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ABSTRACT: Let I be an infinite, connected, vertex transitive and edge
transitive, directed graph with finite but unequal in-valency and out-valency.
Then there is an epimorphism ¢ from the vertex set of I to the set of integers
Z such that (a,f) is an edge of I' if and only if ¢(8) = ¢(«) + 1. Thus the
natural directed graph on Z is a homomorphic image of I". Moreover, for

each 1 € Z the inverse image ¢ 7' (4) is infinite.

1. Introduction

Let T be an infinite connected, vertex transitive and edge transitive, directed graph
with finite but unequal in-valency and out-valency. We shall show that there is a
graph epimorphism from I onto the integer directed graph, that is the directed graph
Z with vertex set Z such that (4,5) is an edge if and only if j = i + 1. This result
partially explains 2 phenomenon observed in [1] for highly arc transitive directed
graphs.

For s 2 0, an s-arc in a directed graph I' is a sequence a = (ag,...,a,) of
s+ 1 vertices of I' such that a;.; # a;; for 1 < i < s, and (@, ;) is an edge
for 1 < i < s; and I' is said to be s-arc transitive if its automorphism group acts
transitively on the set of s-arcs of I Thus edge transitive directed graphs, the
subject of this note, are l-arc tramsitive. A directed graph I' is called highly arc
transitive if it is s-arc transitive for all s > 0. It was observed in [1] that a large
class of highly arc transitive directed graphs had the integer directed graph Z as a
homomorphic image. The theorem below shows that this is a property of all such
directed graphs if the in-valency and out-valency are finite and unequal.

Theorem. Let I be an infinite, connected, vertex transitive and edge transitive,
directed graph with finite, but ‘nequal, in-valency and out-valency. Then there is a
graph epimorphism ¢ from I' to the integer directed graph Z and, for each i € Z ,
the inverse image ¢7!(3) is infinite.

In [1, Remark 3.4 (b)] it was asked whether the inverse images ¢7!() were
finite for a certain class of highly arc transitive directed graphs with finite in- or
out-valency. The theorem shows that the answer to this question is ‘no’ when the in-
and out-valencies are finite but unequal.
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Let G be a transitive permutation group on a set £2. Then & has a natural action on
2 x § defined by

(@, B)7 := (o, 57)
for (e, B) € 2x Q and g € G. The orbits of G in Q x Q are called orbitals for G, and,
for each a € ¥ and each orbital A, the set

Aa):={8 | (a,B) € A}
is an orbit for the stabilizer G, of a. Moreover each orbit of G4 in Q is equal to
A(a) for some orbital A. The cardinality of A(a) is independent of & and is called a
subdegree of G. To each orbital A corresponds a paired orbital A*, namely
A% :={(B,a) | (. 8) € A}
which may or may not be equal to A. If all subdegrees of G are finite then the
following function

¥ G- Q\ {0}
is well-defined. Let o € . For g € G let A := (a,a9)®, the orbital of G containing
the pair (@, a?). Then ¥(g) is defined as

_ 15|
Y= TR @)

This function was first brought to my attention by G. Bergman, and more recently
by Peter Neumann. Peter showed that ¢ is a homomorphism:

Lemma 1. Let G be a transitive permutation group on {2 such that all subdegrees
of G are finite. Then the map v defined above is a homomorphism from G into the
multiplicative group of rational numbers.

Proof. Let g, h € G and let A := (a,a9)C, T = (a,a?)C = (ahmx,a)G, and
Ti=(o,0")% = (a*7 a9)C. Set 8 :=a""" and v := af. Then

_IS@| _ [SB)| _|Gs: Gyl

N = I = o) | = T8, G|
_ 1G5 : Gapy |
lcv:GaB'yi

_ 1T(B) 1] Gap : Gapy |

| A* ()T TGy © Gapy |
_ |T*(@) |- | Gap : Gopy |
= 1 (g)p(h) [A(a) |- ]| Gay : Gapy |
= p(g)p(h).
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rurtner, the tunction ¥ 1s independent of a.

Lemma 2. Let G be as in Lemma 1, let 8 € {2, and let 15 be the function defined

by

RGN
[T=(8) |
where T := (8, 89)€, for g € G. Then g = .
Proof. Since G is transitive on {1, f = oF for some z € G. Let ¢ € G. Then
A= (8,69 = (a*,a"%)C = (a,a9=")C. Hence

$p(9) = P(zgz™")
= P(z)p(g)p(=)™"

, =(g)
since 1 is a homomorphism into the abelian group Q\{0}.

Pp(g) =

These are the basic tools we shall use to prove our theorem.

