2-restricted edge connectivity of vertex-transitive graphs*

JUN-MING XU QI LIU

Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026 P.R. CHINA xujm@ustc.edu.cn

Abstract

The 2-restricted edge-connectivity λ'' of a graph G is defined to be the minimum cardinality |S| of a set S of edges such that G-S is disconnected and is of minimum degree at least two. It is known that $\lambda'' \leq g(k-2)$ for any connected k-regular graph G of girth g other than K_4 , K_5 and $K_{3,3}$, where $k \geq 3$. In this paper, we prove the following result: For a connected vertex-transitive graph of order $n \geq 7$, degree $k \geq 6$ and girth $g \geq 5$, we have $\lambda'' = g(k-2)$. Moreover, if $k \geq 6$ and $\lambda'' < g(k-2)$, then $\lambda''|n$ or $\lambda''|2n$.

1 Introduction

In this paper, a graph G = (V, E) always means a simple undirected graph (without loops and multiple edges) with vertex-set V and edge-set E. We follow Bondy and Murty [1] or Xu [18] for graph-theoretical terminology and notation not defined here.

It is well-known that when the underlying topology of an interconnection network is modelled by a graph G, the connectivity of G is an important measure for faulttolerance of the network [17]. However, this measure has many deficiencies (see [2]). Motivated by the shortcomings of the traditional connectivity, Harary [5] introduced the concept of conditional connectivity by requiring some specific conditions to be satisfied by every connected component of G - S, where S is a minimum cut of G. Certain properties of connected components are particularly important for applications in which parallel algorithms can run on subnetworks with a given topological structure [2, 6]. In [2, 3], Esfahanian and Hakim proposed the concept of restricted connectivity by requiring that very connected component must contain no isolated

^{*} The work was supported by ANSF (No. 01046102) and NNSF of China (No. 10271114).

vertex. The restricted connectivity can provide a more accurate fault-tolerance measure of networks and have received much attention recently. (For example, see [2, 3], [6]-[10], [14]-[19].) For regular graphs Latifi *et al* [6] generalized the restricted connectivity to *h*-restricted connectivity for the case of vertices by requiring that every connected component contains no vertex of degree less than *h*. In this paper we are interested in similar kind of connectivity for the case of edges.

Let h be a nonnegative integer. Let G be a connected graph with minimum degree $k \ge h + 1$. A set S of edges of G is called an *h*-restricted edge-cut if G - Sis disconnected and is of minimum degree at least h. If such an edge-cut exists, then the *h*-restricted edge-connectivity of G, denoted by $\lambda^{(h)}(G)$, is defined to be the minimum cardinality over all *h*-restricted edge-cuts of G. From this definition, it is clear that if $\lambda^{(h)}$ exists, then for any l with $0 \le l \le h$, $\lambda^{(l)}$ exists and

$$\lambda^{(0)} \leq \lambda^{(1)} \leq \cdots \leq \lambda^{(l)} \leq \cdots \leq \lambda^{(h)}.$$

It is clear that $\lambda^{(0)}$ is the traditional edge-connectivity and $\lambda^{(1)}$ is the restricted edge-connectivity defined in [2, 3]. In this paper, we restrict ourselves to h = 2. For the sake of convenience, we write λ'' for $\lambda^{(2)}$. We use g = g(G) to denote the girth of G, that is, the length of a shortest cycle in G. The following result ensures the existence of $\lambda''(G)$ if G is regular.

Theorem 1 (Xu [15]) Let G be a connected k-regular graph with girth g other than K_4 , K_5 and $K_{3,3}$, where $k \ge 3$. Then $\lambda''(G)$ exists and $\lambda''(G) \le g(k-2)$.

A graph G is called *vertex-transitive* if there is an element π of the automorphism group $\Gamma(G)$ of G such that $\pi(x) = y$ for any two vertices x and y of G. It is wellknown [12, 13] that the edge-connectivity of a vertex-transitive graph is equal to its degree. The restricted edge-connectivity of vertex-transitive graphs has been studied in [16, 19].

For a special class of vertex-transitive graphs, circulant graphs, its 2-restricted edge-connectivity has been determined by Li [9]. In [14] Xu proved that $\lambda''(G) = g(k-2)$ for a vertex-transitive graph $G (\neq K_5)$ with even degree k and girth $g \geq 5$. In this paper, we prove the following result by making good use of the technique proposed by Mader [12] and Watkins [13], independently.

