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ABSTRACT: The vertex independence number of a graph G is the maximal
number of independent vertices in G. The clique number of G is the
size of the largest complete subgraph of G. Let §(v,n,r) denote the
class of simple graphs on v vertices having vertex independence number
n and cligue number r. Let

flv,n,r) = min {e(G): G € §(v,n,r)},

where £(G) denotes the number of edges in G. In this paper we study
the class &(v,n,r) and in particular, consider the problem of
determining the function f(v,n,r).

1. INTRODUCTION

All graphs considered in this paper are finite, undirected,
loopless and have no multiple edges. For the most part our notation
and terminology follows that of Bondy and Murty [1l. Thus G is a
simple graph with vertex set V(G), edge set E(G), v(G) vertices, &(G)
edges and minimum degree &(G). However, we find it convenient to
denote the complement of G by G. Kn denotes the complete graph on n

vertices and G{X] the subgraph of G induced by the vertex set X.

The vertex independence number a(G) of G is the maximum number
of independent vertices of G. The clique number c&(G) of G is the
size of the largest complete subgraph of G. Let $(v,n,r) denote the
class of graphs on v vertices having independence number n and clique
number r. The problem that arises is that of characterizing this
class of graphs. Observe that if G e $v,nr) then G & &(v,r,n).
Further, $(v,n,r) = ¢ for v <n +r - 1. So we may assume that v = n

+r - 1
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the edge-minimal numbers of §(v,n,r). A special case of this problem

(r = 2) was posed to us in a personal communication by P. Erdés. Let
flv,n,r) = minde(G):G € &lv,n,r)h

In Section 3, we determine f(v,n,2) for v < % n and establish that the
extremal graphs are unique. In Section 4, {(v,2,r) is determined for
v = -52- r and for v = 3r. A number of properties of the class §(v,n,r)

are established in Section 2.
2. PROPERTIES OF THE CLASS %{v.n,r).

Throughout this section G € $(v,n,r). For A & V(G), we let N(A)
denote the neighbour set of A in G and N(A) denote the vertices of
V(GIN{N(A) v A}, We sometimes refer to N(A) as the non-neighbours of
A. Observe that for any vertex u of G, the subgraph H = G[N(u)] has
alH) = n - 1. For X ¢ V(G) and A € VI(GNX we let NX(A) = N(A) n X.
The following is a consequence of the definition of independence

number,

Lemma 2.1. Let X be an independent set of n vertices in a graph G €
g(v,n,r). If Y is an independent set of vertices in V(G)\¥X, then

]NX(A)} z |A|, for every A € Y. o

A consequence of Lemma 2.1 is that the subgraph G[X v Y] has a

maximum matching that saturates every vertex of Y.

We say two vertices x and y are equivalent, written x ~ y, if
x W N{x) = y u N(y). By altering the edges of G we can make any two
non-equivalent vertices u and v equivalent.— When we make v equivalent
to u we mean that the edges incident to v are altered so that v is

adjacent to every vertex in u u N(u).

Suppose that we make v ~ u. Then the resulting graph G’ will
clearly have cl(G’) = r + 1 and
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gt - dG(v). It ve Nluj

e(G’) = £(G) + (2.1)
dG(u) - dG(v) + 1, otherwise.

Further, «{G’) = n since otherwise in G’ v must be in a maximum
independent set $ which cannot contain u and hence S/ = u U (S\v) is
an independent set of size greater than n in G, a contradiction. If
«(G’} < n, then by deleting edges we obtain a graph G" with «(G") = n.
Now observing that cl(G’) = r + 1 only if u is in an r-clique, and

cl(G’) < r only if v is in every r-clique of G we have:

Lemma 2.2. Let G be a graph in %(v,n,r) having a vertex u not
contained in an r-clique and a vertex v such that ¢(G - v) = r. Then
the graph G’ obtained from G by making v ~ u is in S(v,n’,r}, n’ = n,

and e(G’) is given by (2.1). o

If the G in Lemma 2.2 is edge-minimal, then n* = n (Gf n’ < n
then, as noted above, we can delete edges) and from (2.1) it is clear
that when v € N(u) dG(u) z dG(v), and when v ¢ N(u) dG(u) = dC_(v) - 1.
In particular, if G is edge-minimal and dG(u) = & then dG(v) =38 + 1
with strict inequality holding whenever v & N(u). Our next two lemmas

establish some useful properties of edge-minimal graphs.

