
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 29 (2004), Pages 273–300

Complexity of a {0, 1}-matrix problem

Henning Fernau

University of Newcastle
School of Electrical Engineering and Computer Science

University Drive, NSW 2308 Callaghan
Australia

fernau@cs.newcastle.edu.au

Universität Tübingen
Wilhelm-Schickard-Institut für Informatik

Sand 13, D-72076 Tübingen
Germany

fernau@informatik.uni-tuebingen.de

Abstract

We consider the following problem: given an n × m {0, 1}-matrix M
and an integer k, is it possible to get the all-zeros-matrix by merging
at most k neighbouring rows or columns? Here, merging means to per-
form a component-wise AND operation. We prove that this problem is
NP-hard but fixed-parameter tractable (taking k as parameter we show
that there is an O(2.6181k ∗n ∗m) algorithm) and factor-3-approximable
(considered as minimization problem). Moreover, we discuss the relation
of this problem to 4-Hitting-Set and Vertex Cover.

1 Introduction

L. Branković communicated to us the following abstract problem arising in the theory
of statistical databases, stated below in an abstract and simplified version:

Matrix Row/Column Merging (MRCM)
Given: n × m {0, 1}-matrix M
Parameter: positive integer k
Question: Is it possible to get the all-zeros-matrix by merging at most k neighbour-
ing rows or columns?
Here, merging means to perform a component-wise logical AND.

For short, we will also call such a matrix k-mergible. In order to simplify our
formulations, a line of a matrix is either a row or a column of that matrix. Hence, a
matrix is k-mergible if and only if the all-zeros-matrix can be obtained by merging
at most k neighbouring lines. A line can be of type row or column. We also say that

274 HENNING FERNAU

rows and columns are opposite types. Instead of speaking of “two lines of the same
type” we will also speak about two parallel lines, and “two lines of opposite type”
are also referred to as orthogonal lines.

An instance of MRCM can be specified as a pair (M, k), where M is a {0, 1}-
matrix and k is a positive integer.

In this paper, we will show that MRCM is NP-complete but both constant-
factor approximable (when seen as a minimization problem) and tractable in the
sense of parameterized complexity. This implies that the corresponding (more com-
plex) database problems are also computationally hard but possibly amenable to
approaches as provided by approximation algorithms or parameterized complexity.

The paper is organized as follows: In Sec. 2, we try to familiarize ourselves with
the problem, indicating at heuristics that may help solve it. Sec. 3 contains the proof
that MRCM is NP-complete. In Sec. 4, we explain a simple factor-4 approximation
algorithm based on a local ratio approach. Sec. 5 contains a first search-tree algorithm
for MRCM, which is going to be refined in the following sections. In Sec. 7, further
deeper relations to 4-Hitting-Set and to vertex cover are explained, which
is going to be finally exploited in Sec. 8 to arrive at an O(2.6181kmn)-algorithm
for MRCM. This final algorithm is quite simple, but its analysis requires a novel
form of book-keeping analysis to cater for decisions which are actually deferred to a
later, polynomial-time computation phase. This methodology could be in fact wider
applicable than just to the {0, 1}-matrix problem under investigation in this paper.

2 Examples and first considerations

Let us look at some examples to become familiar with MRCM and its peculiarities.
Here and in the following examples we will only give the ones in the matrix; the
other entries are zero by default.

Example 1: Let us consider the following matrix instance M :

1 2 3 4 5 6 7 8 9
1 1 1 1
2
3 1
4 1 1 1
5
6
7 1 1

Can we eliminate the ones by merging at most k ≤ 3 neighbouring rows or
columns? For example, merging rows 1 and 2, 4 and 3, as well as 6 and 7 leaves us
with:

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 275

1 2 3 4 5 6 7 8 9
1/2
3/4
5

6/7

Observe that the merged rows are written as a list of row numbers. This notation
is convenient, since it allows us to talk about, e.g., merging rows 4 and 5 later on (of
course, this is not necessary in our example), referring to the original row numbers.
Alternatively, we would have to re-number the lines after each merge operation, but
this appears to be too awkward to explain examples, although it is quite natural
when thinking about implementing solving algorithms. That is why we will later
deviate from this convention. A second point we gain by our convention is that the
order in which we apply merge operations does not matter at all. In our example,
we could describe our solution as {RM(1, 2), RM(3, 4), RM(6, 7)}. Similarly, we can
indicate column mergers by writing CM(i, j). To simplify our notation, we will also
say that the operation RM(·, ·) is of the type row, and the operation CM(·, ·) is of
the type column.

