


















































DI Is a GOUDIe O Ule Gesiygi idolel aos HUunber o il DHENYGLUh aliu
Robinson(1983).

Remark: Theorem 3.4, 3.6 and Corollary 3.5 can be used recursively to obtain
infinitely many families of BTDs.

5. Applications of BRn-aryDs in the construction of n-ary designs.

We have already seen some construction methods in the above section where
we produced BRTDs from smaller BRTDs; by replacing each entry in the
resulting BRTD by its absolute value we can construct BTDs. The following
result gives another technique, which is well known for Generalized Bhaskar
Rao Binary Designs.

Theorem 5.1. Let X = A - B be a BRn-aryD(V,B,R,K,A). Then

A B
M =
B A
is the incidence matrix of a partially balanced n-ary design with parameters

V=2V, B*=2B,R"=R,K'=K, A4 =A/ZandA2=O.

Proof. LetN = A + B. We know that
XX = Al
AA' +BB' =(NN'+ XX')/o = ((RK-AV+A)l + A J)/p
and
AB' + BA' = ((RK-AV-A)l + A J)/o
Hence as A = RK- AV + A we get the result.

Example 8. Consider a Bhaskar Rao 4-ary design (3,12,16,4,16) :
222222220000
X=11-1-12-20 0331 1
1-1t11002-211-3-3
Then
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22222 2220000
A=1 100 2 0003311
Lo1000201100
and
00 000D 0000000
B={0 0 110 2000000].
; 01 010 0020033
So
‘A B
B A

is a partially baianced‘BT4*aryD(6,24,16,4,A1=8,A2:O)

But we observe an interesting property: if we augment this matrix by
[22]xlq
Qﬂx%

then we get a balanced 4-ary design.

That is, we have the following 4-ary design:

220000
A B 0062200
0000 22
220000
B A 002200
000022

This leads us to the following theorem:

Theorem 5.2. If a BRn-ary design exists and Ay = 2s{{K-t)t) for some
positive integers t and s, then there is an n-ary design if K-t and t are both
less than n. Otherwise we have a (K-t)- or t-ary design with parameters
V*=2V, B*= 2B+2sV, R"=R+s(K-t)+s(t), K*=K, and A=AJs.

Proof. Augment the incidence matrix of the partially balanced n-ary design

obtained in Theorem 4.1 by
Kt Kt .. Kttt ... t]xly
[t t... t Kt Kt... K4 x by
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where K-t and t occur s times.

i
Corollary 5.3. I/fa BRD(v, b, r, 3, A=8t) exists then BTD(2v, 2b+2tv; py=r+t,
po=t, R=r+3t; 3, 4t) exists.

Proof. The following matrix will give the required design, where A and B are
as defined in Theorem 4.1.
A B [2...21... 1]xly
{B A [1...12...2xly
i
Seberry(1984, Theorem 15) has proved that v(v-1) = O(mod 3) is necessary
and sufficient condition for the existence of BRD(v,3,8t), therefore we have

Corollary 5.4. If v(v-1) O(mod‘s), then there exist a series of
BTD(2v,2b+2tv, r+t, 1, R=r+31, 3, 41) for all posifive integer t.

For example for v = 4 and t = 1, a BRD(4,16,12,3,8) exists and therefore a
BTD(8,40;13, 1,15;3,4) exist. This BTD is listed as number 268 in Billington
and Robinson(1983) and is obtained by Billington(1985).

The following application is known for the case when we have a BRD, for
example see Bhaskar Rao(1970).

Theorem 5.5. Existence of a BRTD(V,Bip{,p5,R; K, A) and the BIBD({v=2k,
b = 2r, A) implies the existence of a partially balanced ternary design with the
parameters (WV, bB; rpy, 1po, rR; KK, Aq = AX, A= Arp).

Proof. Let N be the incidence matrix of the BIBD and N* be the incidence
matrix of the complement of the BIBD. Replace each positive entry x of the
BRTD by xN and each negative entry y by yN”. As usual 0.is replaced by &
zero matrix. The resulting matrix gives the required PBTD.

0
Example 9. (i) BRTD(3,6;2,2,6;3,4) and BIBD(4,6,3,2,1) give
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Foil1£,00,0,0,10,0,10,0).

(i) BRTD(3,6:2,2,6;3,4) and BIBD(6,10,5,3.2) give
PBTD(18,60;10,10,30; 9,20,10).

(i) BRTD(6,12;4,2,8:4,4) and BIBD(4,6,3,2,1) give
PBTD(24,72:12,6,24; 8,12,6).

(iv) BRTD(6,12;4,2,8;4,4) and BIBD(6,10,53,2) give
PBTD(36,120;20,10, 40;12,24,10).

We know that when v is a power of odd prime, then
BIBD(v+1,2v,v,(v+1)/p,(v-1)/) exists and therefore we have:

Theorem 5.6. Existence of a BRTD(V.B; py.,ps.R; K, A) implies the
existence of a partially balanced temary design with the parameters ((v+1 W,
2vB; vpq, vpp, VR, (v41)K/o, Aq = A(v-1)/o, Ap= Avo) where v is any odd
prime power.

As we have proved that a BRTD with K = 3 and V = 3 (mod €) exists for any A
= 4t, we have:

Theorem 5.7. For V=3(mod 6), a PBTD ((v+1)V,2vB; vpy,vpo . VR; 3(v+1)/p,
A{v-1}jo, 2vt) exists.

Corollary 5.8. For V=3(mod 6), a PBTD(4V, 6B; 3p4, 3p,, 3R; 6, A, 6)

exists.

Using BRTD(6,12:4,2,8;4,4) we get

Theorem 5.9. If v is a prime power then there exists a PBTD(6(v+1),24v;
4v,2v, 8v; 2(v+1),8{v-1},2v).

Remark. Here again we can use Theorems 3.4 and 3.6 recursively to construct

families of PBTDs.
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