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Abstract

Eccentric coloring is a new variation of coloring, where higher numbered
colors cannot be used as freely as lower numbered colors. In addition
there is a correspondence between the eccentricity (max distance) of a
vertex and the highest legal color for that vertex.

In this note we investigate eccentric coloring of trees. We give the ec-
centric chromatic number or a bound on the eccentric chromatic number
for several simple classes of trees. In particular we show the eccentric
chromatic number for paths (χe = 3), spiders (χe = 3) and caterpillars
(χe ≤ 7).

Further, we discuss the eccentric chromatic number of complete k-ary
trees and show that the complete binary trees have eccentric chromatic
number χe ≤ 7. We also show that large binary trees are eccentrically col-
orable and have χe ≤ 7. We then conclude by showing that no complete
k-ary tree, k ≥ 3, is eccentrically colorable.

1 Introduction

Coloring is one of the most basic and well studied concepts in graph theory. A myriad
of papers have been published and coloring remains a popular area of study in the
field.

In its most simple form coloring is simply an assignment of symbols to the vertices
in a graph such that vertices that share an edge are given different symbols. We
will use the natural numbers N as symbols and strengthen the requirements on the
coloring function. We will require that vertices colored with high numbers must be
far apart and we will give a restriction on the maximum color of a vertex.

Definition 1 Distance
The distance d(u, v) between two vertices u, v in a graph G, is the length (number

of edges) of the shortest path between u and v in G.

Definition 2 Eccentricity
The eccentricity of a vertex v in a graph G = (V, E) is e(v) = maxu∈V {d(v, u)}.
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Definition 3 Eccentric coloring
An eccentric coloring of a graph G = (V, E) is a function color : V → N such

that

(i) ∀u, v ∈ V,
(
color(u) = color(v)

)
⇒ d(u, v) > color(u)

(ii) ∀v ∈ V, color(v) ≤ e(v)

A coloring that adheres to rule (i) is known as a broadcast-coloring[6].

Definition 4 Eccentric chromatic number
The eccentric chromatic number χe ∈ N for a graph G is the lowest number of

colors for which it is possible to eccentrically color G by colors: V → {1, 2, ..., χe}.

As we understand from the definition of eccentric coloring not all graphs can be
colored. In this paper we will study some simple classes of trees (paths, spiders and
caterpillars) before we move on to complete binary, ternary and n-ary trees. For
each class we will give a bound on the eccentric chromatic number or prove that the
class is incolorable.

2 Paths, Spiders and Caterpillars

Graphs with few branchings can usually be eccentrically colored with a finite number
of colors when they reach a certain size. This is due to sequences of colors that can
be repeated indefinitely without violating the constraints on color-distance. Here we
will give the eccentric chromatic number for all paths, and spiders and give a bound
on the number of colors needed for caterpillars.

Observation 5 A path P is eccentrically colorable (χe = 3) if and only if |V (P )| ≥
4.

Proof. That paths of length at most three are not eccentrically colorable is easily
verifiable. Longer paths can be colored with the color-sequence 3121, 3121, ... which
can be repeated indefinitely to color any path of length at least four. �

Definition 6 A star is a bipartite graph K1,n. A spider is a star with subdivided
edges.

Observation 7 A spider S can be eccentrically colored (χe = 3) if and only if S is
not a star.

Proof. It is easy to verify that a star cannot be eccentrically colored. If a spider S
is not a star, then S is either a path of length at least 4 (colorable by Observation
5), or has one vertex v with degree 3 or more and a set of paths connected to v.
Color v with color 2 and color the paths with the sequence 1312, · · ·. Shorter paths
can safely be colored with parts of the sequence. �



ECCENTRIC COLORING OF TREES 311

Definition 8 A caterpillar is a path, called the body, where each vertex except the
end-vertices in the path may have any number of single vertices, called leaves, con-
nected to it. We say that the number of edges in the body is the length of a caterpillar.