Lemma 2.3. There exists an edge-minimal graph G € €(v,n,r) in which
every vertex of minimum degree is contained in a clique of size t =

min{d + 1,r).

Proof: Suppose the lemma is false. From the edge-minimal members of
%(v,n,r) consider those which have the smallest minimum degree. From
these choose a G which has the fewest number of vertices of degree

3(G) which are not contained in a t-clique.

Let u be a vertex of G having degree 8 and not contained in a
t-clique. Take a vertex v € N(u) that is not equivalent to u. If
(G -~ v) = r, then according to Lemma 2.2 we can make v ~ u. In this
case, since G is edge-minimal dG(u) = &. Consequently we may assume

that every vertex v of N(u) that is not equivalent to u is contained
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in every r-clique of G. Thus the set of vertices of N(u) not
equivalent to u form a clique. But then Glu v N(u)] is a clique. This
contradicts the choice of G and thus establishes the lemma. o.
Theorem 2.1. Let G be an edge-minimal graph of ¥(v,n,r). Then for v

znr, 8(G)zr - 1.

Proof: Suppose to the contrary that § = r - 2. Let Kr denote an
r-clique of G and let H = G{V(G)\V(Kr)]. Let u be a vertex of H
having degree & 'in G. Such a vertex clearly exists. Moreover, if
N(u) has vertices of degree greater than & in G then such vertices are
in the K . If H contains a vertex v such that d_(v) > & + 1, then by
Lemma 2.2 making v ~ u produces a graph G’ e §(v,n,r) with fewer edges
than G, a contradiction. Hence the vertices of H have degree at most

d + 1 in G.

The subgraph H has «(H) = n or «(H) = n - 1. If «fH) = n, then

u is in a maximum independent set. Hence
v(iG) =8+ 1+ (n~- 18+ 2)

and so, since v(G) = nr, r = & + | as required. Now suppose that o{H)
= n - 1. Then, since G is edge minimal, «(H) = n ~ 1 and no vertex of
H is joined, in G, to any vertex of Kr" Consequently, the vertices of
N(u) all have degree & in G. Thus u is contained in an independent

set of size n - 1 in H. Hence

v(H =8+ 1+ (n-2)8 + 2)
<(n =108+ 2)

and so

r + v(H)
<(n-1(8+2) +r
< n(8 + 2).

v(G)

Since v(G) = nr we must have 8 = r - 1, as required. This completes

the proof of the theorem. o
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As a corollary we have:

Corollary 1. For v = nr there exists an edge-minimal graph G e
§(v,n,r) in which every vertex of minimum degree is contained in a

clique of size r. s}

Given a graph H we let gH denote the graph consisting of q
disjoint copies of H. We can now state the following corollary to
Theorem 2.1.

Corollary 2. Let G e %(nr,n,r). Then G is edge-minimal if and only
if G = nkK . : o
r

For v < nr we have the following characterization of

edge-minimal graphs.

Theorem 2.2. For n + r ~ 1 s » < nr, there exists an edge-minimal
graph G € ¥(v,n,r) consisting of n disjoint cliques, one of size r and

the rest of size |[(v - r)/(n - D] or [(v - r)/(n - D].

Proof: Let Kr denote an r-clique of G and let H = G[V(G)\V(Kr)].

Suppose v = r = (n - 1)t + A, where 0 £ A s n - 2. Since the graph
GmKruAKtﬂu(xx»lwA)Kt

belongs to the class §{v,n,r) and has A(G) = r - 1 and 8(G) = t - | <
r - 1, we may assume that 8(G) < r - 1. In view of Lemma 2.3 we may
further assume that the vertices of G having degree 8 are contained in

cliques of size & + I.

Let dG(u) = 8. Then u € H and the subgraph Glu u N(u)] is a (&
+ 1)-clique. As in the proof of Theorem 2.1, if N(u) has vertices of
degree greater than & then such vertices are in the Kr' Further, the
vertices of H all have degree § or 8 + | in G. Consider a vertex v of
H having degree & + 1 in G. We may suppose that v is in a clique of

size & + 2, for otherwise there exists a vertex w e N(v) n V(H) that
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is not equivalent to wv. Making w ~ v does not increase the edge
count. Consequently our H consists of a disjoint union of cliques.

