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Abstract

Let D be a symmetric 2-design which has an automorphism group
G such that every point of D is the centre for some non-identity
elation in G and some point of I is the centre for two non-identity
elations in G whose axes are distinct. In [4] a classification (into
Classes A,B,C) of the pairs (D, G) is given, and the designs in Class
A shown to be projective spaces. In this paper we investigate the
designs in Class B. We show that D = P, and a certain subgroup
of 7 has a factor group isomorphic to PSL(n — s, ¢q) for some 0 < s
< n—3. The designs in Class C are studied in a further paper [5].

80 Introduction

We are interested in the classification of a specific class of designs among a larger
class using automorphisms. For example, in 1959, Wagner [13] classified the finite
Desarguesian projective planes among the finite projective planes by postulating
the existence of certain elations. In 1963 Piper [11] weakened Wagner’s postu-
lates and generalised his results. More recently Kelly [8,9] has generalised the
result concerning projective planes having two translation lines by characteris-
ing the symmetric designs having at least two translation blocks. He has also
given necessary and sufficient conditions for a symmetric design having more than
one translation block to be a projective space. Butler has generalised translation
blocks to semi-translation blocks. He has classified symmetric designs with more
than one semi-translation block [2,3]. We are interested in characterising the finite
projective spaces P, , among the symmetric designs by considering elations, since
projective spaces have a large automorphism group containing many elations.

Let D be a symmetric 2-(v, k, )) design. An automorphism of D which fixes a block
¢ pointwise and a point X blockwise is called an elation, or an (X, z)-elation; and
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A 18 called a centre, z an axis ior the elation. 1N tnis paper we reserve the term
“elation” for such an automorphism which is not the identity.

Now let (7 be a subgroup of Aut(D). We denote by £lg(X), £lg(z) and Ela(X, )
the subgroups of G generated respectively by all elations in G having centre X, all

E(G) of G has as points the points of D which are centres of elations in G, as
blocks the blocks of D which are axes for elations in &, and P is incident with
z in E(G) if there exists a (P, z)-elation in G. We say that the pair (D,) has
Property A if every point of I is a point of E(G), and some point of E(G) is
incident in E(G) with more than one block of E(G).

As in [4], we say that a block z of E(() is & maximal axis if the number Cs(z) of
points of E(G) incident with = in E(G) is as large as possible, that is, Cg(z) >
Ce(y) for all blocks y of E(G). Assuming that (D, ) has Property A, we use (as
in [4]) the following notation:

T = the set of all maximal axes;
N = the subgroup of G generated by the elations in G/ whose axes are
maximal;

S = the set of all points of IJ which are fixed by all the elements of V.

In [4] (Lemma 3.3 and Theorem 3.5) it was shown that if (D,G) has Property A
and A > 1 then (D), N) also has Property A, indeed every point of IJ is the centre
of an elation in N whose axis belongs to T, and some point of D is the centre of
two such elations with distinct axes. Furthermore it was shown that we have one
of the following three situations:

Class A: § = 0, T is all the blocks of D and E(N) = D.

Class B: § # 0, every point not in § lies on at least two blocks in T, and
whenever a point X lies on a block y in T' then there exists an (X, y)-
elation in N

Class C: § # (b and every point not in § lies on exactly one block in E(N).
It was shown in [4] that if (D, G) is in Class A then D & P, g and N = PSL(n+1,q)

for some n > 3 and prime power g. In this paper we investigate the case where
(D, ) is in Class B. Our aim is to prove the following theorem.

subgroup of Aut(D). Suppose that (D, G) has Property A and is in Class B. Let
T denote the set of all maximal axes of (D,G), N the subgroup of G generated

by the elations in G whose axes belong to T', and H the (normal) subgroup of N
fixing all the blocks in T'. Then

(a) D = P, 4 for some n > 3 and prime power g.
(b) N/H = PSL(n — s,q) for some 5,0 < s <n—3.
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We assume throughout the remainder of this paper that (D, G) satisfies the hy-
potheses of Theorem B, and that T', §, N and H have the meanings assigned to
them in §0. We shall denote the complement of S in the point-set of D by S,
and the complement of T in the block-set of D by T. By a D(n,q) we mean a
symmetric 2-design which has the same parameters as the projective space P, ;.
From [4] we have the following results.