It is clear that many caterpillars with short bodies cannot be colored, due to very
low eccentricity and a possibility for many leaves. However, we will now give a result
showing that all caterpillars of length 7 or more can be colored.

Observation 9 All caterpillars where the body is of length 6 or more have χe ≤ 7.

Proof. Coloring the body, except the end-vertices, with the color-sequence

243256243257 · · ·
and all the leaves and end-vertices with color 1, will color a caterpillar of any length
6 or more (use only first part of the sequence for lengths 6 through 12). Note that
the sequence cannot be used on caterpillars of length 5 or less due to eccentricity. �

A simple computer analysis shows that a color-sequence of length 34 (2342562342
5326423524 6235243265 2342) using only the colors 2 through 6 exists and can be
used for caterpillars with body-length 35 or less, though no such color-sequence using
only colors 2 through 6 has length 35 or greater.

3 Binary Trees

In this section we investigate eccentric coloring of binary trees and in particular
complete binary trees.

Definition 10 Binary tree
A binary tree is a tree where all vertices have degree 1, 2, or 3.

Definition 11 Complete binary tree
We inductively define the complete binary tree Bi.

1. B1
def
= 1 vertex, the root. This vertex is Level 1

2. Bh
def
= Start with Bh−1 and append 2 new leaves to each leaf of Bh−1. The new

leaves are Level h.
The height of a complete binary tree is h = d(root, leaf ) + 1.

We show that all complete binary trees with height at least 3 can be eccentrically
colored with no more than 7 colors, and that the same number applies for large
binary trees.

We will use induction to prove our result, and in fact we strengthen our induction
hypothesis to carry through the proof. We introduce a set of extra rules and show
that if a coloring adheres to these rules, then the coloring can be used as a basis for
coloring a larger tree. We will call a coloring of a complete binary tree with these
extra restrictions an expandable eccentric coloring.
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Figure 1: An expandable eccentric coloring of a complete binary tree of height 4.

Definition 12 Expandable eccentric coloring
An expandable eccentric coloring of a complete binary tree T = (V, E) is a col-

oring such that

(i) ∀u, v ∈ V,
(
color(u) = color(v)

)
⇒ d(u, v) > color(u)

(ii) ∀v ∈ V, color(v) ≤ e(v)

(iii) The root(level 1) is colored 1.

(iv) All vertices on odd levels are colored 1.

(v) Every vertex colored 1 has at least one child colored 2 or 3.

(vi) color(v) = 6 and color(u) = 7 ⇒ d(u, v) ≥ 5

(vii) color(p) ∈ {4, 5, 6, 7} ⇒ p’s children each have children colored 2 and 3.

(viii) ∀u ∈ V, color(u) ≤ 7

Observation 13 Base case: The graph in Figure 1 is an expandable eccentric col-
oring of height 4.

We now show that given an expandable coloring of a complete binary tree of
height n, we can create an expandable coloring of a complete binary tree of height
(n + 1) by using the coloring for the tree of height n as a basis.

Lemma 14 An expandable eccentric coloring of a complete binary tree of height n
can be extended to an expandable eccentric coloring of a complete binary tree of height
(n + 1).

Proof. We will construct the eccentric coloring for the (n+1)-height tree by coloring
the n-first levels as the n-height tree and show that vertices on the new level always
can be colored in such a way that they adhere to the expandable coloring-rules.

If n is even then, as a consequence of rule (iv), all vertices at level (n − 1) are
colored 1, and hence any leaf on level (n + 1) can be colored 1.
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Figure 2: A coloring of the leaves if color(p) ∈ {4, 5, 6, 7}.
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Figure 3: The subgraph examined if color(p) = 2.

If n is odd, we will for each leaf consider the value of its grandparent p. If
color(p) ∈ {4, 5, 6, 7} then according to rule (vii) we must color its grandchildren
2, 3 and 2, 3. Observe that this is always a legal coloring (Figure 2).