Vertices of these cliques may be joined to vertices of Kr‘

If «(H) = n - 1, then since G is edge-minimal no vertex of Kr is
joined to a vertex of H. Since the cliques of H are of size § + 1 or
8 + 2, we have proved the theorem. Hence we need only consider the
case «(H) = n. If a vertex of Kr is joined to vertices in different
cliques of H, then we can delete some edges and still have a graph in
g(v,n,r). Hence no vertex of Kr is joined to vertices in different

cliques of H. Consequently our G is the union of n disjoint cliques

QQpe1Qy-

n

i
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Suppose |V(Q.) n V(K ) = n. Without any loss of
i r

generality suppose that a ES a, z...oF oA Since «(H) = n, we have 1
< a1 < r. I‘Ience‘a2 > 0. Consider Q1 and QZ. There exist vertices x
€ V(Q1)\V(Kr)’ y € V(Qx) fa) V(Kr)’ v e V(Qz)\V(Kr) and w € V(Qz) n
V(Kr)' Clearly x and y are not equivalent nor are v and w. Now the

graph G’ formed from G by making v ~ w and then making y ~ x belongs

to ®%(v,n,r) and has a - a, + 1 (> 0) fewer edges than G, a
contradiction. Thus «(H) = n - 1, and G consists of disjoint cliques
one of size r and the rest of size 8 + 1 or 8 + 2. Since v(H) = v -

r, we must have § = L(v - r)/(n - l)J. This completes the proof of

the theorem, n

We conclude this section by noting that the & in the proof of
Theorem 2.2 could be r and so the edge-minimal graph may consist of a

number of cliques of size r.
3. THE CLASS §(v,n,2)

For the purposes of this section we define the graphs G1 and G2

as follows:
G =-nNK unK, n=v=2n,
1 2 1
and
G = (v -2n)C v (510 - 2v)K, 2n
2 5 2

1A

<

A
Nl

o)

20



WUoeLl Ve Lial Ul QALla Uz i UL Al IVl ). we  oliall prOVe Llilat
these graphs are edge-minimal. The edge-minimality of G1 is easily
established. In fact, when n < v = 2n, we can easily determine the
possible values of £(G), G € %(v,n,2). This is done in the following

lemma.

Lemma 3.1. Let G € $(v,n,2). Then for n < v = 2n,

v - n = elG) =nlv -n)
Moreover, every value in this range is realizable.

Proof: Let X be an independent set of size n and let X = V(GN\X.
Then the lower bound follows since every vertex of X must be joined to

at least one vertex of X.

Suppose G is edge-maximal. We claim that dG(u) =< n for every
vertex u € X. If this is not the case, then u has neighbours in X and
in X. Let A = N(u) n X and B = N(u) n X. Since cl(G) = 2, the
vertices of A form an independent set and hence, by Lemma 2.1, ]NX(A)I
= |A]. So there are at least |A| vertices in X not joined to u.
Hence dG(u) = n. Simple counting now establishes the upper bound

which is achieved by the graph K The realizability problem is

n,v-n’
easily established by construction. This completes the proof of the

lemma. o

We now turn our attention to the case v = 2n. Theorem 2.1
implies that &(G) = 1. In fact, we shall prove that G has vertices of
degree 1 or 2 only. The arguments we use to establish that G2 is the
unique edge-minimal graph is slightly more complicated than those used

in proving the edge-minimality of Gl. We begin with a simple lemma.

Lemma 3.2. lLet G be any edge-minimal graph of &(v,n,2). Let S denote

the vertices of G having degree 1. Then G[S] is l-regular.
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Proof: Suppose that G[S] is not l-regular. Then there exist a vertex
u € S that is adjacent to a vertex v with dG(v) z 2. But the subgraph
G-u-v € ¥(v-2,n-1,2) and hence the graph G’ = (G-u-v) U uv e §(v,,n,2)
and has less edges than G, a contradiction. This proves the

lemma. o

Lemma 3.3.Let G be any edge-minimal graph of $(v,n,2). Then for 2n =
5

v < 5 I every vertex of G has degree 1 or 2.
Proof: Suppose to the contrary that G has vertices of degree = 3.
Let n, and n, denote the number of vertices of degree 1 and 2,
respectively and let n,=v-n -n. Then

n + 2n_+ 3n_ = 2¢

1 2 3
and so

n = 2y - &) + n,
with strict inequality holding if G has vertices of degree greater

than 3.