Theorem 2 For a connected vertex-transitive graph of order $n \ge 7$, girth g and degree $k (\ge 4 \text{ and } \ne 5)$, if $g \ge 5$ we have $\lambda'' = g(k-2)$. Moreover, if $\lambda'' < g(k-2)$, then $\lambda'' | n \text{ or } \lambda'' | 2n$.

Note that in this theorem k is not required to be even. The proof of Theorem 2 will be given in Section 3, and this follows the proof of two lemmas in the next section.

2 Notation and Lemmas

Let G be a k-regular graph, where $k \ge 2$. Then G contains a cycle and hence its girth is finite. It is known (see [11, Problem 10.11]) that

$$|V(G)| \ge f(k,g) = \begin{cases} 1+k+k(k-1)+\dots+k(k-1)^{(g-3)/2}, & \text{if } g \text{ is odd};\\ 2[1+(k-1)+\dots+(k-1)^{(g-2)/2}], & \text{if } g \text{ is even.} \end{cases}$$
(1)

A vertex x of G is called *singular* if it is of degree zero or one. Let X and Y be two distinct nonempty proper subsets of V. The symbol (X, Y) denotes the set of edges between X and Y in G. If $Y = \overline{X} = V \setminus X$, then we write $\partial(X)$ for (X, \overline{X}) and d(X) for $|\partial(X)|$. The following inequality is well-known (see [11, Problem 6.48]).

$$d(X \cap Y) + d(X \cup Y) \le d(X) + d(Y).$$

$$\tag{2}$$

A 2-restricted edge-cut S of G is called a λ'' -cut if $|S| = \lambda''(G) > 0$. Let X be a proper subset of V. If $\partial(X)$ is a λ'' -cut of G, then X is called a λ'' -fragment of G. It is clear that if X is a λ'' -fragment of G, then so is \overline{X} and both G[X] and $G[\overline{X}]$ are connected. A λ'' -fragment X is called a λ'' -atom of G if it has the minimum cardinality. It is clear that G certainly contains λ'' -atoms if $\lambda''(G)$ exists. For a given λ'' -atom X of G, since G[X] is connected and contains no singular vertices, it contains a cycle. Thus $g(G) \leq |X| \leq |V(G)|/2$.

Lemma 3 Let G be a connected k-regular graph, where $k \ge 3$. Let R be a proper subset of V(G) and U be the set of singular vertices in $G - \partial(R)$. If $\lambda''(G)$ exists and $U \subseteq R$, then |R| < g(G) provided that one of the following three conditions is satisfied:

(a) $d(R) \leq \lambda''(G);$

(b) $d(R) \le \lambda''(G) + 1$ and $|U| \ge 2$ or $k \ge 4$;

(c) $d(R) \leq \lambda''(G) + 1$ and |U| = 1, k = 3, and R contains no λ'' -fragments of G.

Proof Let g = g(G). Since $\lambda''(G)$ exists, $\lambda''(G) \leq g(k-2)$ by Theorem 1. Suppose to the contrary that $|R| \geq g$. We will derive contradictions.

If G[R] contains no cycles, then $|E(G[R])| \leq |R| - 1$ and

$$g(k-2) + 1 \geq \lambda''(G) + 1 \geq d(R) = |R|k - 2|E(G[R])|$$

$$\geq |R|k - 2(|R| - 1) = |R|(k-2) + 2$$

$$\geq g(k-2) + 2,$$

which is a contradiction.

In the following we assume that G[R] contains cycles. Let R' be the vertex-set of the union of all maximal 2-connected subgraphs of G[R]. Then $U \subseteq R \setminus R'$. Note that for any two distinct vertices u and v in R', any neighbor of u and any neighbor of v in $R \setminus R'$ are not joined by a path. This implies that $G - \partial(R')$ contains no singular vertices. So $\partial(R')$ is a λ'' -restricted edge-cut of G for which $d(R') \geq \lambda''(G)$. Also note that for any edge $e \in (R', R \setminus R')$, either e is incident with some vertex $z \in U$ or there is a path in $G[R \setminus R']$ connecting e to some vertex $z \in U$. Furthermore, if two edges $e, e' \in (R', R \setminus R')$ are distinct, then the corresponding two vertices $z, z' \in U$ are distinct too. Thus $|(R', R \setminus R')| \leq |U|$, and $|(R \setminus R', \overline{R})| \geq |U|(k-1)$ since $U \subseteq R \setminus R'$. It follows that

$$d(R') = d(R) - |(R \setminus R', \overline{R})| + |(R', R \setminus R')|$$

$$\leq d(R) - |U|(k-1) + |U|$$

$$= d(R) - |U|(k-2),$$

from which we have

$$\lambda''(G) \le d(R') \le d(R) - |U|(k-2).$$
(3)