In other words, the given instance is 3-mergible. Is it possible to fix the instance
by using only two merging operations? Let us look at the first row. It contains three
ones. If all the ones were “fixed” by column mergers, this would need at least three
merging operations. Hence, we must fix these ones by merging row 1 with row 2. A
similar argument applies to row 4. But now we have used two (enforced) mergers
but did not fix the matrix successfully. Hence, the instance is not 2-mergible.

In passing, we have developed a simple rule for MRCM:

Rule 1: If M is k-mergible and contains a line with more than k ones, then this line
must be fixed by using merging operations of the type of the line.

This rule is sound: observe that by merging say two columns, at most one 1 per
row is eliminated. Hence by induction, performing k column merging operations will
fix no more than k ones per row. Therefore, if we have a row � with (k + 1) ones (or
more), but are only allowed to perform at most k merging operations, then we must
select at least one of the operations RM(� − 1, �) or RM(�, � + 1) to fix row �.

Here, fixing a line does not imply that after the operations necessarily no ones
remain, since merging ones with ones let some ones survive. This (simple) observation
is crucial when later comparing MRCM with set cover problems like hitting set
and vertex cover.

Observe that Rule 1 may be “weakened” to derive the following, more greedy
heuristic rule:

Rule 1′: Fix some line with the most number of ones first. This line must be fixed
by using merging operations of the type of the line.

276 HENNING FERNAU

Unlike usual greedy-like rules, this does not give us a polynomial-time algorithm,
since in general there will be two possibilities to fix a certain line by operations of
the type of the line, the only exception being trials to fix some “border line”, a case
which hence should be preferred when breaking ties.

Example 2: Let us look at a different example:

1 2 3 4 5 6 7 8 9
1 1 1
2 1 1
3 1
4 1 1
5 1 1
6 1 1
7 1 1

If we ask whether this matrix is 3-mergible, then Rule 1 does not help us reduce
the problem.

In fact, Rule 1′ does solve this question. More precisely, the following rather
shallow search tree will result:

CM(2, 3)

C3

CM(3, 4)
C9

R1
RM(1, 2)

CM(8, 9)
R5

RM(4, 5)

RM(6, 7)

RM(5, 6) solved!

?

?R7

In this picture, the vertices of the tree are labelled with the lines selected to be
fixed, and the edges are labelled with the possible fixing operations. Observe that
in this case only three different cases (instead of the eight cases in the worst case)
occur due to preferring “border line” fixes. In fact, one of the paths in this search
tree gives us the desired answer that the given matrix is indeed 3-mergible.

But, there is a similar (but more complicated) rule for helping us here:

Rule 2: If M is k-mergible and contains two neighbouring lines with more than k
ones at “different” “locations,” then one of these lines must be fixed by using merging
operations of the type of the line.

Here, the “location” of a one in a specific row is its column index and the location
of a one in a specific column is its row index. Two locations l, l′ in two neighbouring
lines are “different” if they differ by more than one, i.e., |l − l′| > 1. Two locations
l, l′ in the same line are “different” if they differ by more than one, i.e., |l − l′| > 0.

In our example, the rule applies to:

• rows 5 and 6; all four locations (1 and 2 in row 5; 5 and 6 in row 6) are different;

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 277

• rows 6 and 7;

• columns 3 and 4; e.g., take locations 3, 4 and 7 in the third column, as well as
location 1 in the fourth column.

The rule does not apply to:

• rows 4 and 5, since the location 2 in row 5 and the location 3 in row 4 are not
different; seen as an isolated problem, rows 4 and 5 can be resolved by using
three column merging operations: CM(1,2), CM(2,3), and CM(7,8);

• columns 8 and 9, since the location 2 in column 1 and the location 1 in column
9 are not different; in fact, considering columns 8 and 9 isolatedly, we see that
they can be fixed by: RM(1, 2), RM(4,5), and RM(6,7).

