


























search showed tnat no such transversal exists. Serious efforts to decompose these
165 blocks in other ways were not made.

Another attempt focused on &,. There are 99 orbits of four-sets, each of length
five, under the action of o;. Several 2 — (12,4,3) designs (taken from Constable
(8]) were hit with random permutations. Roughly one in fifieen of these random
copies of & 2 — (12,4,3) design forms a “transversal” of 33 of the 99 orbits and
hence gives rise to five disjoint 2 — (12,4,3) designs. Over 30,000 such sets of five
disjoint 2 — (12,4, 3) designs were found but very few sets of ten mutually disjoint
2 - (12,4, 3) designs were found. Searches for a final “transversal” of the remaining
33 orbits were unsuccessful whenever tried.

The next attempts used alternate numerology. Observe that three divides v =
12, b = 33, and 15 (the number of designs in an LS 2 — (12,4,3)). Assume o3 =

(12 3)(4 56)(7 8 9)(10 11 12) and o4 = (1 4 7)(2 5 8)(3 6 9)(10)(11)(12) are
automorphisms of our LS. An LS of 15 designs might arise in a mixture of ways. For
example, an LS might have some sets of three mutually disjoint 2— (12,4, 3) designs
of type (o3,04) or of type (04,03). Alternatively, there might be “transversal”
designs across orbits of size three under o3 or across orbits of size three under oy.
This approach (though very promising) was not seriously pursued since a large set
was found by a different method.

Let o= o5 = (123)(456)(789)(10 11 12) and p = (1 47 10)(2 5 8 11)(3 6 9
12). Then o and p generate a cyclic group G of order 12. If G acts on our LS, there
must be some designs in the large set fixed by p, since four does not divide 15. We
assumed there would be three mutually disjoint designs of type (p, o) that would
cover all orbits of lengths 1 and 2 under the action of p. The other 12 designs might
partition into three disjoint sets where each set consists of four mutually disjoint
2 — (12,4,3) designs of type (o, p).

Such sets of 12 disjoint designs were easy to create, but efforts to decompose the
remaining 99 blocks, in the intended way, failed. In reverse order, we started with
a set of three disjoint designs of type (p,0) and iried decomposing the remaining
blocks. One attempt ran for a week but no large set resulted. In frustration, about
80 non-isomorphic sets of three designs of type (p, o) were generated.

It turned out that three of these 80 sets of 99 blocks had automorphism groups
of order 24 (rather than order 12 = |G|). After one of these three “special” sets of
three disjoint designs of type (p, o) was selected, a simple hill-climbing algorithm
was used to find 2 — (12,4,12) designs from the unused blocks. A design was saved
if it decomposed into a type (o, p) set of four disjoint 2 — (12,4,3) designs. This
process was repeated on the remaining blocks.

After several futile runs a fortuitous overnight run produced an LS. Consider
the following sets of blocks.

{1,2,4,5} {1,2,8,12} {1,2,9,11} {1,4,10,11}
s {1,5,6,9} {1,5,10,12} {1,6,7,8}  {1,7,9,12}
{4,5,9,10} {4,7,9,12} {4,7,10,11}
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{1,2,3,7  {1,4,5,7r {1,4,8,10} {1,4,11,12}
s, {1,5,6,8}  {1,5,6,10} {1,6,11,12} {1,7,9,10}
{1,9,11,12} {4,7,8,11} {4,8,9,10}

{1,2,5,11} {1,2,8,9}  {1,2,11,12} {1,4,5,8}
Ss {1,4,5,12} {1,6,7,9} {1,6,7,10} {1,6,8,12}
{4,5,7,12} {4,7,10,12} {7,8,11,12}

Applying powers of o to each S; produces the 33 blocks of a 2 —(12,4,3) design.
Then, applying powers of g to each such design produces a total of twelve mutually
disjoint 2 — (12,4, 3) designs. We need three more disjoint designs that are disjoint
from these twelve.

Define the following set of blocks T'.

o 3,6,9,12} {1,3,7,0} {2,6,8,12} {1,2,3,4} {1,2,3,10}
{1,2,5,7} {1,4,9,12} {1,5,8,12} {1,6,8,11} {2,3,8,12}

Now apply powers of p to the blocks in T to produce orbits of lengths 1, 2, 2, 4,
4,4, 4, 4, 4 and 4 (respectively). Thes 33 blocks give another 2 — (12,4,3) design.
Now, applying powers of o to this design gives a total of three 2 — (12,4,3) designs
which complete the large set. This large set is G—invariant where G = {0, p).

8 A large set of 3 —(12,5,6) designs

We also found a large set of 3 — (12,5,6) designs. There are six designs in a large
set. The key here is {o recognize that if one can get five disjoint designs then the
sixth one follows. Hence, we might define p = (1 4 5 9 3)(2 8 10 7 6)(11)(12) and
hope to find a G—invariant large set with G = {p). This will require that one design
be fixed by G, and the others cycle through an orbit of size five.