If $d(R) \leq \lambda''(G)$, then from (3) we have $\lambda''(G) \leq d(R) - 1 \leq \lambda''(G) - 1$, which is a contradiction.

If $d(R) \leq \lambda''(G) + 1$ and $|U| \geq 2$ or $k \geq 4$, then from (3) we have $\lambda''(G) \leq d(R) - 2 = \lambda''(G) - 1$, again a contradiction.

If $d(R) \leq \lambda''(G) + 1$, |U| = 1, k = 3, then from (3), we have $d(R') = \lambda''(G)$. Thus R' is a λ'' -fragment of G contained in R, which contradicts our condition (c). The proof of the lemma is complete.

Lemma 4 Let G be a connected k-regular graph with $\lambda''(G) < g(k-2)$, where $k \geq 3$. If X and X' are two distinct λ'' -atoms of G, then $|X \cap X'| < g$. Moreover, $X \cap X' = \emptyset$ for any k with $k \geq 4$ and $k \neq 5$.

Proof Note that $|X| \ge g$ since X is a λ'' -atom of G. If |X| = g, then G[X] is a cycle of length g. Thus $g(k-2) = d(X) = \lambda''(G) < g(k-2)$, a contradiction. So we have |X| > g. Let

$$A = X \cap X', \quad B = X \cap \overline{X'}, \quad C = \overline{X} \cap X' \quad D = \overline{X} \cap \overline{X'}.$$

Then $|D| \ge |A|$ and $|B| = |C| = |X| - |A| \ge 1$ since X and X' are two distinct λ'' -atoms of G.

We first show |A| < g. In fact, if $d(A) \leq \lambda''(G)$, then $G - \partial(A)$ contains singular vertices (for otherwise, A is a λ'' -fragment whose cardinality is smaller than |X|), and all of them are contained in A. Thus, |A| < g by Lemma 3. If $d(A) > \lambda''(G)$, then

$$d(D) = d(X \cup X') \leq d(X) + d(X') - d(X \cap X') < \lambda''(G)$$

which implies that $G - \partial(D)$ contains singular vertices (for otherwise, D is a 2-restricted edge-cut whose cardinality is smaller than λ''), and all of them are contained in D. Thus, |D| < g by Lemma 3, and so $|A| \leq |D| < g$.

We now show |A| = 0 for any k with $k \ge 4$ and $k \ne 5$. Suppose to the contrary that |A| > 0. Since |A| < g, G[A] contains no cycle, that is, $G - \partial(A)$ contains at least one singular vertex. Let y be a singular vertex in $G - \partial(A)$. Then $y \in A$. Consider the set $X \setminus \{y\}$ if |(y, C)| > |(y, B)|, and the set $X' \setminus \{y\}$ if |(y, C)| < |(y, B)|. Then

$$d(X \setminus \{y\}) \le d(X) - |(y, D)| - |(y, C)| + |(y, B)| + 1 \le d(X) = \lambda''(G).$$
(4)

So there are singular vertices in $G - \partial(X \setminus \{y\})$, and all of them are in $X \setminus \{y\}$. By Lemma 3, $|X \setminus \{y\}| < g$, and so $g < |X| = |X \setminus \{y\}| + 1 \le g$, a contradiction. Thus,

we need only to consider the case where |(y, C)| = |(y, B)|. Note that in this case the inequality (4) does not hold only when |(y, D)| = 0 and y is a vertex of degree one in $G - \partial(A)$. It follows that $k = d_G(y) = |(y, C)| + |(y, B)| + 1$. Thus, we need only to consider the case where k is odd.