Result 1.1 ([4], Result 0.1) If = is a block in D then the group £lg(z) acts
semi-regularly on the points of D not incident with z. 0

Result 1.2 ([4], Result 1.2) Let D* be a 2-design and G* a subgroup of Aut(D*).
Let @,8 € G* and let (X,z), (Y,y) be flags with X ¢ y and ¥ ¢ 2 such that o
has exactly one centre X and one axis # and 2 has exactly one centre ¥ and one
axis y. Suppose further that o and f have the same prime order p. Then there
exists v € (a,f) C G* such that v maps X to Y, fixes z Ny pointwise, and fixes
all the blocks containing the line XY, Furthermore, if D* is symmetric then v
maps z to y. 0

Result 1.3 ([4], Result 1.3) Ha € flg(X,z), B lg(Y,y) with Y €2, X ¢y

and o, # 1 then [, 8] # 1 and [a,f] € Elg(Y, z) (where [a, 8] = a™! " 1af). O

Result 1.4 ([4], Lemma 1.4) If a € £lg(4,z) and B € Elg( B, z), where A £ B
and o, # 1, then a and f commute and have the same prime order. |

Result 1.5 ([4], Corollary 1.5) If £lg(z) contains two elations with different
centres, then £lg(z) is an elementary p-group. a

Result 1.6 ([4], Lemma 1.6) I D* is a D(n,p), with p prime, and there is a
block z in D* such that every point X on z is the centre of an (X, z}-elation, then
D* =P, 0

Result 1.7 ({4], Theorem 2.4)  All the elations in G have the same prime order.
O

Result 1.8 ([4], Lemma 3.3) The subgroup N of G acts transitively on each of
SandT. O

Following Kelly [8], we say that a block z of a symmetric 2-design D* is a
translation block if the group of automorphisms of D* fixing every point incident
with z acts transitively on the set of all points of D* which are not incident with z.
In [8], Kelly describes several methods for obtaining one D(n, ¢) having translation
blocks from another. One of these he calls substitution. For a description of this
procedure, see either [8] or our proof of Theorem B in §3.

We shall need the following result of Kelly.
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Result 1.9 (Kelly [9], Theorem 6.2) Let D* be a D(n,q) withn > 3 and ¢ > 2,
let 7* be a set of translation blocks of D¥, and let §* = [, cq. y. Suppose that
S* is not equal to and does not contain the intersection of any two blocks of D*,
and that every block of D* containing S* is a translation block. Then either
D* =P, . or D*(5*)is a D(s,q) for some 5, 2 < 8 < n— 3, and D* is isomorphic
to a design obtained from P, by substituting D*(S$*) for the design of points
and hyperplanes of an s-dimensional subspace of P, 4.

Here D*(S*) denotes the design on §* whose blocks are the distinct sets =z N 5*
as ¢ ranges over the set of all blocks of D* which do not contain 5*.

Finally we shall need the following powerful theorem of M. E. O’Nan.

Result 1.10 (O’Nan [10]) If N* is a 2-transitive permutation group acting on

a set {} and, for some a € §, the group N} contains an abelian normal subgroup

A, with 4 # 1, such that 4 does not act semi-regularly on (1\{a}, then PSL{m +
,q) < N* < PT'L(m +1,q) for some m > 2 and prime power g.

This theorem, together with related results and constructions, is discussed in [12],
Chapter 6.

§2 The guotient design

We assume, throughout, the hypotheses of Theorem B. In this section we construct
from (D, @) a 2-design D; and a homomorphism x: N — Aui(D;), and then
proceed to show (using the theorem of O’Nan, Result 1.10) that, for some m > 2
and prime power ¢, D1 & Py, g and N* =2 PSL(m + 1,49).

