.

Step 2 Add at most one edge between w and x.

Definition 3.2 Graphs in the collection Q8 can be obtained as follows. Let A and
B be two connected graphs of order 3, and let C' be an isolated edge. Take three
arbitrary vertices, one each from these three graphs, and join them into a 3-cycle.

Definition 3.3 The collection Qf consists of graphs obtained by joining three ver-
tices, one each from three arbitrary connected graphs of order 3, into a 3-cycle.

Remark Tt is not difficult to see that Qf contains exactly eleven graphs of order 8
and circumference 4, 2§ contains precisely six graphs of order 8 and circumference
3, and QJ contains in total ten graphs of order 9 and circumference 3.

Theorem 3.4 A connected graph G of order at least 8 contains no Ry-edge cut if
and only if G € F,, UQ§ UQSU Q.

Proof The sufficiency is obviously true. According to Lemma 2.6, the necessity is
also true when G is a tree. Assume G is not a tree in the rest of this proof. From
Lemma 2.4, it follows that ¢(G) <4+ 1 =5.

Case 1 Circumference ¢(G) = 4.
Let C' = wvzyu be a longest cycle of G. Suppose G is not a flower; we shall prove
G € QF by the following eleven claims.

Claim 1 No C-bridge has order more than 3; G contains at least two C-bridges.

If G contains a C-bridge B of order at least 4, then [B, (] is an Rs-edge cut.
Claim 1 follows from this contradiction.

Claim 2 There are at least two C-bridges B; and Bj in G such that |A(B;) U
A(By)| = 2.

Otherwise, according to the first part of Claim 1, G would be a flower with the
unique attachment as its stamen, a contradiction.

Claim 3 The graph G contains no C-bridge of order more than 2.

If B is a counterexample, by Claim 2, the bridge B has an attachment v different
from an attachment w of another C-bridge. Let z be a neighbour of v in B. Then
{[B,C] — uz} U {uv,uy} is an Ry-edge cut, a contradiction.

Claim 4 Let w be an arbitrary vertex in C'. Then the C-bridges having attach-
ment w have order sum at most 2.

Suppose, to the contrary, that the C-bridges having attachment w = u have order
sum at least 3. Call bridge B a k-bridge if it has exactly k attachments. If every
C-bridge having attachment w is a 1-bridge, by Claim 2, {uv, uy} is an Ry-edge cut.
This contradiction shows that at least one of these C-bridges, say bridge B, is not a
1-bridge. Since ¢(G) = 4, bridge B is a 2-bridge. Assume without loss of generality
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that A(B) = {u,z}, and that |B| = min{|H| : H is a 2-bridge with A(H) = {u,x}}.

If there exists a C-bridge having vertex v or y as its attachment, then the edge-set
that separates G into two components, one of which is the subgraph induced by the
union of u and all the C-bridges having attachment u, would be an R4-edge cut of
G. This contradiction shows that neither v nor y is an attachment of any C-bridge.
Similarly, no C-bridge has = as its unique attachment.

Now we can construct an Ry-edge cut S as follows. If |B| =1, let S = [H, G\ H],
where H is the subgraph of G induced by the union of V(B) and {v, z,y}. If |[B| > 1,
by Claim 3, |B| = 2; let S = [Q, G\Q)], where Q = G[V(B)U{z,y}. Claim 4 follows

from these contradictions.
Claim 5 Any C-bridge is neither a 3-bridge nor a 4-bridge.
Otherwise we would obtain the contradiction that ¢(G) > 4.
Subcase 1.1 There exists a C-bridge B with |A(B)| = 2.

Claim 6 No other C-bridge is 2-bridge; |B| = 2. If A(B) = {u,z}, then neither
u nor x is an attachment of any other C-bridges.

Suppose, to the contrary, that the C-bridge H is another 2-bridge. Since ¢(G) =
4, the two attachments of B (or H) are not adjacent to each other in C. Similarly,
B and H have the same two attachments. Assume without loss of generality that
A(B) = A(H) = {u,z}. From Claim 4, we deduce that A(Q) N {u,z} = 0 for any
C-bridge @ ¢ {B, H}, and that |B| = 1 = |H|. If the vertex v is not an attachment
of any C-bridge, let P = G[V(B)UV (H)U {u,v}]; then S = [P,G\P] is an Ry-edge
cut. This contradiction shows that the vertex v is an attachment of a third C-bridge.
Similarly, vertex y is also an attachment of some fourth C-bridge. Now let @ be the
subgraph induced by the union of {v, u}, V(B) and the vertex set of C-bridges having
attachment v; S = [@Q, G\Q)] is again an Rs-edge cut. This contradiction shows that
B is the unique 2-bridge.

If |B| # 2, by Claim 3, we have |[B| = 1. Suppose there exists another C-
bridge D such that z € {u,z} N A(D). By Claim 4, |D| = 1 and no other C-
bridge has attachment u or x. Construct the Rs-edge cut S as follows. When
w € {v,y} is not an attachment of some C-bridges, let S = [P, G\ P], where P =
GIV(B)UV(D)U {z,w}]. Otherwise, let S = [Q, G\Q)], where @ is the subgraph
of G induced by the union of {v, z}, V(D) and the vertex set of C-bridges having
attachment v. These contradictions show that {u,z} N A(D) = @ for any C-bridge
D # B. Since |G| > 8, the preceding observation implies that there is a vertex
h € {v,y} such that C-bridges having attachment h have order sum at least 2. By
Claim 4, this order sum is 2. Let S = [T, G\T], where T is the subgraph of G induced
by the union of {u, h} and the vertex set of C-bridges having attachment h. Clearly,
S is a 4-restricted edge cut. This contradiction shows that |B| = 2.