Let W be the vertex-set of the connected component of G[A] that contains y. Note that W contains at least two vertices of degree one in $G - \partial(A)$, and that $W \subseteq A$. Thus, $2 \leq |W| < g$. Let $Y = X \setminus W$ if $|(W, B)| \leq |(W, C)|$, and $Y = X' \setminus W$ if $|(W, B)| \geq |(W, C)|$. Then $\emptyset \neq Y \subset X$. Then

$$d(Y) = d(X) - |(W, C)| - |(W, D)| + |(W, B)| \le d(X) = \lambda''(G)$$

which implies |Y| < g by Lemma 3.

Since k is odd and is at least 7, there are at least 3 neighbors of y in B and C, respectively. We claim that no two neighbors of y are in the same component of G[Y]. Suppose to the contrary that some component of G[Y] contains at least two neighbors of y. Choose two such vertices y_1 and y_2 so that their distance in G[Y] is as short as possible. Let P be a shortest y_1y_2 -path in G[Y]. Clearly, P does not contain any other neighbors of y except y_1 and y_2 . Thus the length of P satisfies $\varepsilon(P) \leq |Y| - 2 \leq g - 3$, and so the length of the cycle $yy_1 + P + y_2y$ is smaller than g, a contradiction.

Thus, all neighbors of y in Y are in different components of G[Y]. Since |Y| < g, we can choose such a component H of G[Y] so that its order is at most $\lfloor \frac{1}{3}g \rfloor$. Let $z \in V(H)$ be a neighbor of y. Then z is in B. Moreover, we claim that $d_H(z) \ge 2$. In fact, if z is a singular vertex in G[H], then $d(X') \le \lambda''(G) + 1$ and all singular vertices of $G - \partial(X')$ are in X', where $X' = X \setminus \{y\}$. By Lemma 3, |X| - 1 < g, that is, $|X| \le g$, a contradiction.

Let *L* be a longest path containing *z* in *H* with two distinct end-vertices *a* and *b*. Then the length of *L* is at most $\lfloor \frac{1}{3}g \rfloor - 1$. Noting that $d_H(a) = d_H(b) = 1$, it follows that there exist $c, d \in W \setminus \{y\}$ such that they are neighbors of *a* and *b*, respectively. If c = d, then the length of the cycle ac + cb + L is equal to $2 + \varepsilon(L) \leq 2 + \lfloor \frac{1}{3}g \rfloor - 1 < g$, which is impossible. Therefore, we have $c \neq d$.

Let Q and R be the unique yc-path and yd-path in G[W] since G[W] is a tree, and let e be the last common vertex of Q and R starting with y. Note that $e \neq y$ and

$$\varepsilon(Q) + \varepsilon(R) + \varepsilon(Q(c, e) \cup R(e, d)) = 2[\varepsilon(Q) + \varepsilon(R(e, d))] \le 2(g - 2).$$

Therefore, at least one of $\varepsilon(Q)$, $\varepsilon(R)$ and $\varepsilon(Q(c,e) \cup R(e,d))$ is at most $\lfloor \frac{2}{3}(g-2) \rfloor$.

If $\varepsilon(Q) \leq \lfloor \frac{2}{3}(g-2) \rfloor$, then, by considering the lengths of the cycle $C_1 = L(a, z) + yz + Q + ca$, we have

$$g \le \varepsilon(C_1) \le \left(\left\lfloor \frac{g}{3} \right\rfloor - 2 \right) + 2 + \left\lfloor \frac{2(g-2)}{3} \right\rfloor \le g - 1,$$

a contradiction.

If $\varepsilon(R) \leq \lfloor \frac{2}{3}(g-2) \rfloor$, then, by considering the lengths of the cycle $C_2 = zy + R + db + L(d, z)$, we have

$$g \le \varepsilon(C_2) \le 2 + \left\lfloor \frac{2(g-2)}{3} \right\rfloor + \left(\left\lfloor \frac{g}{3} \right\rfloor - 2 \right) \le g - 1,$$

again a contradiction.

If each of $\varepsilon(Q)$ and $\varepsilon(R)$ is more than $\lfloor \frac{2}{3}(g-2) \rfloor$, then $\varepsilon(Q(c,e) \cup R(e,d)) \leq \lfloor \frac{2}{3}(g-2) \rfloor$ and by considering the lengths of the cycle $C_3 = ac + Q(c,e) \cup R(e,d) + db + L$, we have

$$g \le \varepsilon(C_3) \le 2 + \left\lfloor \frac{2(g-2)}{3} \right\rfloor + \left(\left\lfloor \frac{g}{3} \right\rfloor - 1 \right) \le g - 1,$$

a contradiction.