Although the second rule does not immediately tell us what to do, it suggests
applying the following greedy heuristics:

Algorithm MRCM-Greedy:

As long as there are ones in the matrix, do:

for each merge operation, compute the gain of the operation;

perform an operation of maximal gain

Here, the “gain” of an operation should be the number of ones erased by per-
forming the operation.

In the last example, the maximal gain, namely five, is obtained by performing first
CM(3, 4), followed by RM(5, 6) and CM(8, 9). This shows that the given example is
3-mergible.

In fact, it is easily argued that the solution is optimal: reconsider columns 8
and 9. By Rule 2, we know that some of the ones must go by applying a column
merging operation. Since column 9 is at the right-most border, the only possible
column mergings are CM(7, 8) and CM(8, 9). Since CM(8, 9) erases all the ones
that CM(7, 8) does (and some more), there is no reason to pick CM(7, 8). Hence,
CM(8, 9) should be performed. Now, Rule 1 applies to the third column. Hence,
there is no use in erasing some of the ones in the third column by row mergers. Since
Rule 2 tells us to use at least one of {RM(4, 5), RM(5, 6), RM(6, 7)}, and since both
RM(4, 5) and RM(6, 7) will only erase, in addition to ones in row 5 or 6, some ones
in column 3, we have to choose RM(5, 6). Hence, finally we have to take CM(3, 4)
to fix the remaining ones.

Unfortunately, the solution of Algorithm MRCM-Greedy is not always optimal,
as the following example shows:

Example 3: Greedy is not optimal:

278 HENNING FERNAU

1 2 3 4 5 6 7 8 9
0 1 1
1 1 1 1
2 1 1
3 1 1
4 1
5 1
6 1
7 1 1
8 1 1 1 1
9 1

The heuristic might wish to pick RM(0, 1) and RM(8, 9), although the remaining
matrix still needs 4 mergings to get to the all-zero-matrix. In fact,

{CM(1, 2), CM(3, 4), CM(5, 6), CM(7, 8)}
would be an optimal solution from the very beginning.

Remark: In contrast to the—as we will later explain in more detail—related ver-
tex cover problem, where the “corresponding” maximum-degree heuristic can
perform arbitrarily bad, we are not aware of a corresponding result in the case
of the maximum-gain heuristic for MRCM. Conversely, we were not able to show
a constant-factor upper bound when algorithm MRCM-Greedy is considered as ap-
proximation algorithm.

So, the problem MRCM seems to be non-trivial. We will learn more about the
hardness of MRCM in the next section.

Let us conclude this section by considering a two seemingly pathological cases,
arising from the following basic question: what happens if one line is completely filled
with ones?

Observation 1: A line � completely filled with ones must be fixed by at least one
merging operation of the same type as the line, more precisely, performing a merger
of lines � − 1 and � or of � and � + 1.

Corollary: A matrix completely filled with ones cannot be fixed.

Our observation leads to the following reduction rule:

Rule 3: Consider an instance (M, k) of MRCM. If M contains a line � completely
filled with ones, then � must be fixed by either XM(� − 1, �) or XM(�, � + 1),
where XM is a merging operations of the same type as the line �. Since the matrix
M ′ obtained after applying XM(� − 1, �) is the same as the matrix obtained after
applying XM(�, �+1), we can safely reduce (M, k) to (M ′, k− 1). Here, M ′ denotes
the matrix obtained by applying XM(� − 1, �).

Finally, we provide a reduction rule dealing with lines completely filled with zero
entries.

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 279

Rule 4: If M contains two neighbouring lines � and � + 1 which are completely filled
with zeros, then (M, k) can be safely reduced to (M ′, k), where M ′ is obtained from
M by deleting line �.

Note that a matrix completely filled with ones will reduce to the 1 × 1 matrix
containing one 1 by Rule 3. Conversely, a solvable instance (M, k) of MRCM will
finally reduce to the 1 × 1 matrix containing one 0 by Rule 4 after having arrived
at an all-0-matrix by some other methods. More generally, if k is large enough, a
matrix M is solvable if and only if it contains a zero entry:

Observation 2: Let M ∈ {0, 1}n×m. Then, (M, m + n − 2) is a solvable instance of
MRCM if and only if M contains a zero entry.