The situation is more complicated if color(p) = 2 (color 3 will not be argued
for but is analogous). The four grandchildren of p can have any color with the
exception of 2. We will examine the part of the graph which can affect the coloring
of p’s grandchildren, consisting of vertices at distance at most 7 on even levels from
these grandchildren. This subgraph can be seen in Figure 3, note that the following
discussion uses the labeling seen in this figure.

Note that w1 and w2(and their siblings) are on level (n + 1) and may or may not
have been colored already. If they have not been colored, then they cannot interfere
with the coloring of l1 and l2. Thus in the critical case, examined here, we can assume
they already have been colored according to the expandable coloring rules.

Due to rule (v), we can assume without loss of generality that w1, w2 and v’s
respective siblings are colored 2 or 3. Vertex l1’s and vertex l2’s siblings are colored 3.

We now have, due to rule (i), that color(l1) ∈ {4, 5, 6, 7} and color(l2) ∈ {4, 5, 6, 7}.
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It remains to show that we can always color l1 and l2 with these colors. We examine
y, p’s grandparent, and show by a case analysis on y’s color how to color l1 and l2.

We say that vertex v blocks color c from vertex u if and only if color(v) = c and
d(v, u) ≤ c, i.e. coloring vertex u with color c would violate rule (i).

1. color(y) ∈ {1, 2}
This is impossible due to rule (i).

2. color(y) = 3

color(y) = 3 and color(p) = 2
(i)⇒ color(w) /∈ {2, 3} (vii)⇒

color(w1) ∈ {2, 3}, color(w2) ∈ {2, 3}

The distance from x, z, and v to l1 and l2 is 6, hence x, z, and v can only block
colors 6 and 7 from l1 and l2. Due to rule (vi) only one of x, z, v, or w can be
colored 6 or 7.

This implies that from the set of colors {4, 5, 6, 7}, vertex w will block one
color and x, z, and v will block at most one other color. This leaves at least
two colors for l1 and l2.

3. color(y) ∈ {4, 5}
Note that w, x, z, and v do not block 4, 5, 6, or 7 from l1 and l2 since:

color(y) ∈ {4, 5}, color(p) = 2
(vii)⇒ color(w) = 3

color(y) ∈ {4, 5} (vii)⇒ color(v) ∈ {2, 3}
color(y) ∈ {4, 5} (v)⇒ color(z) ∈ {2, 3}

Also note that since color(y) ∈ {4, 5}, y’s grandparent x cannot be in {4, 5, 6, 7}
as this would violate rule (vii). Hence, color(x) ∈ {2, 3}.
We can now see that w1 and w2 cannot block both color 6 and color 7 from l1
and l2 because of rule (vi), and y blocks either color 4 or color 5. This leaves
at least two colors for l1 and l2.

4. color(y) ∈ {6, 7}
From rule (vii) we have:

color(y) ∈ {6, 7}, color(p) = 2
(vii)⇒ color(w) = 3

Since x, z, v, w1, and w2 cannot block colors 4 and 5 from l1 and l2 and color(w) =
3, we can always use color 4 and color 5 as a valid coloring for l1 and l2.



ECCENTRIC COLORING OF TREES 315

It is easy to verify that the coloring of the leaf adheres to the expandable coloring
rules.

We have shown that it is possible to color any leaf such that the new coloring
adheres to expandable coloring rules. This is true as long as the other leaves are
each colored according to the expandable rules or are uncolored. Thus, we can color
level (n + 1). �

Theorem 15 Any complete binary tree of height of three or more is eccentrically
colorable with 7 colors or less.

Proof. For height 3, use Observation 13 without leaves. For larger heights the proof
is by induction on the height. For height 4 use Observation 13 as a base and for the
inductive step use Lemma 14. �

Corollary 16 Any tree T with degrees 1, 2 and 3 and with diameter greater or equal
to 14 can be colored using no more than 7 colors.