The proof of Lemma 4 is complete.

3 Proof of Theorem 2

Let G be a connected vertex-transitive graph with order $n (\geq 7)$ and degree $k (\geq 4$ and $\neq 5$). Then $\lambda''(G)$ exists and $\lambda''(G) \leq g(k-2)$ by Theorem 1. Suppose that $\lambda''(G) < g(k-2)$, and let X be a λ'' -atom of G. Under these assumptions we prove the following claims.

Claim 1 G[X] is vertex-transitive.

Proof Let x and y be any two vertices in X. Since G is vertex-transitive, there is $\pi \in \Gamma(G)$ such that $\pi(x) = y$. Denote $\pi(X) = \{\pi(x) : x \in X\}$. It is clear that $G[X] \cong G[\pi(X)]$ because π induces an isomorphism between G[X] and $G[\pi(X)]$. Hence $\pi(X)$ is also a λ'' -atom of G. Since $y \in X \cap \pi(X)$, by Lemma 4, $X = \pi(X)$. Thus, the setwise stabilizer

$$\Pi = \{\pi \in \Gamma(G) : \pi(X) = X\}$$

is a subgroup of $\Gamma(G)$, and the constituent of Π on X acts transitively. This shows that G[X] is vertex-transitive.

Claim 2 There exists a partition $\{X_1, X_2, \dots, X_m\}$ of V(G), where $m \ge 2$, such that $G[X_i] \cong G[X]$ and X_i is a λ'' -atom for $i = 1, 2, \dots, m$.

Proof Let x be a fixed vertex in X. Let u be any element in \overline{X} . Since G is vertextransitive, there exists $\sigma \in \Gamma(G)$ such that $\sigma(x) = u$. Moreover, $\sigma(X)$ is a λ'' -atom of G. Let $X_u = \sigma(X)$. Then $X \cap X_u = \emptyset$ by Lemma 4 and $G[X] \cong G[X_u]$. Thus there are at least two λ'' -atoms of G. It follows that for every u in G there is a λ'' -atom X_u that contains u such that $G[X_u] \cong G[X]$, and either $X_u = X_v$ or $X_u \cap X_v = \emptyset$ for any two distinct vertices u and v of G. These λ'' -atoms, X_1, X_2, \dots, X_m , form a partition of V(G), and $G[X_i] \cong G[X]$, $i = 1, 2, \dots, m$. Since G has at least two distinct λ'' -atoms, we have $m \ge 2$.

Claim 3 g = 3 or 4 and $\lambda'' | n$ or $\lambda'' | 2n$.

Proof Suppose that $\lambda''(G) < g(k-2)$ and X is a λ'' -atom of G. Then G[X] is vertextransitive by Claim 1 and there exists a divisor $m (\geq 2)$ of n such that |X| = n/mby Claim 2. Let t denote the degree of G[X]. Then $2 \leq t \leq k-1$ and

$$\lambda''(G) = d(X) = |\partial(X)| = (k-t)|X| = (k-t)n/m.$$
(5)

Since G[X] contains a cycle of length at least g, it follows from (1) and (5) that

$$g(k-2) > \lambda''(G) = (k-t)|X| \ge (k-t)f(t,g).$$
(6)

Case 1 g is even. In this case, from (1) and (6), we have

$$0 < g(k-2) - (k-t)2[1 + (t-1) + \dots + (t-1)^{(g-2)/2}].$$
(7)

The right hand side of (7) is increasing with respect to t and is decreasing with respect to g. It is not difficult to show that the inequality (7) can hold only when g = 4 and t = k - 1. So $\lambda''(G) = |X| = n/m$ by (5).

Case 2 g is odd. In this case, from (1) and (6), we have

$$0 < g(k-2) - (k-t)[1+t+t(t-1)+\dots+t(t-1)^{(g-3)/2}].$$
(8)

The right hand side of (8) is increasing with respect to t and is decreasing with respect to g. It is not difficult to show that the inequality in (8) can hold only when g = 3 and t = k - 2 or t = k - 1. If t = k - 1, then $\lambda''(G) = |X| = n/m$ by (5). If t = k - 2, then $\lambda''(G) = 2|X| = 2n/m$ by (5).

