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elations with distinct centres commute, so it remains to show that elations with
the same centre commute.

Let z € T and X € z\S. Then |Eln(X,2)| # 1. Choose Y € §. Then there exists
y € T with Y € y and X ¢ y. Note that £ln(Y,z), Eln(Y,y) are non-trivial.
Applying Lemma 2.6, we have £l (X, z) is abelian.

Let z € T and Y € S. Choose X € §\z Then |Ely(X,z)| # 1 for some z € T.
Also Eln(Y, z) and £1y(Y, ) are non-trivial. Again by Lemma 2.6, £1n(Y,2) is
abelian. 0

Theorem A  Suppose that (D, G) satisfies the hypotheses of Theorem B, that
N and H are defined as in the statement of Theorem B, and that D, is the quotient
design of (D, G). Then

(a) Dy & Puy g for some m > 2 and prime power g.

(b) N/H = PSL(m +1,q).

Proof We apply the theorem of O'Nan, Result 1.10, to the group N” considered
as a permutation group acting on the points of Dy. By Lemma 2.5, N is 2-
transitive on the points of Dy and, for any point [a] of Dy, £l3y([e]) is a normal
subgroup of Nf;, and EVy(lal) # 1. By Lemma 2.7, £, ([a]) is abelian and by
Lemma 2.4, £13([a]) does not act semi-regularly on T\{[a]}. So we may apply
Result 1.10, with N* = N*, Q = T and 4 = £l%,([a]).

Examining the proof of Result 1.10 (see [10] or [12]) we see that N* is shown to act
as a group of automorphisms of a 2-design D(TI'} isomorphic to the design of points
and lines of a projective space Py, ¢, for some m > 2 and prime power ¢q. The points
of D(I') are just the elements of {2, while the blocks of D(T") are the subsets of £} of
the form Fp(A7), where o € N* and y € 2\{a”} (see [12], p306). In our situation,
the points of D(T') are the elements of 7 and the blocks are the distinct subsets of



i1 tollows from the denmition ol "blocks™ 1n 1J); that the hyperplanes corresponding
to two distinct blocks of Dy must themselves be distinct. However Dy has at least
as many blocks as points (since it is a 2-design), whereas D(I') has equally many
points and hyperplanes (as it is a projective geometry). So every hyperplane of
D(T') corresponds to a block in D;.

We conclude that D; & Py, and PSL(m +1,9) < N* < PTL(m + 1,q). But N*
is generated by elations, so N* < PSL(m+1,g). Thus N* = PSL(m +1,¢). This
completes the proof of Theorem A. 0

§3 Translation Blocks

We are still assuming the hypotheses of Theorem B. In this section we first show
(using Theorem A) that every block in 7T is a translation block. We then proceed,
using the work of Kelly (Result 1.9), to complete the proof of Theorem B.

By Theorem A, Dy 2 P,, , for some m > 2 and prime power ¢. For any =, let us
denote by (J(n) the number 3;51-1».

Lemma 3.1 We have the following relations holding between the numbers m,
g, 7 (see Lemma 2.1), |S|, |T'| and the parameters v, k, A of the design D:

(a) IT| = Q(m +1)
(b) v =|S|g™*! + Q(m + 1).
(c) k= [Slg™ + Q(m).
(d) A=|S]g™ ™"+ Q(m —1).
(e) 18] = izt
(f) v~ |8]=jQ(m +1).
() k— 5] =3Q(m).
(h) A —[5]=jQ(m —1).
Proof By Theorem A, Dy = P, , and so the parameters of Dy are v = b =

Q(m +1), 2= Q(m), A= Q(m —~ 1). Equating these to the expressions for v,b,7
and ) in Lemma 2.2 gives (a), (f), (g) and (h) respectively.

We now prove (e). As D is a symmetric design, A(v — 1) = k(k — 1) and so
Mv—k) = (k—A)(k—1). By subtracting (g) from (f), and (h) from (g), we obtain
v—k=37¢™ and k — X = j¢g™ 1. Substituting the expressions for A\,v — k, k — A
and £ —11in Mv — k) = (k — A)(k — 1) we obtain

(1-2%2___ + ISI) (Ga™) = (g™ ) (

122, which proves (e).

11+}s;-1>.

