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Abstract

A forest in which every component is path is called a path forest. A family
of path forests whose edge sets form a partition of the edge set of a graph G is called
a path decomposition of a graph G. The minimum number of path forests in a path
decomposition of a graph G is the path number of G and denoted by p(G). If we
restrict the number of edges in each path to be at most x then we obtain a special
decomposition. The minimum number of path forests in this type of decomposition
is denoted by p (G). In this paper we study pZ(G). We note here that if we

restrict the size to be one, the number p,(G) is just the chromatic index of G.

In this paper, we study the special type of path decomposition and we obtain
the answers for pz(G) when G is a complete graph, a tree and some other graphs.

1. Imtroduction.

A path decomposition is a special case of an edge decomposition and is the
type of decomposition we will study in this paper. There are many interesting and
important results and problems in this area. A good survey of them is provided by
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Chung and Graham. [2] Among other things, the chromatic index (the minimum
number of matchings required to decompose a graph), the arboricity (the minimum
number of forests needed to decompose a graph), the linear arboricity (the minimum

number of path forests required to decompose a graph) or the tree number (the

minimum number of trees needed to decompose a graph) have all been studied.
[1,3,4] In some cases, exact formulas for these numbers have been found. An
x—path coloring of G is an edge—coloring of G so that each component of each color
class is a path of length at most x. Let p (G) = min{c| G has an x—path coloring

with ¢ colors}. So pl(G) = x'(G). In this paper, we will estimate DQ(G)«

Here, in Section 2, we will obtain some general upper and lower bounds for
p,(G) when G is a graph, a complete graph and a complete bipartite graph. In
Section 3 we find pQ('I‘) when T is a tree, and some relationships between p2(K n)
and pQ(KI1 n) are also discussed. Finally in Section 4 we find pZ(Kn) and some

results concerning pz( K_ ) are mentioned.

n,n
Throughout this paper we consider only simple undirected graphs without
loops and multiple edges. Let V(G), v(G), E(G) and e(G) denote the vertex set, the

number of vertices, the edge set and the number of edges (or size) of G, respectively.
Let dG(v) denote the degree of a vertex v in the graph G and A(G) denote the

maximum degree of G.

2. Lower bounds on py(G).
Given a graph G, it is not difficult to see that G canbe decomposed into at

least [e(G) /%«V(G)] path forests with the size of each path less than three. Thus we

have the following
Proposition 2.1. py(G) > [e(G)/2v(G)].
For some graphs, this estimate is quite good, but there are also some graphs
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10T which this estlimate 18 pretiy rar Irom the exact answer. We can use Proposition
2.1 to obtain bounds on pz(G) for two well-known classes of graphs: complete

graphs and complete bipartite graphs.

Corollary _2.2. pQ(ng) > [%(?w_l)], p2(K3v+1) > ]’%(3v+1)] and

Po(Kgy o) 2 T 3V+2%§-?~‘17J)r1) 1

9 3v+1
Conollary 23 Ky, 3,)> V. Dyl 5040) 2 LY ang
(3v+2)?
Po(Kgy 49 3v49) 2 [—Rgs—I-

The above estimates of Kn and Kn o are actually very good. In Section 4,

we will see that, for almost all n, the lower bounds in Proposition 2.2 for py(K ) are

also upper bounds, so this gives the answers for Dpo(K)-

Now let us look at A(G) of a graph G. Tt is clear that po(G) 2 [A(G)/2].

This will produce a better estimate for the graphs, such as stars, friendship graphs,
trees, --- etc. Thus combining this with the ideas of the above propositions we
have

Proposition 2.4. p,(G) > max {A(G)/2, €(G)/my(G)} where m,(G) is the

size of maximum path forests in G in which the size of each path is less than three.

If A(G) is even and, if there exists a path which joins two vertices x and y
with maximum degree and all the vertices on this path other than x and y have
degree > A(G)~1, then Py(G) > é—%—@; the reason for this can be obtained directly

from decomposing this subgraph. In what follows we will call such a path a critical
path.