The third part follows directly from the combination of Claim 4 and the first two
parts of Claim 6.
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Claim 7 Let N(u) denote the neighbourhood of vertex u in graph G. Then
IN(w)NV(B)| =1, N(z)NV(B) = N(u) N V(B).

Otherwise, there is a path P = vwzx in G[{u,z} UV (B)]. Clearly, C} = vwzzvu
is a cycle of length 5. This is impossible since ¢(G) = 4.

Claim 8 G € .

By Claims 4, 5, 6 and 7, it suffices to show that d(v) = d(y) = 3 and vy ¢ E(G).
The second part is obviously true since otherwise we would have ¢(G) > 5. In order
to prove the first part, we show at first that d(v) > 3 and d(y) > 3. If this is not
the case, then d(v) or d(y) = 2, say d(v) = 2. Let H = G[{u,v} UV(B)]. Then
S = [H,G\H] is an Ry-edge cut, a contradiction. We show secondly that d(v) < 3
and d(y) < 3. If d(y) > 4, the C-bridges having attachment y have order sum at
least 2. Let T be the subgraph of G induced by the union of {u,v}, V(B) and the
vertex sets of C-bridges that have attachment v. Then S = [T, G\T] is an Ry-edge
cut, also a contradiction. Claim 8 follows.

Subcase 1.2 No C-bridge is a 2-bridge.

Claim 9 There exists at least one vertex x in C such that no C-bridge has
attachment x.

Otherwise, an R4-edge cut can be easily found since every C-bridge is a 1-bridge
in this case.

Claim 10 Cycle C has a unique vertex u such that the C-bridges having attach-
ment u have order sum 2.

By Claims 4 and 9, there is at least one such vertex in C'. If C' contains at least
two such vertices, the graph G contains an Rs-edge cut no matter whether these two
vertices are adjacent to each other in C' or not. This is a contradiction.

Claim 11 G € Q8.

Let u and x be the two vertices postulated in Claims 9 and 10. Then ux ¢ E(C),
or otherwise, S = [H,G\H] is an Ry-edge cut, where H is the subgraph induced
by the union of {u,z} and the vertex sets of C-bridges that have attachment u, a
contradiction. By Claim 10, |G| = 8. Combining this result with Claims 9 and 10,
we conclude that each of the other two vertices in C'\ {u,z} is an attachment of
exactly one C-bridge of order one. Let C'\ {u,z} = {v,y}. Then uz ¢ E(G) or
vy ¢ E(G), or otherwise another Ry-edge cut can be easily found. Claim 11 follows.

Case 2 Circumference ¢(G) = 3.
Assume that G is not a flower. We are going to show that G € Qf or G € Q). Let
C be a 3-cycle of G. Then every C-bridge is a 1-bridge.

Claim 12 Let x be a vertex of C and B a C-bridge having attachment . Then
x has at most two neighbours in B.

If « has at least three neighbours in B, there is a path of length at least 2 joining
some two neighbours of x in B. Therefore the graph G has a cycle of length at least
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4. Claim 12 follows from this contradiction.

Consider at first the case when G contains only one C-bridge B. Let A(B) = {z}.
By Claim 12, |[N(z) N V(B)| < 2. Suppose N(z) N V(B) = {y}. Then B\ y has
a component F' of order at least 4 since G is not a flower. It follows that I(F) is a
4-restricted edge cut. This contradiction implies that N(z) NV (B) = {y, z} for some
two vertices y and z. If y is not a cut-vertex, then N(y) = {x, z} since ¢(G) = 3. As
a result, I(B\ y) is an Ry-edge cut. This contradiction shows that both y and z are
cut-vertices. If the union F' of the components of G \ y not containing C' has order
at least 3, then I(G[F U {y}]) is a 4-restricted edge cut, a contradiction. Similarly,
the union of components of G\ z not containing C' has order at most 2. Hence
8 < |G| <|Cl+ H{y, 2} +2+2=29. From the above discussion, we conclude that
GeMor Q.

Consider secondly that the graph G contains at least two C-bridges. In this case,
we have

Claim 13 Every C-bridge has order at most 3.

If all the C-bridges have a common attachment z, then G \ z contains no com-
ponents of order more than 3 by Claim 13. It follows that G is a flower with stamen
2. This contradiction shows that

Claim 14 There exist two C-bridges B and H such that A(B) # A(H).

Claim 15 Let z be a vertex of C. Then the order sum of C-bridges that have
attachment z is not more than 2. Hence 8 < |G| < 9.

Let F be the subgraph induced by the union of vertex z and the C-bridges having
attachment z. Since G is not a flower, the component of G \ z that contains C'\ z
has order at least 4 by Claim 13. It follows that if the first part of Claim 15 is not
true, then [F, G \ F| is an Ry-edge cut, which is a contradiction. The second part of
Claim 15 follows directly from the first one.

If |G| = 8, by Claim 14 and the first part of Claim 15, the cycle C' contains a
unique vertex z such that the order sum of C-bridges having attachment z is equal
to one. Therefore G € Q5.

If |G| = 9, then, for any vertex z of C, the order sum of C-bridges that have
attachment z is 2 by Claim 14 and the first part of Claim 15. Therefore G € Q3.
Theorem 3.4 follows. O

The following corollary is a direct result of Theorem 3.4.

Corollary 3.5 Let G be a connected graph of order at least 10. Then G contains
an Ry-edge cut if and only if G is not a flower.
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