Define o= (12345678910 11)(12) and let (o, p) act on the following four
starter blocks:

{1,2,3,4,8} {1,2,4,5,12} {1,2,3,5,8} {1,2,3,7,10}

The resulting set of 132 blocks forms a 3 — (12,5, 6) design.
Next, let o act on the following set of twelve blocks.

{1,2,3,5,7} {1,2,3,6,7}  {1,2,3,6,9}  {1,2,3,8,10}
{1,2,3,8,12} {1,2,3,10,12} {1,2,4,5,7}  {1,2,4,5,8}
{1,2,4,6,10} {1,2,4,8,12} {1,2,6,10,12} {1,3,6,9,12}
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A8 PrOduces anoiner ¢ — (14,90, 0) aesign. rinaly, let the powers Ol p act on tnis
design, obtaining a total of six 3 — (12,5,6) designs. This set of six 3 — (12,5,6)
designs is a large set.

Note that this large set implies the existence of s large set of 2 — (12,5,20)
designs.
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daples ol large setis
In the following tables, N denotes the number of designs in the large set and ?

indicates that the large set is unknown. Also, * Denotes that the design does not
exist.

Table 1: Existence of large sets of ¢t — (v,k, \) designs, 6 <v < 12

Parameters N | Existence | Remarks

2—(6,3,2) 2 yes Bhattacharya [2]

2—(7,3,1) 5 no Cayley [4]

2 (8,4,3) 5 yes Sharry and Street [22]
3—(8,4,1) 5 no LS 2~ (7,8,1) does not exist
2-(9,3,1) 7 yes Kirkman [15]

2—(9,4,3) 7 yes this paper

2-—(10,3,2) 4 yes Teirlinck [25]

2—(10,4,2) |14 yes this paper

3 —(10,4,1) 7 no Kramer and Mesner [186]
2-(10,5,4) |14 .yes this paper

3 —(10,5,3) 7 yes extension of LS 2 — (9,4, 3)
2-(11,3,3) 3 yes Teirlinck [26]

2 —(11,4,6) 6 yes Chee, Colbourn, Furino, Kreher [5]
3 (11,4,4) 2 ves derivation of LS 4 — (12,5,4)
2—(11,5,2) |42 yes this paper

3-(11,5,2) |14 no * Oberschelp [20] and Dehon [9]
4—(11,5,1) 7 no LS 3 — (10,4,1) does not exist

2 -(12,3,2) 5 yes Schreiber [21]

2—-(12,4,3) |15 yes this paper

3-(12,4,3) | 3 yes Teirlinck [26]

2—-(12,5,20) | 6 yes LS 3 —(12,5,6) as 2—designs
3-(12,5,6) 6 yes this paper

4 —(12,5,4) 2 yes Denniston [11]
2—(
3—(
4—(
5—(

12,6,5) |42 yes LS 3 —(12,6,2) as 2—designs
12,6,2) |42 yes extension of LS 2 — (11,5,2)
12,6,2) |14 no * LS 3 — (11,5,2) does not exist
12,6,1) 7 no LS 3 — (10,4,1) does not exist
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dable 41 Lxistence ol Jarge s€is8 Ol 7 — (V, 8, A QCEIgNE, 13 & U I o

Parameters N | Existence | Remarks

2 (13,3,1) 11 yes Denniston [10]

2 (13,4,1) 55 yes Chouinazd [7]

3-(13,4,2} 5 yes Magliveras and O'Brien (unpublished)
2 - (13,5,5) | 33 ?

3~ (13,5,15) 3 yes Chee, Colbourn, Furino, Kreher [5]
4-(13,5,3) | 3

2-(13,6,5) | 66

3-(13,6,20) | 6

4-(13,6,6) | 6

5 (13,6,4) 2 yes derivation of LS 6 — (14,7,4)
2 —(14,3,86) 2 yes Hanani [13]

2 - (14,4,6) | 11 ?

3—(14,4,1) | 11 ?

2 —(14,5,20) | 11 7

3 (14,5,5) | 11 ?

2 - (14,6,15) | 33 ?

3-(14,6,5) | 33 ?

4 —(14,86,15) 3 yes Chee, Colbourn, Furino, Kreher [5]
5-(14,6,3) | 3 ?

2 - (14,7,6) |132 ?

3-(14,7,5) | 66 ?

4—(14,7,20)| 6 ?

5—-(14,7,6) | 6 ?

6 — (14,7,4) 2 yes Kreher and Radsziszowsk [17]
2—(15,3,1) 13 yes Denniston [10]

2-(15,4,6) | 13 7

2 —(15,5,2) | 143 ?

3-(15,5,6) | 11 ?

4 - (18,5,1) | 11 no ¥ Mendelsohn and Hung [18]

2 —(15,6,5) | 143 7

3 (15,6,20) | 11 ?

4-(15,6,5) | 11 7

2 —(15,7,3) |429 ?

3-(15,7,15) | 33 ?

4-(15,7,5) | 33 ?

5—(15,7,15) | 3 ?

6—(15,7,3) | 3 ?
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