We conclude this section with a simple algebraic observation. Since the logical
AND operation is commutative and associative, the componentwise AND operation
is commutative and associative, too. This especially implies:

Observation 3: Whenever convenient, we may re-order merging operations. In partic-
ular, we may assume that all operations of one type (row mergers or column mergers)
are performed at the beginning or at the end.

3 MRCM is NP-complete

We will provide a reduction from 3-SAT which is similar to the textbook reduction
of 3-SAT to vertex cover, see [6].

Let us consider an instance of 3-SAT. Let

E = {C1, . . . , Cm}

be a collection of clauses

Ci = �(i, 1) ∨ �(i, 2) ∨ �(i, 3)

(the �(i, j) being literals, i.e., variables or negated variables) with variables x1, . . . , xn.
Technically speaking, an instance of 3-SAT is a Boolean expression E in CNF (con-
junctive normal form) where each clause has exactly three literals, i.e, E is in 3-CNF.
Recall that 3-SAT asks if E is satisfiable, i.e., whether or not there exists an assign-
ment of truth values to the variables such that

C1 ∧ · · · ∧ Cm

evaluates to true.
We will show how to translate such an instance E into an instance (r(E), p(E))

of MRCM such that E is satisfiable if and only if the matrix r(E) is p(E)-mergible.
We will specify r(E) and the parameter p(E) in what follows.

p(E) = n + 3m.

280 HENNING FERNAU

The matrix r(E) has size (7m +5n)(9m +3n). For convenience and mnemotech-
nical reasons, we call the rows

rc(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ 7 and

rx(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ 5.

The index c should refer to the fact that these rows basically simulate clauses, and
the index x should indicate that the corresponding rows mainly simulate variables.

Similarly, we will use the following columns:

cc(i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ 9 and

cx(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ 3.

There are three different cases causing ones to appear in the matrix; each matrix
index not mentioned this way has zero as entry.

1. A clause Ci = �(i, 1) ∨ �(i, 2) ∨ �(i, 3), 1 ≤ i ≤ m, causes the following ones to
appear in the matrix:

(a) (rc(i, 4), cc(i, 2))

(b) (rc(i, 2), cc(i, 3))

(c) (rc(i, 4), cc(i, 4))

(d) (rc(i, 5), cc(i, 6))

(e) (rc(i, 6), cc(i, 8))

2. Each variable xk, 1 ≤ k ≤ n, we introduce a one at

(rx(k, 3), cx(k, 2))

in the matrix.

3. Then, there are “interconnections” between the lines dedicated to clauses and
the lines dedicated to variables. This way, the actual Boolean expression (in
3-CNF) is codified.

• If �(i, j) = xk, then there is a one at (rx(k, 2), cc(i, 2
j)).

• If �(i, j) = xk, then there is a one at (rx(k, 4), cc(i, 2
j)).

Let us consider a typical “clause gadget” in more details. In Table 1, we consider

c = x1 ∨ x2 ∨ x3

and give both the clause gadget and the interconnection gadget. The reader may
convince her/himself that the following discussion also applies to a more general
situation. For clarity, only one-entries are given in Table 1.

We will use this matrix to show our first claim:

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 281

cc(1) cc(2) cc(3) cc(4) cc(5) cc(6) cc(7) cc(8) cc(9)
rc(1)
rc(2) 1
rc(3)
rc(4) 1 1
rc(5) 1
rc(6) 1
rc(7)
rx(1, 1)
rx(1, 2) 1
rx(1, 3)
rx(1, 4)
rx(1, 5)
rx(2, 1)
rx(2, 2)
rx(2, 3)
rx(2, 4) 1
rx(2, 5)
rx(3, 1)
rx(3, 2) 1
rx(3, 3)
rx(3, 4)
rx(3, 5)

Table 1: An example for the clause and interconnection gadgets

Claim 1: The above matrix becomes 3-mergible if one of the ones in the “variable
rows” is fixed by merging rows. Moreover, the other mergings will only affect lines
indexed c.