Proposition 2.5. Let G be a graph with A(G) being an even number. Then
Py(G) 2 A%Q_l + 1 provided that G has a critical path.
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3. pz»decompositions of trees and nets.

A tree is a connected acyclic graph.

Proposition 3.1. Let T be a tree with maximum degree A. Then we have
py(T) = %« + 1 if Ais even and T has a critical path. For the other cases po(T) =

5.

Proof. If A is odd, by choosing a vertex x with maximum degree as a root
and use a straight forward decommposition we can obtain [ w%w] path forests of the

type we need. By Proposition 2.4, we conclude that pg(T) = [w%m] It is easy to

* *
see that we can alway:;«.( construct & supergraph T of T such that A(T )= A + 1.
Now if A is even, A(T ) is odd. Hence by above argument A/2 < pZ(T) <Cpol(T ) <

AJ2 + 1, and we conclude that if T has a critical path then po(T)y = A2+ 1 KT
doesn’t have a critical path, then Do(T) can be shown to be % by using a greedy

algorithm to produce the required path forests.
Q.E.D.

The idea of a critical path can also be used to find P5(G) in some other cases.

For example, if G is the graph in Figure 3.1, A(G) = 4 and G has a critical path.
Hence })2((}) > 3. pQ(G) = 3 can be shown easily as in Figure 3.1.

1 2 3
L3 121 3o
3 9 1 3 2 1
2 3 1
Figure 3.1.
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o Pothp ).

A proper edge—coloring of a graph is an assignment of colors to its edges so
that no two incident edges have the same color. If a graph G can colored by no
more than k colors, then this graph is called k—colorable and the number y’(G) =
min {k: G is k—colorable} is the chromatic index of G. As mentioned in Section 1,
x’(G) is the minimum number of matchings required to edge—decompose a graph
G.  Similarly, pz(G) can be considered to be the minimum number of colors

required to color the graph G so that no proper connected supergraph of K1 9 is
el

induced by edges of one color; call such an edge—coloring a pzwoloring. For

example, the numbers we put on Figure 3.1 are actually the colors. If we focus on

the p,—colorings of K and K then we can use an n x n array to represent the
2 & n

n,n’
coloring. It is well—known that a Kn,n with proper coloring can be represented by a
latin square of order n. But, if we consider a pg—coloring, it is slightly different
from a latin square. Figure 4.1 is an example of K6,6 with p2(K6,6) = 5. As we
have seen in this array, L = [(’i’j
at most twice and furthermore if ei,j = ei',j' ,i#1 and j#j’, then %J/ # éi,j and

|, 2 number occurs in each row and each column

I,’i, j & i The number p2(K n) can also be obtained in this way except that the

array L = [éi j] is symmetric, i.e., (fi i= L. ; for alli and j, and 4 ; Is empty for each
i=1,2, -, n Figure 4.2 is an example showing that p2(K5) = 4.
1711272 13]3
31311111212
( ) 2,413 5|14
Po(K, )
2667 9 s34l
412|513 1411
5121413511
Figure 4.1.

59



12121
V4 3 41 2
oK 2 |3 |7 1| 3
21411\ 4
1121314 %

Figure 4.2.

We note here that the arrays in Figure 4.1 and Figure 4.2 provide an upper
bound on pz(K6 6) and pz(K5)S respectively, and that this upper bound equals the
2

lower bound in Proposition 2.2 and 2.3, respectively.

Based on the relationships between K and K, , we have the following

results.

Proposition 4.1 (1) py(K )2py(K ;) and pQ(Kn,n)ZPQ(Kn-l,n—l)'
(2) DKy + 1 2p(K, ).
(3) Po(Kyp)Spo(Ky) +po(Ky )-(4) oKy jp)<i-pg(Kpy ). (8)  py(Kg) <
2:po(K ) + 1.