Simplifying this expression gives |S| = p
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fcalrallgliilg e expression 101 (o] 1 (g), We gl 7 = [ (g — 1) + 1. suostituiing
this expression for j in (), (g) and (h) gives (b), (c) and (d). a

Lemma 3.2 If X € Sand ¥ € § then |ly(X)| = g™t and |€ln(X)y| = ¢™.

Proof Let X € §. Then Nx = N and soc Ny is transitive on T. Suppose
IEIN(X)] = p°, |€IN(X )y | = p*¥). Since N fixes X and is transitive on §, d(Y)
is a constant d for Y € §. Counting the pairs (a,Y) where & # 1 is in Ely(X)
and Y € § is fixed by o, we get

(7" = D)k~ 1S]) = (»* ~ 1)(v — |S]) (1)

Using Lemma 3.1

(v = 8],k = |S]) = (1Q(m + 1),5Q(m)) = 5(Q(m + 1), Q(m)) = j.

(55%) o) - (57) G

o

A B C D

So (1) gives

S0 AB = CD and since (4,0} =1, A| D and C | B, and since (B,D) =1, B |C
and D | A. Thus A= D and B = . Thus

pa, -1 3 pu(m+l) —1
p(u’d) -1 - pY - 1 !

where p* = g. It follows that p* = p(*®) p= = gm+1 gnd pd = g™, o

Under N, D has |S]-+1 point orbits, namely the points of § and the orbit §. As D
is symmetric there are |§] + 1 block orbits. Excluding the orbit 7', let Ay,..., A5
be the block orbits. Let ; = y N § for any y € A;; this is well defined since N
fixes § pointwise.

Consider the structure D, whose points are the points of § and whose blocks are
the subsets ¢; of §,for 2 = 1,...|5|. We now show that the p; are a constant size.

Lemma 3.3 If |S| > 1 then D, is uniform with block size L§lq:£‘

Proof As T =I5 A;, we have (by Lemma 3.1)

=1

|S|

3 1A = ISlgm )
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Count the Nlags (£,Y) where " € s and y € L, 80 [O{&— |L |)= p ;- |Di]iPi]. DY
Lemma 3.1,
151

S 1Adllesl = g™ISI(1S1 - 1) (2)
i=1
Count the 2-flags (P,Q,y) where P,Q € S, P# Q andy € T.
5]

ISI(18| - 1A = [T]) = Z |Asllesl(lesl —1)

151 S|

151151~ 1)g™ (181 = (g +1)) = 3 IAdllwel® = 3 Adlledl

15|

=3 [llesl® — g™IS1(1S1 - 1)

d=1
from (2), so
151

S Insllesl® = 181151~ g™ (8]~ (a + 1) +a) = ISI(IS] = 1¢™ - (3)

We show that ;| = (|S| - 1)/g for i = 1,...,|5]. Consider

%mi(w—(’s' ))
t}:S‘Z!Allsmlhz(‘sl )ZIAHI@,H—OS‘ )2§|A,-1.

i=1

So, from (3), (2) and (1)
— ISI(18] - 1)2g™ — 2(‘5 - 1)qm|sr(ts1 S+ ('—Si;-i) 1Slg™

q
=0

Since the left hand side is a sum of squares, it follows that each term must be zero

ie. |¢i|=l§lq:—1~fom'=1,...,1sl. 0
Lemma 3.4 Every block of D which contains S belongs to T'.

Proof If|S| > 1 and y € T then, by Lemma 3.3, y meets § in fewer than ||
points and so y does not contain S. If |S| =1 then N has only two block orbits:
one must consists of the blocks which contain § and the other of the blocks which
do not contain 5.
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Lemma 3.5
(a) Ai| = g™t i=1,...,18]
(b) Forall z € T, N is transitive on each A;.

Proof For any given i, let X € §\y;. Thisis possible sinceif |S]| > 1, |p;| = @fl,
by Lemma 3.3, and if |§] = 1, ¢; = 0. Now consider the action of £ly(X) on
A;. Since no block in A; contains X, £1y(X) acts semi-regularly on A; (dual of
Result 1.1). But |£ln(X)| = ¢™*!, by Lemma 3.2. So ¢™+! | |A;]. However

S5 As] = |S]g™*, by Lemma 3.1. So |A;| = g™ and Eln(X) is transitive on
A;. This proves both (a) and (b). 0

Lemma 8.6 Forall z € T, N, is transitive on the points of z\S.

Proof Let z € T and X;,X; € z\S. Choose y1,y2 € T with X; ¢ y1 and
X2 & ya.