Since Gz e %(v,n,2) and has 3v - 5n edges, we can assume that
€(G) = 3v ~ 5n. Hence n = 2+ Zna. Now in view of Lemma 3.2 we must
have n z 4, Let a,b,c and d be four vertices of G having degree 1
with ab and cd € E(G). Let x be a vertex of maximum degree in G.
Consider the graph G’ formed from G by deleting the edges of G
incident to x and adding the edges xa,xd and bc. If G’ contains an
independent set of size greater than n, then it has one which does not
contain x implying that «(G) > n. Hence «(G’) = n. In fact, since G
is edge-minimal and £(G) = £(G’) we must have «(G’) = n and dG(x) = 3.
Hence G’ is also edge-minimal. Now if x is joined, in G, to vertices
of degree 2 then G’ would have a vertex of degree 1 adjacent to a
vertex of degree z= 2, contradicting Lemma 3.2 Consequently, we
conclude that the set of vertices of G having degree 3 form a
3-regular subgraph of G. But then G’ has a vertex of degree 3 joined
to a vertex of degree 2. Applying the above transformation on G’
yields the necessary contradiction, thus proving the

lemma. a
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Theorem 3.1. For v 2z n + 1

v - n, v = 2n
flv,n,2} = 5
3y -~ B, 2n$v<§n.

Moreover G1 is the unique edge-minimal graph for v = 2n and Cv2 is the
unique edge-minimal graph for 2n = v < —Z: n.

Proof: The case v = 2n was established in Lemma 3.1, so we need only

consider the case 2n = v < g n. According to Lemma 3.3 every
edge-minimal graph contains only vertices of degree 1 or 2. Further,

the vertices of degree 1 form an independent set of edges.

Let G be an edge-minimal graph with n vertices of degree 1 and
v o-on vetices of degree 2. The subgraph H of G induced by the
vertices of degree 2 is a union of cycles. If H has an even cycle C,
then we can delete an edge from C and our resulting graph G’ €
G(v,n,2). ‘Hence H consists of a union of t odd cycles. Since a cycle

of length 2p + | contributes p + 1 independent vertices, we have

n=%v—t
Therefore, t = % v - n is fixed. Now
e=—1~n + (v - n)
2
:v—‘..];n
21

Since t is fixed, £ is minimum when nlis maximum f{i.e. when v(H) is
minimum). This happens when the cycles are of the smallest possible
length, namely 5. This proves that Gz is the unique edge-minimal

graph and completes the proof of the theorem. [s]

Theorem 3.1 answers the original question posed by P. Erdds.
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Let G € §,2,r). For every vertex u € G, GIN(u)] is a clique
as otherwise «(G) > 2. Note that, as in Section 2, N(u) denotes the
set of vertices of G not joined to u. A consequence of the fact that

GIN(u)] is a clique is that
3G)zv -r ~ 1 (4.1)

Further, for r + 1 = v = 2r, the unique edge-minimal graph is
G=K uvK .

r v-r

So our concern is with the case v > 2r. We begin with the following

simmple lemma.

Lemma 4.1. For v > 2r there exists an edge-minimal graph G € §{v,2,r)

containing two disjoint r-cliques.

Proof: Let Kr denote an r-clique in G and let H = G[V(G)\V(Kr)].
Suppose that cf(H) < r. let u be a vertex of minimum degree in H.
Since H is not a clique, dH(u) < v - r - 1. Hence, by (4.1), u is
Jjoined in G to vertices in Kr' Consider the graph G’ formed from G by
deleting the edges joining u to the vertices of Kr and then adding
edges to make u adjacent to every vertex in H. Observe that G’ €
g,2,r) and e(G’) = £(G) since dG’(u) =p ~1r - 1= 8(G). We can
repeat this operation until we get an r-clique disjoint from Kr' This

completes the proof of the lemma. 5]

For 2r < v = g r consider the graph Cv3 defined in Figure 4.1

Note that the "double line" between two graphs represents the join,
i.e. denotes all possible edges between the vertices of the two

graphs. It is clear that G3 e §(v,2,r), and
8(G3) =r(r - 1) + —é—(v - 2r}ér - v - 1),

We now prove that G3 is edge-minimal.

24



H

o
i
i

H

s,
r——

Figure 4.1 The graph 03

Theorem 4.1. For 2r < v s = pr

oo

f(v,2,r) = r(r - 1) + —%(v - 2r}(6r - v - 1). (4.2)

Proof: Let G be an edge-minimal graph of ¥(v,2,r) containing two
disjoint r-cliques. Such a G exists by Lemma 4.1. Let A and C denote
the vertices of the two r-cliques and let B denote the remaining

vertices of G. We now examine in detail the subgraph G[A u BI.