Proof. Obviously, we have (1). (2) can be obtained by putting a number
(new) in the diagonal of the array which corresponds to K o Since KQn\K o 8@

disjoint union of two K 's, hence we have (3). (4) is a direct result of the direct
product of the array corresponding to Kn 1 and a latin square of order i. Finally, by
3

Figure 4.3, we obtain (5). - Q.E.D.
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f

L:array for po—oloring of K, basedon {1,2, .-, Pz(Kn)}
M: array for p,—coloring of k_ based on {po(K )+1, -+ -, 2:py(K )}
f: new color.

Figure 4.3.

These inequalities will help us in finding the number Po(G). But we need

some ingredients first. Let us start with the following definitions.

A Steiner triple system of order v (briefly STS(v)) is a pair (9,t) where S is a
v—set and t is a collection of 3—element subset (called triple) of S such that every
2—element subset of S occurs in exactly one triple of t. It is well-known that an
STS(v) exists if and only if v = 1 or 3 (mod 6). A parallel class of an STS(v) is a
collection of v/3 mutually disjoint triples. Clearly, a parallel class exists only if v =
3 (mod 6). An STS(v) is called resolvable provided that the collection of all triples
can be partitioned into parallel classes. In [7], it was shown that a resolvable
STS(v) (briefly RSTS(v)) exists for each v = 3 (mod 6). This is equivalent to the
fact that K6k 43 can be decomposed into 3k+1 collections of 2k+1 mutually

disjoint triangles. Thus we can prove the following

Proposition 4.2. p2(K12L+3) =9t + 2 and pZ(KlthrQ) =9t + 6.

Proof. Let (S,t) be an RSTS(6k+3). First, we consider k = 2t. Then there
are 6t+1 parallel classes. The idea of the proof is as follows: we start with two
parallel classes; from each class, if we take one edge away from each triangle, then
we Obtain a path forest of the type we need, so is the other class. Now, if we can
suitably combine the edges we took away, we obtain one more path forest of the
type we want. If the above process can be done, then pQ(K12t+3) <3-(3t) + 2. By
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Proposition 2.2, py(Kg  5) > [7(3-(46-1) =17 = [ 7(12t+2)] = 9t + 2. Hence

we have the proof. Thus the problem left is how to combine the deleting edges.

Let two parallel classes be denoted by {{ai,bi,ci}: i=1,2 - 4t+1} and
{{di’ e, fi} =120, 4t+1}. Construct a bipartite graph G = (A,B) with A =
{u), uy, -, 114t+1}, B = {vy, vy, -+, V4t+l} and {u;, vj} is an edge of G
provided that {ai, b,, ci} n {dj, ¢ fj} # ¢. Since (S,t) is a resolvable Steiner triple
system, we conclude that G is a regular bipartite graph with of degree 3. Hence G
has a cornplete matching M : {u.l,vix}, {112,v12 y T, {u4t,+1,vi4m}‘ Without loss
of generality, let aj = dij Li=1,2, -+, 4t+1. Consider the graph G \ M, it is a

graph with each vertex of degree two, and G \ M is a union of even cycles. Now we
are ready to determine which edges should be taken away from the triangles {ai, bi’
Ci}’ {di’ e fi}’ i=1, 2, ---,4t+1. Since aj:di.’ for each j=1, 2, - -, 4t+1, we will
]
take {aj, xj}, {d, , yj} away from the parallel classes { {a;, b;, ¢;} } and { {d;, e;,
J

£} } respectively such that all xj‘s and yj's are all distinct. In order to do that, we

start with bl(:xl), if v., is one the two vertices of G which is adjacent to u; and
i 1

€., =by, then let f., be y,. By considering the cycle of G\M, (u,, v.,, uy, v.(, -,
i 1 i 1 17y h iy

u1)7 uh:{ah, if ch}. We can let = X9 and fi]': Yo Since these deleted edges

actually induced a path forest of the type we need, we are done. For the case k =

6t-+4

2t+1, it is similar and p,(K <3 (F5) = 9tt6. Q.E.D.