In analogy with the construction of quotient spaces from projective spaces, we
define the guotient design D; of (D, G) as follows. The points of D; are just the
elements of T (considered as subsets of the point-set of D). The blocks of D; are

the distinct sets
=<ﬂ{yeT[y:aX})\s

as X ranges over the whole of 5. Incidence in Dj is just set inclusion. When we
wish to emphasise that an element y of T is being considered as a point in Dy
(rather than as block of D) we shall denote it by [y]. Similarly, when we wish to
emphasise that the set X' (consisting of various points of D) is being considered
as a block in D;, we shall denote it by {X'].

Lemma 2.1 The sets X' are a constant size j.

Proof The group N fixes S pointwise, is transitive on § (Result 1.8), and maps
T onto itself. 0

Lemma 2.2 D is a 2-(v,k, ) design with b = 1’:—}“21 blocks, v = |T'| points,
T = E:;Iﬂ blocks on a point and A = A—‘]]—SJ blocks on two points.
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k of points of D;. Note that the blocks of D, as point sets of S, partition S, hence
b= 3’«;.1—'?1. Since N is transitive on T (Result 1.8), each point [y] in D is incident

with a constant number r = k—"}Ls—l of blocks of Dy. Further Dy is a 2-design since
two points [y1], [yz] determine a constant number A = é—i}“ﬂ of blocks of Dy. O

In order to examine the automorphisms of D inherited from D, we define a
mapping r: N C Aut(D)} — Aut({Dy).

Lemma 2.3 Ifa € N, define the action of a® in D; by: for y € T, [y]2" = [y*];
for X' (X € §), [X']*" = [(X*)']. Then x is a group homomorphism, k: N —
Aut(Dl).

Proof We show that the mapping above is well defined. If A,B ¢ X' with
{(A=)'] # [(B=)'] then the set of blocks in T' containing A* is different from the set
of blocks in T containing B*. However A, B € X', so A and B and hence A% and
B= are incident with the same set of blocks of T, contradicting [(A%)] # [(B*)"].

If « € N, then o” is an automorphism of Dy, since ¢ € Aut(D). Further, by
considering the image of a point [y] of Dy under (a3)", we can show that x is an
homomorphism. O

Although elations are only defined for symmetric designs, if « is an elation of D,
o has also ‘elation-like’ properties, as seen in the following lemma.

Lemma 2.4 HzeT, X € z\S, and a is an (X,z)-elation in N, then the
following hold (a) @® has exactly one axis, and the set of fixed points of a® is
{ly] [ y € T and y 3 X} (b} o" has exactly one centre, and the set of fixed blocks
of a® is {[Y'] ‘ Y € 2\S} (c) If a has order p and X € §, then a* has order p.

Proof (a),(b) o fixes the block @ pointwise in D, hence the point [z] blockwise in
D,. Let y € T be any block through X. S y* = y and so a® fixes the points [y],
y 9 X. We claim that these are exactly the fixed points and blocks of a*. Firstly,
o fixes no other blocks in 7. Secondly, if we suppose [Y']®" = [Y'], for ¥ ¢ =
then Y'™ = Y as sets, so there exists y O V' with y € T such that y F X (since
X ¢ ¥'). Hence a fixes 2 set of size > A+ |Y'| > A in the block y, so y is a fixed
block. This contradicts y  X. Thus a* fixes exactly the blocks [Y'], Y € z\S.

(c¢) This follows since & is & group homomorphism, so |a®| = 1 or p. Since a does
not fix all the blocks of T, &® is not the identity in D;, hence it has order p. O

Denote by Ely([y]) the image under &k of Eln(y). Since Eln(y) is an elementary
p-group, so is £l (ly]). The next lemma determines the properties of N*.
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Lemma 2.9 (a) Ior each fiag (|z], | A '|) 1n D, there exisis ¥ € /N™ with exacily
one centre [z] and exactly one axis [X'], (b) N* is 2-transitive on the points of
Dy, (c) for any point [z}, £lyy([z]) is a normal subgroup of N*(,;.

Proof (a) Follows from Lemma 2.4 since there exists an (X, z)-elation for each
zeTl, X €z

(b) As N is transitive on T, N* is transitive on the points of Dy. Let [z] be any
point in D;. We show that N*(;) is transitive on the remaining points of D;. Let
[4], [#) be any two distinct points of Dy, distinct from [z].