Proof. Let C be a complete binary tree such that T is a subtree of C. By Theorem
15 we can color C with 7 colors. Remove vertices from C to obtain T , T is now
legally colored as the diameter of 14 ensures that any vertex in T can be colored
with 7 without violating the eccentricity. �

4 Ternary trees

In Section 3 we proved that all complete binary trees can be eccentrically colored
using a constant number of colors. Now we show the surprising result that complete
ternary trees cannot be eccentrically colored. We even prove the stronger result that
ternary trees cannot be eccentrically broadcast-colored.

Definition 17 Ternary tree
A ternary tree is a tree where all vertices have degree 1, 2, 3, or 4.

Definition 18 Complete ternary tree
We inductively define the complete ternary tree Ti.

1. T1
def
= 1 vertex, the root. This vertex is Level 1

2. Th
def
= Start with Th−1 and append 3 new leaves to each leaf of Th−1. The new

leaves are Level h.
The height of a complete ternary tree is h = d(root, leaf ) + 1. We define T−

h as
a Th with one leaf missing.

Definition 19 Eccentric Broadcast-coloring
An eccentric broadcast-coloring of a graph G = (V, E) is a function color : V → N

such that

(i) ∀u, v ∈ V,
(
color(u) = color(v)

)
⇒ d(u, v) > color(u)
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Figure 4: An example of T−
4 .

(ii) ∀v ∈ V, color(v) ≤ diameter(G)

A coloring that adheres to rule (i) is known as a broadcast-coloring [6].

Note that any eccentric coloring is trivially an eccentric broadcast-coloring. We
seek to prove the following theorem.

Theorem 20 The trees Th, h ≥ 4, cannot be eccentrically broadcast-colored.

To prove this, we will use induction on the height of the tree. However, first we
must establish a suitable base case.

Lemma 21 T−
4 cannot be eccentrically broadcast-colored (See Figure 4).

Proof. Maximum eccentricity in T−
4 is 6, but as we will see six colors is insufficient.

To prove this we will use a case analysis on the placement of vertices colored 1 on
level 1 and 2. First we will establish some facts:

Claim 1: Only one vertex on level 1 and level 2 can be colored 4 or greater.

Proof. Assume in contradiction to the claim that there exists two vertices
x and y on level 1 and level 2 such that color(x) > color(y) ≥ 4. Let
c ≥ 4, c /∈ {color(x), color(y)}. Color c can be used at most three times
on level 3 and level 4, no more than once on a non-leaf. This implies that
there exists a subtree T3 where every vertex but the root is colored 1, 2,
and 3 and a single leaf l is colored c. Then, there exists at least one T2

in this T3 where 3 is used as a root, but this is impossible as we have to
use a 3 to color a neighbor of l. �

Claim 2: There are at least four vertices colored 1 on levels 1, 2, and 3.

Proof. We try to color as many vertices on level 1 through level 3 without
using color 1 as possible. We can then use one 6, one 5, one 4, three 3’s
and three 2’s, a total of 9 vertices. Levels 1, 2, and 3 have 13 vertices in
total, thus at least four vertices must be colored 1. �
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Figure 5: Illegal colorings by Claim 3 if z ∈ {4, 5, 6}.
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Figure 6: The six different cases we investigate in Lemma 21.

Claim 3: If a vertex v is colored 2 or 3 and v is on level 1 or there exists a vertex
z on level 1 or level 2, where color(z) ∈ {4, 5, 6}, and v is on level 2 then v cannot
be the parent of two vertices x and y colored 1. (See Figure 5)

Proof. If v is colored 2 (color 3 is analogous) and x and y are colored 1
we cannot color the children of x and y. If v is on level 1 then x and y has
6 children which must be colored using {3, 4, 5, 6} which is impossible.
Otherwise, we can assume without loss of generality that color(z) = 6,
we now have only the colors {3, 4, 5} to color the 5 or 6 children of x and
y, which cannot be done either. �

We will now begin our case analysis on which vertices on level 1 and level 2 which
are colored 1. We have six different cases to investigate (see Figure 6).

1. Four vertices colored 1.
2. Three vertices colored 1.
3. Two vertices colored 1.
4. The root colored 1.
5. One vertex on level 2 colored 1.
6. No vertices colored 1.