12t+9)

We note here that this proposition can be obtained by using Lemma 4 in [9].
Also, it has been shown by J.D. Horton in [5] that pO(K12H_9):9L+6.

By direct counting we obtain the following corollary.

Corollary 4.3. 92(K12t+2) = 9t+2,t > 1, and pQ(K12t+7) = pz(KIZHS) =
9t+6.
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Proof. 9t+2 = py(K 9y 1 5) 2 Po(Kpgy ) 2 9642, 9t+6 = po(K,, +9) 2
Po(Kygg1g) 2 Py(Kyg ) 2 9646. QE.D.

We can use the construction of a (12t+6) x (12t+6) array to show the
following

Propositiog 44. p2(K12t+6) = 0t+4.

Proof. By Proposition 4.2, we have py(Kg, , ) = 3t+1+[§£ﬂ], Let L
2V766+3 2
and M be two arrays which correspond to p2-—colorings of Kﬁt +3 which are based on
the colors {1, 2, ---, pZ(K6t+3)} and {p2(K6t+3)+1’ pz(K6t+3)+2’ ey
2p2(K6t +3)} respectively.

Now if t is odd, then p2(K12t+6) > fz(12t+5) ] = 9t+4 and Py(Kigt6) <
3t+1 "
2'92(K6t+3) +1 = 2-(3t+1+~f—w) + 1 = 9t + 4 (proposition 4.1.). Hence we
have pZ(K12t+6) = Ot-+4.

If t is even, then 3t+1 is odd. This implies that if the construction in
Proposition 4.2 is used, we have one matching in the decomposition of K6t 43 which

has 2t+1 edges. Of course, as in the proof of Proposition 4.2 we can combine two
matching M1 and M2 from two parallel clagses together to obtain a path forest of

the type we need. Let this path forest be denoted by al"bl‘“cl’ 32mb2~c N
39641 P41 Cop1 Where {apbik, {agbol, covs {agg by i} are in the
matching M, and {b,c,}, {by,ce}, <, {b2t+1’c2t+1} are in the matching M.
Now in L and M of Figure 4.3, we take the edges of M1 and M2 out respectively, i.e.

the following cells of the array in Figure 4.3 are empty:
(ai,bi), (by,a,), (bi’6t+3+ci)’ (c;,b;+6t+3), (bi+6t+3,ci), (¢, +6t+3, b,), (a;+6t+3,

bi+6t+3) and (bi+6t+3,ci+6t+3). i=1,2, .-+, 2t+1. By letting all of the these

8-(2t+1) cells be filled with a common number f, then we have an array which is
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corresponding to K12t 13 Since the induced graph of the edges corresponding to f is
a path forest of the type we need. Thus Po(Kygi 16) < 2{p2(K6t+3)-1] + 2=
2. (3t+1+ 2L ) = 6t+2+3t+2 = 9t+4. By Proposition 2.2 we conclude the

proof.
The following corollary is a direct result of counting.

Corollary 4.5. pQ(Kth,)) = Gt-+4.

Proof. St+4 = pQ(K12t+6) > p2(K12&+5) > 9t44. Q.E.D.

Before we prove next proposition, we need a special result. Since p2(K6) =4
and pQ(KG 6) = 5 (Figure 4.1.). We have Py(Ki9) = 9. (Proposition 4.1.) By a

direct product of a symmetric latin square A of order t and a 12x12 array, we obtain
a 12t=x12t array M, and we are ready ¢o prove the following

Proposition 4.6. py(K 4, ) = 9t.