Since G[A] is a maximum clique, each vertex of B is joined in G
to some vertex of A. Let M be a maximum matching in G between the
vertices of A and the vertices of B. Denote the M-saturated vertices
of A and B by R and X, respectively. Let S = A\R and Y = B\X. Note
that in G every vertex of Y is joined to every vertex of S. Figure
4.2 illustrates our notation. Note that we are drawing G, so the

"dashed lines" indicate edges in G.
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Lonsider the subgraph H = GlR v X v Y. We will prove that H
contains a maximum clique of size [R‘ Suppose Q is a maximum clique
in H. Let T = V(Q) n B and denote by T‘ those vertices of T that are
adjacent to every vertex of S. If T’ = ¢, then V(Q) n Y = ¢ and hence

the size of the clique cannot exceed [R| We may therefore assume
that T’ = ¢.

Let W denote the set of vertices in R that are not joined to at
least one vertex in T’. |W| =z |T’|, as otherwise the subgraph GIS v
T u {(R\W)] contains a clique of size greater than r. Every vertex of
W is M-saturated in G. Let U denote the mates of W in B under the
matching M. We will show that U n (T\T") = ¢.

Observe that if U n T = ¢, then |V(Q)| < |R|. So UnT = ¢
Let X, € U n (TNT‘). We find it convenient to consider the edges of G
as being coloured. In particular, suppose the edges of M are coloured
blue and those edges joining vertices of W to vertices of T’ are
coloured red. We will construct a path P starting at X, and ending at
some vertex X, in T’ n Y whose edges alternate in colour beginning

with blue and ending with red.

By definition there is a blue edge in G incident to X Let x
be the other end of this edge. Clearly X € W. Now by the definition
of W and the fact that M is a matching, X, has a red edge incident to
it. Let X, be the other end of this edge. Then x, & T . If quz Y,
then there is a blue edge incident to x, whose other end %, is in W.
Moreover, the definition of W and M imply that a red edge is incident

to %, whose other end %, is in T’. Continuing in this way we get a

path P = Xo’xx’xz""'xt whose edges alternate in colour, vertices
i verti 2K seeny i

KX XXy belonging to W, ertices XXX X, belonging

to T’ and Xt € Y. Now since Xo is not in &’ there must be a vertex, u

say, in S such that Xou ¢ E(G). But then

M = (ﬁ\(xoxl,x X X X ,...%X

273747 s t—th—l})

u(xuxxzxx, tlxt}
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1s a matching in G having more edges ithan M, a contraaiction.  1hils
proves that U n(T\T’) = ¢. It thus follows that H contains a clique

of size |R].

Consider a vertex u € S. The graph G’ obtained from G by making
u adjacent to every vertex of B and non-adjacent to any vertex of C is
in the class %(v,2,r). Furthermore, since dG’(u) =v ~-v -1 = 8(G),
e(G’) = £(G) and hence G’ is edge-minimal. Consequently we can assume
that every vertex of S is joined to every vertex of B and to no vertex
of C.

The above arguments can be applied to the subgraph G[B u Cl
Thus we can identify four sets X’,Y’,R’ and S, and a subgraph
H’ = GIR’ v X’ v Y’]. Note that the sets X’ and R’ are determined by
a maximum matching M’ in G between the vertices of B and C. Of
course, S° = C\R’ and Y’ = B\X’. We can conclude, from the above
discussion, that cf(H’) = |R’| and without any loss of generality
every vertex of S’ is joined to every vertex of B and to no vertex of
A.

Now consider a vertex u of B and the subgraph G’ = GI[R v B v
R’]. Suppose N1 = N(u) n R, N2 = N(u) n B and N3 = N(u) n R’, and let
n = ]Ni]. So d. (u) = n +n +n. Since the subgraphs H and H
induced by the vertices of R v B and R’ v B have clique numbers of ]R|

and [R’ , respectively we must have (since «(G) = 2):

[Bl = min{n +n_ + 1 n +n_+ 1}
1 2 2 3
Consequently

’ .
dG (u) = no+n +n

4

1
|B] -1+ z(n1 + na)(

Thus d’ (V) = |B| - 1 with equality possible only if n =n = 0. Now

in G we have
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dglw = [S] + [s7] + dg’ (w

z |S| + |s'| + |B] -1

=2r - [R| - |R*| + |B] -1

=or- [B] -1 (R| = [B]. [R'] = |B])
= 4r - p - 1,

Therefore, since 8(G) =z v - r -~ 1, we have

eG) = rlv - r = 1) + %w - 20)4r - v - 1)

i

re - 1) + %(v - 20)6r - v - 1)

Now we have a graph, namely Ga’ which is in the class $(v,2,r) and
s(Ga) satisfies  (4.2). This  completes the proof of the

Theorem. o
We remark that (33 is not the unique extremal graph.