If [z], [y], [2] are not collinear, then there exists a block [Y'] 3 [y}, [Y'] # [2] and
a block [Z'] 3 [2], [Z2'] # [y]. By (a) and Result 1.2 there exists an automorphism
v € N* with v fixing [z] and mapping [y] to [2].

If [], [y] and [z] are all collinear, let [w] & [z][y]. So [z], [y], [w] are not collinear,
and [z], [z] and [w] are not collinear. A repeat of the above argument gives the
required automorphism.

(c) follows from the fact that x is a group homomorphism and £ly(z) is normal
in N,. ]

Lemma 2.6 Let D* be a symmetric 2-design and let G* be a subgroup of
Aut(D*). Suppose that there exist points X, ¥ and blocks =, y with X,Y € =,
X ¢ yand Y €y, such that £lg-(X,z), €lg-(Y,y) and £lg- (Y, z) are non-trivial.
Then £lg- (X, z) and Elg- (Y, y) are abelian groups.

Proof This proof uses techniques from [6]. For a € £lg- (X, z) and § € &lg- (Y, y)
define the maps f, and fg as follows (as in [6]):

fa:aG‘ (Y;y) - gIG‘(me) fa:ﬂ = {avﬂ]
f: 6l (X,2) = €l (V,2)  farars [o,f]

If |Elg« (X, z)| = 2 then €lg. (X, z) is abelian. Otherwise, suppose oy, a; are dis-
tinct non-identity elements of £lg- (X,z). Let v = [az,B] for some 8 € Elg- (Y, ),
B # 1. By Result 1.3,y € &lg-(Y,z). By definition v = a; ' e and
s0 agy = B laxf = a?, an elation with centre Xf # X,Y. So a;, v and
ayy are elations with distinct centres and hence commute (Result 1.4). Thus
(a1a2)y = a1(aay) = (azy)on = (@za1)y. Hence ajaz = apay as required. As
Elg+(X,z) is a group, it is an abelian group.

To show that Elg« (Y, y) is an abelian group, use the dual of the result just proved
for Elg- (X, z). 0

Lemma 2.7 For each z € T, £ln(z) is an elementary abelian p-group.
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elations with distinct centres commute, so it remains to show that elations with
the same centre commute.

Let z € T and X € z\S. Then |Eln(X,2)| # 1. Choose Y € §. Then there exists
y € T with Y € y and X ¢ y. Note that £ln(Y,z), Eln(Y,y) are non-trivial.
Applying Lemma 2.6, we have £l (X, z) is abelian.

Let z € T and Y € S. Choose X € §\z Then |Ely(X,z)| # 1 for some z € T.
Also Eln(Y, z) and £1y(Y, ) are non-trivial. Again by Lemma 2.6, £1n(Y,2) is
abelian. 0

Theorem A  Suppose that (D, G) satisfies the hypotheses of Theorem B, that
N and H are defined as in the statement of Theorem B, and that D, is the quotient
design of (D, G). Then

(a) Dy & Puy g for some m > 2 and prime power g.

(b) N/H = PSL(m +1,q).

Proof We apply the theorem of O'Nan, Result 1.10, to the group N” considered
as a permutation group acting on the points of Dy. By Lemma 2.5, N is 2-
transitive on the points of Dy and, for any point [a] of Dy, £l3y([e]) is a normal
subgroup of Nf;, and EVy(lal) # 1. By Lemma 2.7, £, ([a]) is abelian and by
Lemma 2.4, £13([a]) does not act semi-regularly on T\{[a]}. So we may apply
Result 1.10, with N* = N*, Q = T and 4 = £l%,([a]).

Examining the proof of Result 1.10 (see [10] or [12]) we see that N* is shown to act
as a group of automorphisms of a 2-design D(TI'} isomorphic to the design of points
and lines of a projective space Py, ¢, for some m > 2 and prime power ¢q. The points
of D(I') are just the elements of {2, while the blocks of D(T") are the subsets of £} of
the form Fp(A7), where o € N* and y € 2\{a”} (see [12], p306). In our situation,
the points of D(T') are the elements of 7 and the blocks are the distinct subsets of
T of the form I'(z,y) = {t € T' | t is fixed by every element of Eln([=])y }, where
z and y range over T with z # y.