If Xy ¢ 1 choose Y1 € y1\z and then use N to map (Xy,z) to (¥1,%1) and then
map (Y1,y1) to (X2,2) (by Result 1.2).

If X; ¢ y2 we may similarly map (X1,z) to (Xz,2) via (Y2,y2) where Y3 € y2\a.

Suppose now that X3 € y; and X; € y2. Then y1 # vz so y1 € ¢ Uy, and
ys € zUy;. We may therefore choose Y2 € yo\{® Uy:) and ¥y € y1\(z Uy2) and
use N to map (X1,2) to (Xa,2z) via (Yy,y1) and (¥2,92). o

Lemma 3.7 Every block in T' is & translation block.
Proof Suppose z € T. Let |Ely(z)| = p*. For y € T\{z} let |Eln(z),| = ),

and for y € T, let |Eln(z)y| = p*¥). Count (a,y) where o £ 1 in Ely(z) fixes the
block y # =.

k- -1)= > E®@-1)+> @EF®-1) (1)

yeT\{z} y€T
Recall the group homomorphism x: N — N*. This results in the isomorphism:

En(z) oo
ker(n)?? Ein(z) — Elnv(l=])

Since |1y (z)| = p® and by Theorem A, N* = PSL(m + 1, g) so [Ely([=])| = ¢™

(recall from §2 that £l ([z]) is the image under & of Ely(2)). If | ker(k)NElN ()| =
p? then it follows that p® = ¢™p*. Fory € T\{z},

Eln(z)y ~ (oY
m = (Eln (=)
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and so p®¥) [p? = g™, p*¥) = ¢™ 7 p?, since ker(k)NEIN(z) = ker(k)N(Elnv(z)y)
for all y € T\{z}. So p*¥) is a constant p?, say, for all y € T\{z}.

Let y € T. We show that |y (2)| < ¢. For ¢ € Eln(z), y? is a block not equal to
z and containing # Ny. So distinct elements of y€¥ (2) intersect exactly in z N y.
Elv(2), that is

Ein(a) < VK
ly <=
;4T
= ']1—1 by Lemma 3.1
J9

:q_

By the orbit-stabilizer theorem, |Ely (2),|ly€'*®)| = |€ln(z)]. As [y (@) < ¢
and [y&iv (=) ‘ |ELn ()], we have |y&n (2] l g. Hence

[€ln(2)] _ ¢™p”
€l (z)y|  p)

q

and so g™~ 1p* | p*¥). Write p=(¥) = ¢™~1p*p/(¥) where p/(¥) > 1. From (1)

(k=1)(¢g"p" — 1)

= (IT| - 1)(p*¢" " - 1) + (}: q"‘“p"pf(")) — (v —|T))

y€eT
= (171 = 1)(p*q™ ™ = 1)+ ™79 ('~ 1) + ¢ P v = |T) - (0 = IT)
y€T
= (IT| = D)(p*g™ ! = 1) + (v — |T(g™*p* = 1) + ¢™p" ) (P ~ 1)
Z'IET

:(vwl)(qm 1 z___l m 1 zZ(pf(?l).__l)

yeT

Hence

1 (k—1)g—(v—1) = (k=1)+ (v = 1) = g™ Ip Z (pP) — 1)

'~3

However (k —1)g — (v —1) = (k —1)g — k(k —1). We now show that ¥} = q.
Using Lemma 3.1 we have k = jQ(m) + -7—— and hence k — 1 = ]Q(m) + L—q-
Again by Lemma 3.1, A = jQ(m — 1) + f}—:— and so

k=1 _ _ilg=1)Q(m) +(j —q)
A ila-1)Qm 1)+ (G -1)
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which simplifies to g. Hence (k ~1)g— (v~ 1) = (k ~1)g — kg = —g and
(1) - l) — (k — 1) =v—k = jg"™ = Jgmp® for J = j/p’- >1. So qm—‘lpl(mq) +
Jqmpt = g™ 1p? Eyei"(l’f(y) —1) and so

g(J 1) =3 (p’™ 1) (2)

yéuf’
We now show J < ¢ — 1.