3. Proof of the Theorem

Let I'bea connected: vertex transitive and edge transitive directed graph, and let G
be a group of automorphisms acting transitively on the edges of T'. Then if («, 8) is
an edge of I', the G-orbital («, #)°, which we shall denote by T, is the set of all edges
of T'. Thus the subdegrees u =| () | and v =| T'*(a) | of G are the out-valency and
in-valency of I' respectively. Moreover, since I' is connected it is not difficult to show
that, if u and v are finite, then all subdegrees of & are finite. We shall show, for such
a group G, that the image of the function ¥ defined in section 2 is cyclic.

Proposition 3 Let G be a group of automorphisms of a connected directed graph
I' which acts transitively on the vertices and edges of I'. Suppose that T has finite
out-valency u and finite in-valency v. Then the function % defined in section 2 has
image

{G)liez),
the cyclic subgroup generated by u Jv.

Proof. Let « be a vertex of I' and let g € G, and A = (a, ag)G. The proof that
¥(g) =| Ala) | / | &%(@) | is a power of u/v is by induction on the length of the
shortest undirected path in I from @ to af. By an undirected path of length n from
o to af we mean a sequence @ = g, o1,...,0, = o of n 4+ 1 vertices such that
for each 1 < ¢ < n, either (@i-1,a;) or (i, 06-1) is an edge of I". If the shortest
such path has length 0 or 1, then by our remarks above ¥(g) is 1, u/v, or (ufv)L.
Suppose then that the shortest such path has length n > 2 and that (k) is a power
of u/v whenever there is an undirected path from a to a” of length less than n.
The penultimate vertex, ay-3, in a path o = ay,...,0m_1, ay, = af, is of the form
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@n1 = a® for some h € G, and inductively (k) = (u/v)? for some j € Z.If (o, a9)
is an edge then also (a,agh—l) is an edge and we have 2(gh™?) = u/v, whence
¥(g) = P(gh™)Y(h) = (u/vY*. Similarly, if (a9, o) is an edge then (agh—l,a)
is an edge and so ¥(g) = ¥(gh~')p(h) = (u/v)’~!. Thus the result is proved by

induction.

Now we are in a position to prove our theorem. Let I" and G be as in Proposition
3 and suppose that u # v so that 1 has an infinite cyclic image (and hence of course
I is infinite). Let 8 be a vertex of I', say § = of for some g € G. Then, if § = o” for
some other element h € G, the images %(g) and 9 (k) are equal (for o = a9*"" and
so, by the definition of ¥, ¥(gh™!) = 1, whence ¢(g) = ¢¥(h)). Now define a map ¢
from the vertex set of I' to Z by
| 46) =

where, if # = &f, then 1(g) = (u/v)’. By the remarks above this map is well
defined. Suppose that (B,7) is an edge of [, and that § = a9, v = a®, and
¥(g) = (u/v). Then (a,a"”wl) is also an edge and consequently ¥(hg™?) = u/v,
whence (k) = ¢(hg™)(g) = (u/v)*! so that ¢(B8) =1, ¢(y) =i+ 1. Thus ¢ is a
graph epimorphism from I onto the integer directed graph Z.

We shall show that the orbits of the kernel K of 4 are the inverse images ¢ (7)
for i € Z. It follows from the definition of ¢ that o = #~1(0). Suppose inductively
that, for some non-negative integer i, ¢~ 1(z) and ¢~1(—7) are K-orbits. We shall
show that ¢~ (i + 1) is a K-orbit. Let f = a® € ¢71(i) and let (B,7) be an edge
of I, where v = a¥. Then, as above, ¢(y) = i + 1. If ¥/ = ~* for some k € I
then 7' = a’* and ¢(gk) = P(9)p(k) = ¥(g) = (u/v)"*? whence ¢(v') = 7 + 1.
Thus v € ¢71(i + 1). On the other hand if 4/ € ¢™'(¢ + 1), say 7' = a® then
(g™ h) = ¢¥(g) (k) = 1 s0 ¢"'h € K and v/ = a* = 49 '* € K. Therefore
¢~ 1(i+1) = v*. A similar proof shows that ¢~(—i—1) is also a K-orbit, and hence
by induction the K-orbits are the sets ¢71(z), i € Z.

Now suppose that ¢71(z) is finite for some 1 € Z. Since the ¢~1(i) are orbits
of the normal subgroup K of G they all have the same cardinality, N say. Then,
counting the number of edges from ¢71(0) to ¢7*(1) we have Nu = Nv whence u = v
which is a contradiction. Hence the sets ¢71(7) are infinite. This completes the proof
of the theorem.
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