In the proof of Result 1.10 it is also shown (see [12], p311) that if z = o then
A? consists of all the elations with centre « in the projective geometry D(T'). The
fixed points of any non-trivial element of A“ therefore form a hyperplane in this
projective geometry.

In our situation, suppose [X'] is any block of D;. Choose a point [z] of D; which
is incident with [X'], and choose a non-trivial element & of £in(X,z). Then
a® € Ely([z]) and so the elements of T', i.e. points of D(I'}, fixed by «* form a
hyperplane in D(T'). By Lemma 2.4, the elements of T fixed by «* are just those
which are incident (as blocks of D) with the point X of D. So the points of Dy
incident with the block [X'] of D, are precisely the points of a hyperplane in the
projective geometry D(T). V
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i1 tollows from the denmition ol "blocks™ 1n 1J); that the hyperplanes corresponding
to two distinct blocks of Dy must themselves be distinct. However Dy has at least
as many blocks as points (since it is a 2-design), whereas D(I') has equally many
points and hyperplanes (as it is a projective geometry). So every hyperplane of
D(T') corresponds to a block in D;.

We conclude that D; & Py, and PSL(m +1,9) < N* < PTL(m + 1,q). But N*
is generated by elations, so N* < PSL(m+1,g). Thus N* = PSL(m +1,¢). This
completes the proof of Theorem A. 0

§3 Translation Blocks

We are still assuming the hypotheses of Theorem B. In this section we first show
(using Theorem A) that every block in 7T is a translation block. We then proceed,
using the work of Kelly (Result 1.9), to complete the proof of Theorem B.

By Theorem A, Dy 2 P,, , for some m > 2 and prime power ¢. For any =, let us
denote by (J(n) the number 3;51-1».

Lemma 3.1 We have the following relations holding between the numbers m,
g, 7 (see Lemma 2.1), |S|, |T'| and the parameters v, k, A of the design D:

(a) IT| = Q(m +1)
(b) v =|S|g™*! + Q(m + 1).
(c) k= [Slg™ + Q(m).
(d) A=|S]g™ ™"+ Q(m —1).
(e) 18] = izt
(f) v~ |8]=jQ(m +1).
() k— 5] =3Q(m).
(h) A —[5]=jQ(m —1).
Proof By Theorem A, Dy = P, , and so the parameters of Dy are v = b =

Q(m +1), 2= Q(m), A= Q(m —~ 1). Equating these to the expressions for v,b,7
and ) in Lemma 2.2 gives (a), (f), (g) and (h) respectively.

We now prove (e). As D is a symmetric design, A(v — 1) = k(k — 1) and so
Mv—k) = (k—A)(k—1). By subtracting (g) from (f), and (h) from (g), we obtain
v—k=37¢™ and k — X = j¢g™ 1. Substituting the expressions for A\,v — k, k — A
and £ —11in Mv — k) = (k — A)(k — 1) we obtain

(1-2%2___ + ISI) (Ga™) = (g™ ) (

122, which proves (e).

11+}s;-1>.

Simplifying this expression gives |S| = p
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fcalrallgliilg e expression 101 (o] 1 (g), We gl 7 = [ (g — 1) + 1. suostituiing
this expression for j in (), (g) and (h) gives (b), (c) and (d). a

Lemma 3.2 If X € Sand ¥ € § then |ly(X)| = g™t and |€ln(X)y| = ¢™.

Proof Let X € §. Then Nx = N and soc Ny is transitive on T. Suppose
IEIN(X)] = p°, |€IN(X )y | = p*¥). Since N fixes X and is transitive on §, d(Y)
is a constant d for Y € §. Counting the pairs (a,Y) where & # 1 is in Ely(X)
and Y € § is fixed by o, we get

(7" = D)k~ 1S]) = (»* ~ 1)(v — |S]) (1)

Using Lemma 3.1

(v = 8],k = |S]) = (1Q(m + 1),5Q(m)) = 5(Q(m + 1), Q(m)) = j.