12t

Proof. By Figure 4.4 we obtain pZ(KI‘? 12) = §. Now in the upper
triangular part of M, if the 12x12 array corresponds to a number i in A we place the
ith array corresponding to K12 if i is on the diagonal and ith array corresponding to

K],, 19 otherwise. For the lower triangular part we should place the transpose of

the 12x12 array in order to keep M symmetric. Then p2(K < 9t. By

1213)
Proposition 2.2 we have the equality. Q.E.D.
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1f1(272]3 |13 |8|7]|5]4)|6]9
814145566793 2}1
416177181819 19|513]2]1
4161911111223 ]3|8] 7|5
3121118141415 156,679
3211|4167 7T18]819]9]5

M =
81 7151416191111 1212313
6171913121184} 4 516
9191513 1141677178
213138 51416191 112
515 6719132 |118]4]4
7181819191532 1114)6]|7

Figure 4.4.
Corellary 4.7. Pz(KmHu) = Gt+9.
Proof. Similar to corollary 4.5. Q.E.D.

So far, we can find pz(Kn) foreachn=0,2,3,5,6,7,8,9, 11 (mod 12). We

will need another technique to find py(K ) when n =1, 4, 10(mod 12).

Before we go any further, we need some more definitions. Let S is a v—set.
A latin square of order v based on S is a vxv array with entries from S such that in
each row and each column every element of S occurs exactly once. For convenience,
let S = {1,2,---,v}. A latin square L = {Zij] is said to be commutative provided
that gij = gji for every 1 <1i, j < v, A latin square L = [(fij] is idempotent if £, = i for
each i € 5. It is well-known that an idempotent commutative latin square of order
v exists if and only if v is odd. 1In case v = 2k, let H = {{1,2},{3,4}, -,
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{2k—12ky;. Lhe Z—element suosets in H are called holes. A latin square with holes
H is a latin square such that for each hole h € H, the subarray formed by hxh is a
subsquare based on h. Since all the holes are of size two, we also refer to the latin
square as a latin square with 2x2 holes H. Figure 4.5 is an example of a
commutative latin square of order 8 with 2x2 holes H. It was show by Fu that a
commutative latin square of order 2k with 2x2 holes H (briefly CLSH(2k)) exists for
each k > 3. [4] ’

218 3 4 5
2 115 4 8 3 6
8 513 411 7 6 2
6 7.4 318 2 5 1
T4 5 612 3
b8 T 6 511 4
4 3 6 5 2
5 6 21 3 4

Figure 4.5.
In what follows, we will show that })2(K12t+4) = G{+3, t # 4, and
;)2(1\121;“)3 pZ(RIZH»M)) can be obtained similarly. To start with, we have

p.z(Kw) = 12 and pQ(K%) = 21. See Figure 4.6 and Figure 4.7.

a a1l 145383 5bcl?28¢67
a L'b 2256443 c¢c{718%9
a b cc 33675221948
ib e aa 44786 35923
12 ¢ a bbb b 89 T|33 46
4 2 3 ab cc 669 15778
5534bc aa7l7 19286 A B,
36645 ¢ a b b 8§ 8|91 27
947756 ab coc 912 8 31
3458867%5HLc a all 295
b3 26 9978 ca bl4 4 5 1
c ¢ 2 371 189 atb 6 6 5 4
271535992146 b b a P
&€196 9372182 46|b a ¢ B‘r i)
68424782395 5]|ba c b |
79836867151 4|lacc