Let us consider cases to prove this claim:

1. Assume that (rx(1, 2), cc(2)) is fixed by merging rows. Without loss of gener-
ality, this would mean that we merge rows rx(1, 2) and rx(1, 3), since rx(1, 1)
contains only zeros and rx(1, 3) contains a one in the “variable gadget” (which
is not shown).—We will encounter this “w.l.o.g.-argument” repeatedly below.

Then, merging cc(3) with cc(4), cc(7) with cc(8) and rc(4) with rc(5) will fix
the whole matrix.

2. Assume that (rx(2, 4), cc(4)) is fixed by merging rows. Without loss of general-
ity, this would mean that we merge rows rx(2, 3) and rx(2, 4). Then, merging
cc(2) with cc(3), cc(7) with cc(8) and rc(4) with rc(5) will fix the whole matrix.

3. Assume that (rx(3, 2), cc(8)) is fixed by merging rows. Without loss of general-
ity, this would mean that we merge rows rx(3, 2) and rx(3, 3). Then, merging

282 HENNING FERNAU

cc(2) with cc(3), cc(3) with cc(4) and rc(5) with rc(6) will fix the whole matrix.

This first claim is important, since fixing one of the ones in the interconnection
gadget by row merging corresponds to satisfying the clause by setting the corre-
sponding variable appropriately. What happens if, according to this interpretation,
a certain clause is not satisfied? This means that the ones set according to the
interconnection gadgets must be fixed (w.l.o.g.) by column merges.

Claim 2: If the interconnection gadgets are fixed by column merges, then the matrix
given in Table 1 is 4-mergible but not 3-mergible.

Namely, w.l.o.g., we can assume that cc(2) merges with cc(3) and cc(3) merges
with cc(4), as well as cc(8) merges with cc(7) (or cc(9)). Then, there is one remaining
one at (rc(5), cc(6)) which must and can be fixed arbitrarily. This shows the second
claim.

Finally, we have to argue that also in the case when a clause is “multiply satisfied”
we still need three mergings to fix the clause gadget itself.

cc(1) cc(2) cc(3) cc(4) cc(5) cc(6) cc(7) cc(8) cc(9)
rc(1)
rc(2) 1
rc(3)
rc(4) 1 1
rc(5) 1
rc(6) 1
rc(7)

Table 2: The clause gadget itself is 3-mergible at the best

Claim 3: The matrix given in Table 2 is 3-mergible but not 2-mergible:

To see this, consider the one at (rc(6), cc(8)). The best way to fix this is to merge
rc(5) and rc(6), since otherwise, no other one would disappear. The remaining three
ones can be repaired by two further merges, but cannot disappear using only one
merging operation.

Using these three claims, we are now ready to prove the main result of this section:

Theorem 1: MRCM is NP-complete.

Firstly, it is rather easy to see that MRCM can be nondeterministically solved
in polynomial time: given an instance (M, k), one guesses at most k merging opera-
tions and then verifies (deterministically in polynomial time) that this way all ones
disappear.

Secondly, let us argue about hardness. More specifically, we show that the func-
tion r mapping 3-SAT instances onto MRCM instances is a reduction.

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 283

On the one hand, assume that E is satisfiable. We have to show that r(E) is p(E)-
mergible. Let X = {x1, . . . , xn} be the variables appearing in E = {C1, . . . , Cm}.
Let α : X → {0, 1} be a satisfying assignment of E. Then, the following mergings
show that r(E) is indeed p(E)-mergible.

1. If α(xk) = 1, then merge rx(k, 2) and rx(k, 3). This way, both the 1 located
at (rx(k, 3), cx(k, 2)) and the ones located at (rx(k, 2), cc(i, 2

j)) (referring to
�(i, j) = xk in clause Ci) will disappear.

2. If α(xk) = 0, then merge rx(k, 3) and rx(k, 4). Hence, both the 1 located
at (rx(k, 3), cx(k, 2)) and the ones located at (rx(k, 4), cc(i, 2

j)) (referring to
�(i, j) = xk in clause Ci) will disappear.

3. Since α is a satisfying assignment, the first two steps guarantee that, for each
clause, it is true that the conditions of Claim 1 are satisfied. Hence, for each
clause, we can do with three additional mergings.

Now, it is easy to see that r(E) is indeed p(E) = n + 3m-mergible.