Denote by El([z],[Y"]) the elation group in N* with centre [z], axis [Y'], where
Y € 2\S. Consider the pre-image H (under the restriction of & to £ly(z)) of
(2], [Y']). We have:

r = (= )

Counting the elements of H, we get
|H|=j(p" - 1)+ 5" +a

where a, is the number of elements in H\(ker(x) N £ly(z)) with no centre, p* =
[€ln (Y, )| and p" = |ker(x) N H|. (Note that |£1y(X,z)| is constant as X ranges
over Y', by Lemma 3.6.) So j(p* — 1)+ p" + a1 = gp” which implies that j(p" —
1)+ a1 =p"(g—1). Soj < p"(g—1) and hence

J=j/p" <j/p"<q-1 (3)

(Note that p” < p* because H C Ely(z).) By Lemma 3.5(b), p/® = pfi
a constant for all y € A;. It follows, using Lemma 3.5(a), that ¢(J — 1) =
Zﬁll g™t (pf — 1). Suppose for some A;, f; # 0, ie. pfi —1 > 0. Then
g(J —1) > g™t But J < g - 1by (3),s0q(g—2)> g™, ¢~2> ¢™ and
g{1—¢™ 1) > 2. As ¢ > 2 and m > 2, this is a contradiction. So pf =1 for all ,
and from (2), J = 1.

Hence v — k = jg™ = p*¢™ and |€ly{z)| = p* = p®¢™, i.e. =z is a translation
block. O

Lemma 3.8 The design D is a D(n,q) for some n > 3.

Proof In the notation used in the proof of Lemma 3.7, we have v — k = jg™ =
p*q™, and so j = p*. By Lemma 3.1, |S| = é{% and thus p* = ¢* for some t > 1.

“ . el t mbtbl
By Lemma 3.1 again, v = jQ(m + 1) + 8| = ¢* (5072 4 €2 = o201

Q(m+1+1), and similarly k = Q(m+t)and A = Q(m+1t—1). Let n = m+¢. As
D is a symmetric 2-design, we have proved that D is a D(n, ¢). Note that n > 3
since m > 2. 0
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Prootf of lneoremn o DY LCHNE&S J4.%, J.0 allll ©.0, &5 48 & T8 1) = 57
n > 3 and prime power g, every block in T'is a translation block, and every block
of D which contains S belongs to T. Also, since (D,G) is in Class B, each point
of § lies on at least two blocks in T', and therefore S is not equal to and does not
contain the intersection of any two blocks of D. It follows, by Results 1.9 and 1.6,
that either (i) D = Py 4 or (ii) D2 = D(S) is a D(s, ) for some 5,2 < s<n— 3,
and D is isomorphic to a design D* obtained from P, 4, by substituting the
design D, for the design of points and hyperplanes of a suitable s-dimensional
subspace U of Py, 4.

Suppose that (ii) holds. Then the point-set of D (strictly speaking, D*)is obtained
from that of P, , by replacing the point-set of U by the point-set of Dy; and, if y
is a block of P, ; then the corresponding block y' in D is obtained by replacing
yNU by (ynU) ify U (or by Sify D U), where 6 is the fixed bijection from
the block-set of U to the block-set of D, (as in (8], p239).

Now consider the map 7 from D to P, , defined as follows. Each block z of D is
mapped by 7 to the (unique) block y of P, 4 such that z = y'. Each point of D
which lies in § is mapped by 7 to itself. If X € S then there is a non-identity
elation « in N with centre X and axis ' D §. Now a induces, in an obvious
way, an automorphism f of P, , which fixes z pointwise but has no further fixed
points. Since 8 is an axial automorphism of P g, it has a (unique) centre Y. If
y' is any block of D which contains X, then o fixes y' and so [ fixes y, that is y
contains Y. So the blocks y of P, 4 such that 3’ 3 X have a unique common point
Y. Necessarily, Y € U. For X € S, we define (X) to be the point ¥’ constructed
in this way.

But then 7 is an isomorphism from D to Pnq (as it maps concurrent blocks to
concurrent blocks). So D = Py g.

By Theorem A, N/H = PSL{(m+1,q). But n > m+1 by the proof of Lemma 3.8,
and m > 2. So N/H = PSL(n — s,q) for some 5,0 < s <n-—3. This completes
the proof of Theorem B. )

Remark

The pairs (D, @) in Class C are examined in (5], where under extra conditions it
is shown that D is a D(n,q) and that D has a subspace isormorphic to P, 4 for
some s, 2 < s < n— 2. In particular, if s = n — 2 then D = Py 4 or D is obtained
from P, 4 by a process called K-alteration.
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