(55%) o) - (57) G

o

A B C D

So (1) gives

S0 AB = CD and since (4,0} =1, A| D and C | B, and since (B,D) =1, B |C
and D | A. Thus A= D and B = . Thus

pa, -1 3 pu(m+l) —1
p(u’d) -1 - pY - 1 !

where p* = g. It follows that p* = p(*®) p= = gm+1 gnd pd = g™, o

Under N, D has |S]-+1 point orbits, namely the points of § and the orbit §. As D
is symmetric there are |§] + 1 block orbits. Excluding the orbit 7', let Ay,..., A5
be the block orbits. Let ; = y N § for any y € A;; this is well defined since N
fixes § pointwise.

Consider the structure D, whose points are the points of § and whose blocks are
the subsets ¢; of §,for 2 = 1,...|5|. We now show that the p; are a constant size.

Lemma 3.3 If |S| > 1 then D, is uniform with block size L§lq:£‘

Proof As T =I5 A;, we have (by Lemma 3.1)

=1

|S|

3 1A = ISlgm )
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Count the Nlags (£,Y) where " € s and y € L, 80 [O{&— |L |)= p ;- |Di]iPi]. DY
Lemma 3.1,
151

S 1Adllesl = g™ISI(1S1 - 1) (2)
i=1
Count the 2-flags (P,Q,y) where P,Q € S, P# Q andy € T.
5]

ISI(18| - 1A = [T]) = Z |Asllesl(lesl —1)

151 S|

151151~ 1)g™ (181 = (g +1)) = 3 IAdllwel® = 3 Adlledl

15|

=3 [llesl® — g™IS1(1S1 - 1)

d=1
from (2), so
151

S Insllesl® = 181151~ g™ (8]~ (a + 1) +a) = ISI(IS] = 1¢™ - (3)

We show that ;| = (|S| - 1)/g for i = 1,...,|5]. Consider

%mi(w—(’s' ))
t}:S‘Z!Allsmlhz(‘sl )ZIAHI@,H—OS‘ )2§|A,-1.

i=1

So, from (3), (2) and (1)
— ISI(18] - 1)2g™ — 2(‘5 - 1)qm|sr(ts1 S+ ('—Si;-i) 1Slg™

q
=0

Since the left hand side is a sum of squares, it follows that each term must be zero

ie. |¢i|=l§lq:—1~fom'=1,...,1sl. 0
Lemma 3.4 Every block of D which contains S belongs to T'.

Proof If|S| > 1 and y € T then, by Lemma 3.3, y meets § in fewer than ||
points and so y does not contain S. If |S| =1 then N has only two block orbits:
one must consists of the blocks which contain § and the other of the blocks which
do not contain 5.
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Lemma 3.5
(a) Ai| = g™t i=1,...,18]
(b) Forall z € T, N is transitive on each A;.

Proof For any given i, let X € §\y;. Thisis possible sinceif |S]| > 1, |p;| = @fl,
by Lemma 3.3, and if |§] = 1, ¢; = 0. Now consider the action of £ly(X) on
A;. Since no block in A; contains X, £1y(X) acts semi-regularly on A; (dual of
Result 1.1). But |£ln(X)| = ¢™*!, by Lemma 3.2. So ¢™+! | |A;]. However

S5 As] = |S]g™*, by Lemma 3.1. So |A;| = g™ and Eln(X) is transitive on
A;. This proves both (a) and (b). 0

Lemma 8.6 Forall z € T, N, is transitive on the points of z\S.

Proof Let z € T and X;,X; € z\S. Choose y1,y2 € T with X; ¢ y1 and
X2 & ya.

If Xy ¢ 1 choose Y1 € y1\z and then use N to map (Xy,z) to (¥1,%1) and then
map (Y1,y1) to (X2,2) (by Result 1.2).

If X; ¢ y2 we may similarly map (X1,z) to (Xz,2) via (Y2,y2) where Y3 € y2\a.