. . . 5
The above theorem gives no information when v > 5 T We now

describe a construction for the particular case v = 3r. Our basic

building block is the graph H drawn in Figure 4.3. We first

Figure 4.3 The Graph H
give the construction for r even.

Let r = 2t, t = 2. We construct the graph Gzt as follows. Take

t disjoint copies H1’H2""' Ht of H. The vertices of Hi are
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Thus V(H.) = {u ,u_,v .,v ,w ,w b, Join the vertices of H, to
i 17212 e i

the vertices of each HJ., 1 = j=1-1 as follows: vertices u and

u' are joined to u J.u J,v J and v ‘]; vertices v.' and v.' are joined

2 1’72 2 1 2 o

JyJdid J J o

. i i - j
to v, ,w1 and w5 vertices w, and w, are joined to LANAN

1
and uz‘]‘ Call the resulting graph Gzt‘ We will now prove that G2t €
§(6t,2,2t).

Lemma 4.2. For t = 2, GZt e §(6t,2,2t).

Proof: We can consider the vetices of GZ as being on an r x 3 grid
. i i . i i .
- ] o= < = 1 = =
with colurinns Cl (u1 o :1 i }, C2 (v1 v, 1 i t} and C3
2:1 = i = t) The vertices of Hi are in rows 2i - 1 and

2i. Observe that the vertices in any column form an r-clique and the

i
= {w1 JW

vertices in any row form a triangle. Further, a vertex x of Hi
belonging to column Cj (j = 2i -1 or 2i) is joined to every vertex of
G2t except: two vertices of Hi one in column Cj—l and one in column
Cj+1 (the subscripts are written modulo 3); any vertex of column Cj—l
not in Hi‘lying in any row above x; any vertex of column Cj+1 not in
Hi lying in any row below x. Note that the vertices of CJ.M1
not joined to x form a clique in GZt of size r. As x is an arbitrary

and C,
g+l

vertex of Gzt we can conclude that G2t is (2r - 1)-regular and the

non-neighbours of any vertex form a clique of size r.

Now we show that d(Gzt) =r. Let Q be the largest clique in
Gzt' Consider a vertex x say, occurring in the highest row. Suppose,
without any loss of generality that x e Cx' Since x is not joined to
any vertex of C2 belonging to any row below the row in which x is, the
vertices of Q are contained in columns Cx and C3. Now observing that
in any Hi a vertex of C1 is joined to only one vertex of Cs’ we can

conclude that Q has size r. This completes the proof of the lemma. o

We consider now the case when r is odd. Let r = 2t + 1, t = 2.

We form the graph qul as follows. First we take the graph G2t

. . 2t+1 2t+1 2t+1
defined above. We add three new vertices u1 , v1 +, and w1 i
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vertex won Join v, to every vertex of Gz‘ in columns C2 and

Ca’ and to the vertex uzzt. Join wlz"ﬂ to every vertex of GZt in
columns C1 and C3 except u;t, and to the vertex v -'. Observe that
GZtﬂ has one vertex of degree 2r (namely VIZt) and every other vertex
has degree 2r - 1. The non-neighbours of every vertex of qul form a
clique. Further, it is not too difficult to establish that CB(G2t )

+1
= 2t + 1. We thus have:

Lemma 4.3 For t =z 2, GZtﬂ € §(6t + 3,2,2t + 1). o
We have noted above that GZt is {2r - 1)-regular and sz has
all vertices except one having degree 2r - 1 the exceptional vertex

has degree 2r. Thus (4.1) together with lemmas 4.2 and (4.3) vield:

Theorem 4.2. For r z 4.
f(3r.2,r) = [%(Sr)(Zr - . o

Theorems 4.1 and 4.2 leave unresolved the range g—r <y < 3Jr.
The constructions for this range are somewhat complex and the
arguments needed to establish their minimality are lengthy. We intend
to describe these constructions and report on a number of other

results in a subsequent paper.

REFERENCE

1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications,
North Holland (1976).

30