On the other hand, assume that r(E) is k-mergible.

1. According to Claim 3, for each “clause gadget”, we need at least three merging
operations to make all ones disappear. Since all clause gadgets are independent
of each other, this means that at least 3m mergings are necessary to fix all clause
gadgets.

2. The n ones appearing in “variable gadgets” are also independent of each other
(and of the clause gadgets), which means that at least n further mergings are
necessary.

Our reasoning so far shows that k ≥ p(E). When does equality hold? Assume now
k = p(E). This means that all ones in the “interconnection gadgets” must be fixed
in passing when erasing the ones in the clause gadgets and in the variable gadgets.
Especially, this implies that each one appearing in a variable gadget is erased by one
row merging operation.

We are now going to construct a variable assignment α. Consider a variable xk

and interpret the case when the one located at (rx(k, 3), cx(k, 2)) disappears due to
the merger of rows rx(k, 2) and rx(k3) by setting α(xk) = 1. Similarly, interpret the
merger of rows rx(k, 3) and rx(k4) by setting α(xk) = 0.

According to Claim 2 and the above considerations, assuming that k = p(E)
implies that for no “interconnection gadget” pertaining to a specific clause Ci, all ones
are fixed by column mergings (otherwise, k > p(E)). Hence, each interconnection
gadget is fixed by using at least one row merger. By the way the interconnection
gadget was constructed, this means that each clause is evaluates to true by the
variable assignment α. Hence, E is satisfiable.

Let us finally remark that the MRCM instance constructed to a given 3-SAT
instance is always reduced.

284 HENNING FERNAU

4 Approximation algorithm

In the preceding section, we have shown that MRCM is NP-complete. This means
that a deterministic polynomial-time algorithm cannot be expected. Nonetheless,
hard problems have to be dealt with in practice. The usual techniques for overcoming
the mentioned difficulties are:

• (meta-)heuristics,

• approximation, and

• parameterized algorithms.

In the following, we will focus on the latter two techniques. In fact, Sec. 2 can be
read as providing some heuristics for MRCM. The approximation technique aims at
finding polynomial-time algorithms that do not necessarily find the optimal solution
to MRCM (seen as a minimization problem, where the goal is to minimize the
number of merging operations for a given matrix instance) but “only” some solution
which is not “too bad”. More precisely, and in contrast with mere heuristics, there
is a guaranteed bound on the maximal relative “error” the approximation algorithm
will make in the worst case.

As the main result of this section, we will prove:

Theorem 2’: MRCM is approximable by a factor of four.

This means that there is an algorithm that, given an instance M of MRCM,
returns a set of merge operations which is at most four times as large as the optimal
one.

The algorithm itself is quite simple and in fact similar to the factor-2-approxima-
tion for vertex cover algorithm attributed to Gavril, see [1, p. 17]:

Algorithm MRCM-Approx:

Set S := ∅.
As long as there is a one in the matrix M do:

Pick an index i, j such that M [i, j] = 1;
S := S ∪ {RM(i − 1, i), RM(i, i + 1), CM(j − 1, j), CM(j, j + 1)};
Update the matrix M accordingly

Return S

Obviously, this algorithm will finally find a feasible solution S. What about the
quality of S? Each time S is updated in the loop, one out of the four merging
operations added to S must be performed. Hence, the ratio follows. More formally
speaking, we can apply a local ratio argument as worked out by Bar-Yehuda [2]. The
obvious details are left to the reader.

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 285

5 A fixed parameter approach

A naive brute-force algorithm for MRCM simply tests all

(
n + m − 2

k

)
possible

solving strategies, given an n × m matrix M and a parameter k.
In contrast, in the fixed parameter approach, we are looking for algorithms with

running time f(k)p(n), where f is an arbitrary function and p is some polynomial.
Then, we call a problem fixed parameter tractable. Further details can be found in
the monograph [3].

As main result of this section, we show that MRCM is fixed parameter tractable.
More precisely, we can prove:

Theorem 3’: MRCM can be solved in time O(4kmn), given an n × m matrix M
and a parameter k.

The following algorithm is basically an attempt to turn MRCM-approx into a

search-tree algorithm.