Suppose now that X3 € y; and X; € y2. Then y1 # vz so y1 € ¢ Uy, and
ys € zUy;. We may therefore choose Y2 € yo\{® Uy:) and ¥y € y1\(z Uy2) and
use N to map (X1,2) to (Xa,2z) via (Yy,y1) and (¥2,92). o

Lemma 3.7 Every block in T' is & translation block.
Proof Suppose z € T. Let |Ely(z)| = p*. For y € T\{z} let |Eln(z),| = ),

and for y € T, let |Eln(z)y| = p*¥). Count (a,y) where o £ 1 in Ely(z) fixes the
block y # =.

k- -1)= > E®@-1)+> @EF®-1) (1)

yeT\{z} y€T
Recall the group homomorphism x: N — N*. This results in the isomorphism:

En(z) oo
ker(n)?? Ein(z) — Elnv(l=])

Since |1y (z)| = p® and by Theorem A, N* = PSL(m + 1, g) so [Ely([=])| = ¢™

(recall from §2 that £l ([z]) is the image under & of Ely(2)). If | ker(k)NElN ()| =
p? then it follows that p® = ¢™p*. Fory € T\{z},

Eln(z)y ~ (oY
m = (Eln (=)
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and so p®¥) [p? = g™, p*¥) = ¢™ 7 p?, since ker(k)NEIN(z) = ker(k)N(Elnv(z)y)
for all y € T\{z}. So p*¥) is a constant p?, say, for all y € T\{z}.

Let y € T. We show that |y (2)| < ¢. For ¢ € Eln(z), y? is a block not equal to
z and containing # Ny. So distinct elements of y€¥ (2) intersect exactly in z N y.
Elv(2), that is

Ein(a) < VK
ly <=
;4T
= ']1—1 by Lemma 3.1
J9

:q_

By the orbit-stabilizer theorem, |Ely (2),|ly€'*®)| = |€ln(z)]. As [y (@) < ¢
and [y&iv (=) ‘ |ELn ()], we have |y&n (2] l g. Hence

[€ln(2)] _ ¢™p”
€l (z)y|  p)

q

and so g™~ 1p* | p*¥). Write p=(¥) = ¢™~1p*p/(¥) where p/(¥) > 1. From (1)

(k=1)(¢g"p" — 1)

= (IT| - 1)(p*¢" " - 1) + (}: q"‘“p"pf(")) — (v —|T))

y€eT
= (171 = 1)(p*q™ ™ = 1)+ ™79 ('~ 1) + ¢ P v = |T) - (0 = IT)
y€T
= (IT| = D)(p*g™ ! = 1) + (v — |T(g™*p* = 1) + ¢™p" ) (P ~ 1)
Z'IET

:(vwl)(qm 1 z___l m 1 zZ(pf(?l).__l)

yeT

Hence

1 (k—1)g—(v—1) = (k=1)+ (v = 1) = g™ Ip Z (pP) — 1)

'~3

However (k —1)g — (v —1) = (k —1)g — k(k —1). We now show that ¥} = q.
Using Lemma 3.1 we have k = jQ(m) + -7—— and hence k — 1 = ]Q(m) + L—q-
Again by Lemma 3.1, A = jQ(m — 1) + f}—:— and so

k=1 _ _ilg=1)Q(m) +(j —q)
A ila-1)Qm 1)+ (G -1)
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which simplifies to g. Hence (k ~1)g— (v~ 1) = (k ~1)g — kg = —g and
(1) - l) — (k — 1) =v—k = jg"™ = Jgmp® for J = j/p’- >1. So qm—‘lpl(mq) +
Jqmpt = g™ 1p? Eyei"(l’f(y) —1) and so

g(J 1) =3 (p’™ 1) (2)

yéuf’
We now show J < ¢ — 1.