From Claim 3, it follows that, if $g \ge 5$, then $\lambda'' = g(k-2)$. Also, if $\lambda''(G) < g(k-2)$, then g = 3 or 4, and hence $\lambda''|n$ or $\lambda''|2n$. The proof of Theorem 2 is complete.

Figure 1: A vertex-transitive graph of degree k = 5 and $\lambda'' = 8$

Remarks The result $\lambda''(G) = g(k-2)$ is invalid for connected vertex-transitive graphs of degree k = 5. For example, consider the lexicographical product $C_n[K_2]$ of C_n by K_2 , where C_n is a cycle of order $n \ge 4$, K_2 is a complete graph of order two. The definition of lexicographical product of graphs is referred to [4, pp.21-22] and the graph shown in Figure 1 is $C_7[K_2]$. Since both C_n and K_2 are vertex-transitive, $C_n[K_2]$ is vertex-transitive (see, [4, the exercise 14.19]). It is easy to see that $C_n[K_2]$ is of degree k = 5, girth g = 3 and a set of any four vertices that induce a complete graph K_4 is a λ'' -atom of $C_n[K_2]$, and hence $\lambda'' = 8 < 3(5-2)$. Two distinct λ'' atoms X and X' corresponding two complete graphs of order four with an edge in common satisfy $|X \cap X'| = 2 < 3 = g$. This fact shows that the latter half of Lemma 4 is invalid for k = 5.

Acknowledgement

The authors would like to thank the anonymous referees for their valuable suggestions in order to improve the final version of the paper.

References

- J.A. Bondy. and U.S.R. Murty, *Graph Theory with Applications*, Macmillan Press, London, 1976.
- [2] A.H. Esfahanian, Generalized measures of fault tolerance with application to N-cube networks, *IEEE Trans. Comput.* 38 (11) (1989), 1586–1591.
- [3] A.H. Esfahanian and S.L. Hakimi, On computer a conditional edge- connectivity of a graph, *Information Processing Letters* 27 (1988), 195–199.
- [4] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Inc. 1969.
- [5] F. Harary, Conditional connectivity, Networks 13 (1983), 346–357.
- [6] S. Latifi, M. Hegde and M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, *IEEE Trans. Comput.* 43 (1994), 218–221.
- [7] Q.L. Li and Q. Li, Reliability analysis of circulant graphs, *Networks*, **31** (1998), 61–65.
- [8] Q.L. Li and Q. Li, Refined connectivity properties of abelian Cayley graphs, *Chin. Ann. of Math.* **19B** (1998), 409–414.
- [9] Q.L. Li, Graph theoretical studies on fault-tolerance and reliability of networks (Chinese), Ph.D. Thesis, University of Science and Technology of China, 1997.
- [10] Q. Li and Y. Zhang, Restricted connectivity and restricted fault diameter of some interconnection networks, *DIMACS* 21 (1995), 267–273.
- [11] L. Lovász, Combinatorial Problems and Exercises, North Holland Publishing Company, Amsterdam/New York/Oxford, 1979.
- [12] W. Mader, Eine Eigenschft der Atome andlicher Graphen. Archives of Mathematics (Basel) 22 (1971), 333–336

- [13] A.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970), 23–29.
- [14] J.-M. Xu, Some results of *R*-edge-connectivity of even regular graphs, *Applied Math. J. Chinese Univ.* **14B** (3) (1999), 366–370.
- [15] J.-M. Xu, On conditional edge-connectivity of graphs. Acta Math. Appl. Sinica, B 16 (4) (2000), 414–419.
- [16] J.-M. Xu, Restricted edge-connectivity of vertex-transitive graphs (Chinese), Chinese Annals of Math., 21A (5) (2000), 605-608; An English version in Chinese J. Contemporary Math., 21 (4) (2000), 369–374.
- [17] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
- [18] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003
- [19] J.-M. Xu, and K.-L. Xu, On restricted edge-connectivity of graphs, *Discrete Math.* 243 (2002), 291–298.

(Received 29 Sep 2002; revised 20 Jan 2004)