Algorithm MRCM-SEARCHTREE:

search-MRCM(M, k, S):
If M has no ones, then

output S and return TRUE

else if k > 0 then

pick some index (i, j) such that M [i, j] = 1;
//branch according to the four fixing possibilities:

search-MRCM(RM(i − 1, i)(M), k − 1, S ∪ {RM(i − 1, i)});
search-MRCM(RM(i, i + 1)(M), k − 1, S ∪ {RM(i, i + 1)});
search-MRCM(CM(j − 1, j)(M), k − 1, S ∪ {CM(j − 1, j)});
search-MRCM(CM(j, j + 1)(M), k − 1, S ∪ {CM(j, j + 1)});

else return FALSE

At the start, we call search-MRCM(M, k, ∅), where M is the input matrix and
k the given parameter. In the above algorithm and the following algorithms, if
op is a merging operation and M some matrix, then op(M) denotes the matrix
obtained from M after having applied the merging operation op. Moreover, obvious
refinements are necessary to cover the situation that the chosen index (i, j) lies on the
border of the matrix; this basically reduces the branches by one or two (in the “corner
case”). This will be used to improve this first version of a search-tree algorithm in
the next section.

A further heuristic idea which connects with vertex cover and hence is a good
connection to Sec. 7 concludes our considerations here. Namely, it is possible to
interpret a given matrix M ∈ {0, 1}n×m as (a “quarter” of) the adjacency matrix of
a bipartite undirected graph BM . In BM , we have row vertices r1, . . . , rn and column
vertices c1, . . . , cm. ri and cj are connected by an edge if and only if M [i, j] = 1. Let
us associate {ri, ri+1} to the operation RM(i, i + 1), and similarly {ci, ci+1} to the
operation CM(i, i+1). Let A(S) denote the set of vertices of BM associated to a set
S of merging operations.

286 HENNING FERNAU

Then, we can show:
Lemma: Let (M, k) be an instance of MRCM and let S be a solution to this instance.
Then, A(S) is a vertex cover set of BM with |A(S)| ≤ 2k.

The algorithmic good news about this lemma is that vertex cover can be
solved in polynomial time on bipartite graphs. Hence, that lemma can be used to
prune the search tree exhibited before: whenever the problem has been reduced to
(M ′, k′) such that the minimum vertex cover of BM ′ is larger than 2k′, the search
can stop, since there can never be a solution to the MRCM problem on that branch
according to the lemma.1

6 Improvements to approximation and search tree algorithms

In this section, we are going to show how to improve the approximation algorithm to
a factor-3-approximation and the parameterized algorithm to an O(3kmn) algorithm.
The idea is to exploit the better approximation behaviour (and better branching) at
ones in “borderlines”. The key is the following reduction rule:

0-borderline-rule: If (M, k) is an instance of MRCM with a 0-borderline, i.e., either
the first row or the last row or the first column or the last column is completely
consisting of zeros, then (M, k) can be reduced to (M ′, k), where M is obtained from
M by deleting the 0-borderline.

Lemma: The 0-borderline-rule is sound for matrices M which contain more than two
lines of the type of the considered 0-borderline.

Proof: If (M ′, k) is a YES-instance, M is k-mergible, as well. Conversely, let (M, k)
be a YES-instance. Let S = {m1, . . . , mk} be a sequence of merging operations
solving M . If S does not contain a merger with the 0-borderline omitted to obtain
M ′, then there is surely a “corresponding” sequence of mergers for solving M ′, as
long as M ′ contains more than one line. If S contains a merger with the 0-borderline,
say m1, we claim that there is a merger m′

1 such that S′ = S ∪ {m′
1} \ {m1} is a

solution of (M, k), hence also yielding a solution of (M ′, k). W.l.o.g., and to simplify
the text, let m1 = RM(1, 2). Namely, if we replace m1 with m′

1 = RM(2, 3), then we
can observe:

• After applying m1, the “new” first row of the obtained matrix M1 is a 0-
borderline, while the “new” second row of M1 is just the “old” third row of
M .

• After applying m′
1, the first row is unchanged, i.e., it is a 0-borderline. The

“new” second row in M ′
1 is obtained by merging the second and third row of

M .