1. If all four vertices of level 1 and level 2 are colored 1 we contradict the require-
ments on distance.

2. If three vertices on level 1 and level 2 are colored 1, we have only one pos-
sibility, all three vertices on level 2 are colored 1. This is not viable as we
must then color level 3 without 1s. The nine vertices can then only be col-
ored ((2, 3, 4), (2, 3, 5), (2, 3, 6)), parentheses group siblings, which leaves no
free color for the root.

3. If two vertices on level 1 and level 2 are colored 1, we again have only one
possibility, two level 2 vertices are colored 1. By Claim 3 we cannot have color
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2 or 3 as root, thus the root has color 4 or greater. This implies, by Claim 1,
that 2 or 3 is used on vertex v on level 2. Claim 2 implies that v has at least
two children colored 1, but this contradicts Claim 3.

4. If the root is colored 1 then the three level 2 vertices must be colored (2, 3, c), c ≥
4. We can assume without loss of generality that c = 6. Let v be the vertex
colored 2 and w be the vertex colored 3. Vertex v’s children can choose from
the colors {1, 4, 5}, but because of Claim 3 we cannot select more than one
1. This implies that v’s children is colored (1, 4, 5). Unfortunately, this leaves
only {1, 2} for w’s children, and again due to Claim 3 we cannot select more
than one 1. Thus we cannot color w’s children.

5. If we have one vertex v colored 1 on level 2, we must, by Claim 1, use the
colors {2, 3, c}, c ≥ 4, to color the other vertices on level 1 and level 2. We can
without loss of generality assume that c = 6. We now have several sub-cases.

If c is used on level 1 then level 2 is colored (2, 1, 3) and due to Claim 2, either
the vertex colored 2 or the vertex colored 3 has two children colored 1, violating
Claim 3.

If c is used on level 2, we have either color 2 or color 3 on the root. If the root
is colored 2 then it is impossible to color the children of v (vertex colored 1). If
the root is colored 3 then v’s children must be colored {4, 5, 2}, but this leaves
only the color 1 for the children of the vertex w colored 2. Due to Claim 3, we
cannot color more than one child of w with 1.

6. If no vertices on level 1 and level 2 is colored 1 then we must use four colors
greater or equal to 2 contradicting Claim 1.

As we have demonstrated, it is not possible to color T−
4 with six colors, and

since the maximum eccentricity of T−
4 is 6 we have that T−

4 cannot be eccentrically
broadcast-colored. This completes the proof of Lemma 21. �

Lemma 22 T5 cannot be broadcast-colored with less than 10 colors.

Proof. We first prove the following general facts about T5.

Claim 1: In any eccentric broadcast-coloring of T5 there exists at least one vertex
colored 7 or more in each of the roots three T4 subtrees.

Proof. Assume in contradiction to the claim that there exists a broadcast-
coloring of T5 with a T4-subtree T where T has no vertex colored 7 or
more. Then we can obtain an eccentric broadcast-coloring of T−

4 by
removing an arbitrary leaf. This contradicts Lemma 21. �
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Claim 2: In any broadcast-coloring of T5 at least one T4-subtree has either no
vertex colored 6 or one leaf colored 6.

Proof. The claim is trivially true since 6 is the maximum distance between
two non-leaf vertices in T5. �

Assume in contradiction to the stated lemma that T5 can be broadcast-colored
with 9 colors. We will do a case analysis where we will split the problem into two
cases.

1. At most one vertex colored 7 in T5.

2. More than one vertex colored 7 in T5.

1. By Claim 1 each T4-subtree has at least one vertex colored at least 7 and since
only one vertex is colored 7, all three subtrees must have not more than one
vertex v colored at least 7. By Claim 2 at least one of these subtrees contain
either no vertex colored 6 or a leaf colored 6. If no vertex is colored 6, then
recolor v with 6 and remove an arbitrary leaf. If a leaf is colored 6, then
remove this leaf and recolor v with 6. In both cases we obtain an eccentric
broadcast-coloring of T−

4 . This contradicts Lemma 21.