Figure 4.6.
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a all 4 5109 4Db c15161213 318171111141410 2 8 6 7
a bb2 2 56433 c171512151313111816101714 7 1 8 9
a b cc 3 36752 212121613 1717111815151014 1 9 4. 8
1b ¢ a a 44786 3141814181111121516171013 5 9 2 3
12 ¢a b b 5589 7161410111610121518171813 3 3 4 6
42 3ab ¢cc669 1101417111518161212131316 5 7 7 8
55 345b ¢ aa 77 16 9 8 215 8181317 111118 1210 14 16
106 645 ¢ a bb8 82 1 912 7141713 3161511 181812 14
94 775 6 ab cc 9 8 8 114 315131613 181611 121017 2
43 588 6 75bc a a 2 1 9 51016151014 18 1215 17 17 11 13
b3 269 9 7 8c¢ca b18 111817 6 4101714121512 1316 1 5
cc 237 1 189ab 13746 4 5141410161217 15 51115
151712141610 6 2 8 21813 aa 1 145 39 3 bc 11151310
161512181414 9 1 8 111 7 a b b 225 6410 3 ¢ 16111713
121216141017 8 9 1 918 4 a b c ¢33 675 2211131517
131513181111 21214 517 6 1 b ¢ aad 47 8 63 101610 9
3131711161515 7 310 6 41 2 ¢ a bb 55 8 97 141418 18
181317111018 8141516 4 5 4 2 3 a b ¢ ¢cf 6 91 7121612
1711 11121216181713151014 5 5 3 4 b ¢ aa 7 71 9 286
111818 151512131316101714 3 6 6 4 5 ¢ a b b 88 9127
11161516 181217 313141410 9 4 7 7 5 6 a b ¢c ¢c9 2831
141015 171713111618 181216 310 5 8 8 6 7 b ¢ aa 1 29 4
14171010181211 1516121512 b 3 2 6 9 9 7 8 ¢ a b 4 45 1
1014141313 1618 1111151217 ¢ ¢ 2 3 7 11 8 9 a b 6 6 5 4
27 15 351218121713151116111014 79 9 2 1 4 6 a ab
81 99 371018101716 5151113161412 2 1 8 2 4 6 a c
68 42 4714121711 111131715101816 8 23 9 55 4 b c
79 83 681614 213 515101317 91812 6 7T 1 414 b c ¢

Figure 4.7.

If t is odd, let L = [Zij] be an idempotent commutative latin square of order
t. Now using A; and B, defined in Figure 4.6, construct a (12t-+4)x(12t-+4) array
as in Figure 4.8 where Ax(i,j) = Al(i,j) if Al(i,j)e{a,b,c}, Ax(i,j) =
(x-1)~9+A1(i,j) if A, (i,j)#{a,b,c}, B, =B+(x~1)-9 and Cy=M+ (x-1)-9,1<x

<t. It is a routine matter to check that p2(K12t 4 4) = 9t+3 whenever t is odd.
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Figure 4.8.

If t is even, let L = [lij] be a commutative latin square of order t = 2k with
2x2 holes. Then the corrosponding array can be arranged as Figure 4.9, where AI
and B, are now defined using Figure 4.7. Thus, we conclude that pQ(K12H4) =
9t+3, t#4. Since the proof of 92(K12c+1) = 9t+1 and pZ(K12t+lO) = 9t-+8 is
similar, we omit it here and put the arrays which correspond to DZ(K13) = 10,

p2(1{25) =19, pQ(Kn) = 17 and p2(1(34) = 26 in the Appendix.
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Cei .
Ay J B2
Aq B3
¢, !
ij
T T T T
81 B2 33 . . - Bk D

Figure 4.9.

By the fact that a commutative latin square of order 4 with 2x2 holes doesn't
exist, we are not able to obtain pz(K4g)> p2(1{52) and })2(1{58) now. But, we

believe this is a matter of tedious work in constructions and we will not go through
it.

Combining the above results we have the following

3(3v—1 3(3v+1
Theorem 4.8. pQ(KSV) = {—J—EJ}, p2(K3V+1) = {V—Lz——l] and

Dy(Kyg 1 g) = [ 3‘2’+§V +51”"+1 ] except possibly if 3v+1 € {49, 52, 58}.
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5. Remarks.

We can also obtain the results on pz(Kn n) by applying proposition 4.1 and

direct constructions. Since the techniques are similar, we will not go any further in

this direction. As a special case when n = 12t, pQ(KIQt,Mt) = 9t which can be

obtained by the direct product of M (Figure 4.4.) and a latin square of order t. This
result is equivalent to the existence of a P3-factoriza,tion of a balanced complete

bipartite graph with 12t vertices in each part which has been shown by Ushio in [8].
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