Denote by El([z],[Y"]) the elation group in N* with centre [z], axis [Y'], where
Y € 2\S. Consider the pre-image H (under the restriction of & to £ly(z)) of
(2], [Y']). We have:

r = (= )

Counting the elements of H, we get
|H|=j(p" - 1)+ 5" +a

where a, is the number of elements in H\(ker(x) N £ly(z)) with no centre, p* =
[€ln (Y, )| and p" = |ker(x) N H|. (Note that |£1y(X,z)| is constant as X ranges
over Y', by Lemma 3.6.) So j(p* — 1)+ p" + a1 = gp” which implies that j(p" —
1)+ a1 =p"(g—1). Soj < p"(g—1) and hence

J=j/p" <j/p"<q-1 (3)

(Note that p” < p* because H C Ely(z).) By Lemma 3.5(b), p/® = pfi
a constant for all y € A;. It follows, using Lemma 3.5(a), that ¢(J — 1) =
Zﬁll g™t (pf — 1). Suppose for some A;, f; # 0, ie. pfi —1 > 0. Then
g(J —1) > g™t But J < g - 1by (3),s0q(g—2)> g™, ¢~2> ¢™ and
g{1—¢™ 1) > 2. As ¢ > 2 and m > 2, this is a contradiction. So pf =1 for all ,
and from (2), J = 1.

Hence v — k = jg™ = p*¢™ and |€ly{z)| = p* = p®¢™, i.e. =z is a translation
block. O

Lemma 3.8 The design D is a D(n,q) for some n > 3.

Proof In the notation used in the proof of Lemma 3.7, we have v — k = jg™ =
p*q™, and so j = p*. By Lemma 3.1, |S| = é{% and thus p* = ¢* for some t > 1.

“ . el t mbtbl
By Lemma 3.1 again, v = jQ(m + 1) + 8| = ¢* (5072 4 €2 = o201

Q(m+1+1), and similarly k = Q(m+t)and A = Q(m+1t—1). Let n = m+¢. As
D is a symmetric 2-design, we have proved that D is a D(n, ¢). Note that n > 3
since m > 2. 0
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Prootf of lneoremn o DY LCHNE&S J4.%, J.0 allll ©.0, &5 48 & T8 1) = 57
n > 3 and prime power g, every block in T'is a translation block, and every block
of D which contains S belongs to T. Also, since (D,G) is in Class B, each point
of § lies on at least two blocks in T', and therefore S is not equal to and does not
contain the intersection of any two blocks of D. It follows, by Results 1.9 and 1.6,
that either (i) D = Py 4 or (ii) D2 = D(S) is a D(s, ) for some 5,2 < s<n— 3,
and D is isomorphic to a design D* obtained from P, 4, by substituting the
design D, for the design of points and hyperplanes of a suitable s-dimensional
subspace U of Py, 4.

Suppose that (ii) holds. Then the point-set of D (strictly speaking, D*)is obtained
from that of P, , by replacing the point-set of U by the point-set of Dy; and, if y
is a block of P, ; then the corresponding block y' in D is obtained by replacing
yNU by (ynU) ify U (or by Sify D U), where 6 is the fixed bijection from
the block-set of U to the block-set of D, (as in (8], p239).

Now consider the map 7 from D to P, , defined as follows. Each block z of D is
mapped by 7 to the (unique) block y of P, 4 such that z = y'. Each point of D
which lies in § is mapped by 7 to itself. If X € S then there is a non-identity
elation « in N with centre X and axis ' D §. Now a induces, in an obvious
way, an automorphism f of P, , which fixes z pointwise but has no further fixed
points. Since 8 is an axial automorphism of P g, it has a (unique) centre Y. If
y' is any block of D which contains X, then o fixes y' and so [ fixes y, that is y
contains Y. So the blocks y of P, 4 such that 3’ 3 X have a unique common point
Y. Necessarily, Y € U. For X € S, we define (X) to be the point ¥’ constructed
in this way.

But then 7 is an isomorphism from D to Pnq (as it maps concurrent blocks to
concurrent blocks). So D = Py g.

By Theorem A, N/H = PSL{(m+1,q). But n > m+1 by the proof of Lemma 3.8,
and m > 2. So N/H = PSL(n — s,q) for some 5,0 < s <n-—3. This completes
the proof of Theorem B. )

Remark

The pairs (D, @) in Class C are examined in (5], where under extra conditions it
is shown that D is a D(n,q) and that D has a subspace isormorphic to P, 4 for
some s, 2 < s < n— 2. In particular, if s = n — 2 then D = Py 4 or D is obtained
from P, 4 by a process called K-alteration.
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