2. Now we examine the case where more than one vertex is colored 7. In this case
the vertices colored 7 are leaves and we must have at least one subtree T4 T
with no vertex colored 8 or 9. Remove the leaf colored 7 in T to obtain an
eccentric broadcast-coloring of T−

4 . This contradicts Lemma 21.

We reached a contradiction in each case, thus the assumption must be false,
completing the proof of Lemma 22. �

Proof of Theorem 20. An easy consequence of Lemma 21 is that T4 is not ec-
centrically broadcast-colorable. To prove the result for higher h we will use in-
duction on the height of the trees. In fact we will prove the stronger result, that
any broadcast-coloring of Th, h ≥ 5, will have at least two vertices u, v such that
color(u) > color(v) > diameter(Th).

Proof by induction on the height of the tree.

Base: The diameter of T5 is 8, by Lemma 22 we have that no broadcast-coloring of
T5 has less than 10 colors. That is, ∃u, v ∈ T5, color(u) > color(v) > diameter(T5) =
8.

Inductive Hypothesis: We assume that any broadcast-coloring of a Th−1, h−1 ≥
5, has at least two vertices u, v such that color(u) > color(v) > diameter(Th−1) =
(2h − 4).
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Inductive Step: Th is formed by a root vertex and three Th−1. By IH each of the
Th−1 subtrees has at least two vertices u, v colored greater than diameter(Th−1) =
(2h − 4). Each subtree potentially has one vertex colored (2h − 3) that is not in
violation with other vertices, but this leaves three vertices with color at least (2h−2).
The diameter of Th is (2h − 2), thus only one vertex in Th has the color (2h − 2),
leaving two vertices with color greater than (2h − 2), the diameter of Th.�

Corollary 23 No complete ternary tree is eccentrically colorable.

Proof. For complete ternary trees of height at most 3 we can easily verify by hand
that no eccentric coloring exists. For higher trees we prove the result by contradiction.

Assume in contradiction to the stated corollary that there exists a complete
ternary tree Th, h ≥ 4, with a valid eccentric coloring. The coloring is a valid
eccentric broadcast-coloring of Th, this contradicts Theorem 20. �

5 Complete k-ary trees

We now extend our results from Section 4 to complete k-ary trees. We then wrap
things up by showing that no complete trees other than the binary trees and paths
(unary complete trees) are eccentrically colorable.

Definition 24 k-ary tree
A k-ary tree is a tree T where ∀v ∈ V (T ), deg(v) ≤ k + 1.

Definition 25 Complete k-ary tree
We inductively define the complete k-ary tree Ti.

1. T1
def
= 1 vertex, the root.

2. Ti
def
= Start with Ti−1 and append k new leaves to each leaf of Ti−1.

The height of a complete k-ary tree is h = d(root, leaf ) + 1.

Theorem 26 No complete k-ary tree, k ≥ 3, of height h, h ≥ 4 is eccentrically
broadcast-colorable.

Proof. Assume in contradiction to the stated theorem that there exists a complete
k-ary tree C with k ≥ 3 of height h, h ≥ 4, with a valid eccentric broadcast-coloring.
Then the complete 3-ary tree T of height h will be a subtree of C. Color C and
remove vertices from C to obtain T , the remaining vertices are properly eccentrically
broadcast-colored since the maximum eccentricity has not changed. This contradicts
Theorem 20. �

Theorem 27 No complete k-ary tree, k ≥ 3, is eccentrically colorable.

Proof. Assume in contradiction to the stated theorem that there exists a complete
k-ary tree C, k ≥ 3, of some height h that can be eccentrically colored. The complete
3-ary tree T of height h will be a subtree of C. Eccentrically color C and remove
vertices from C to obtain T . The remaining vertices are now properly eccentri-
cally colored since the eccentricity of the vertices has not changed. This contradicts
Corollary 23. �
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