Since the other rows are not affected by the mergings under consideration, the only
difference between M1 and M ′

1 lies in the second row. Since the second row of M ′
1 can

1L. Branković recently found a way to use the BM construction to get a factor-2-approximation
for a given MRCM instance M .

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 287

be obtained by merging the second row of M1 with some other row, it is clear that,
whenever M1[2, i] = 0, then M ′

1[2, i] = 0. Hence, M ′
1 is “easier” than M1, implying

that the sequence S \ {m1} which solves M1 will also solve M ′
1.

By intercalating the use of the 0-borderline-rule with

• pick a one on a borderline and fix it by taking the three possible fixes into the
solution (in the case of an approximation) OR with

• pick a one on a borderline and branch according to the three possible fixes (in
the case of a parameterized algorithm),

we obtain the following two strengthened theorems:

Theorem 2: MRCM is approximable by a factor of three.

Theorem 3”: MRCM can be solved in time O(3kmn), given an n×m matrix M
and a parameter k.

We like to further improve on Theorem 3” in the following. One idea would be,
as “usual” with parameterized algorithm design, to dive into a further case analysis.
We give the flavour of this idea in the following:

Again, in order to simplify formulations, we will talk more specifically about rows
and columns, but their “meaning” can be always interchanged. Similarly, “first” can
be also read as “last” by symmetry.
Observation 1: An instance (M, k) which contains two ones (say in rows x and y) in
the first column can be fixed by using the following branch:

1. Solve (M1, k − 1), where M1 is obtained from M by CM(1, 2).

2. Solve (M2, k− 2), where M2 is obtained from M by RM(x− 1, x) and RM(y−
1, y).

3. Solve (M3, k−2), where M3 is obtained from M by RM(x−1, x) and RM(y, y+
1).

4. Solve (M4, k− 2), where M4 is obtained from M by RM(x, x + 1) and RM(y−
1, y).

5. Solve (M5, k−2), where M5 is obtained from M by RM(x, x+1) and RM(y, y+
1).

The running time T of this recursion alone can be estimated as

T (k) ≤ T (k − 1) + 4T (k − 2) + O(1).

Therefore, T (k) ≈ 2.5616k in this case. Observe that the “branching behaviour” is
improved if x and y are neighbours or if there are more than 2 ones in a borderline.

288 HENNING FERNAU

Applying the “nice branch” of Observation 1 to all borderlines (intercalated with
the 0-borderline-rule) yields an instance where at most one one is in each borderline.

Unfortunately, the further case analysis we did was not strong enough to finally
improve on the overall performance of the algorithm. Still, we were able to improve
on Theorem 3” by using different ideas exhibited in the next section.

7 Further relations to vertex cover

As already indicated, many of the above results are quite analogous to the ones
obtained for vertex cover. Is this just by chance? No, not at all. We will exhibit
two relations in the following, where the second one will allow us to further strengthen
Theorem 3”.

7.1 4-hitting set

In fact, the way we found our NP-hardness results was mostly thinking about MRCM
as a variant of 4-hitting set which can be seen as a generalization of vertex
cover to hypergraphs where each hyperedge is incident to (at most) four vertices.

More formally, we are facing the following problem:

4-Hitting Set (4HS)
Given: A hypergraph G = (V, E) where each hyperedge is incident to (at most)
four vertices
Parameter: positive integer k
Question: Is it possible to find a cover C ⊆ V with |C| ≤ k, i.e., each hyperedge is
incident to at least one vertex in C?

By trivial reduction from vertex cover, it is easy to see that 4HS is NP-
hard. Moreover, its 4-approximability and the existence of an O(4k|G|) algorithm are
relatively straightforward. We refer to [11] for an improved parameterized algorithm
in this case.

In fact, it is tempting to model MRCM as a special case of 4HS, namely by
considering the merging operations as vertices and introducing hyperedges whenever
a one has to be repaired.

Due to further interactions between ones to be fixed in the given MRCM in-
stance M , this translation into 4HS is only true when the immediate horizontal and
vertical neighbours of each one in M are zeros. We were able to show that this can
be enforced in time O(3kmn), but then the best-known algorithm for 4HS is cur-
rently worse than the O(3kmn), so that we did not go in that direction any further.
If better algorithms for 4HS were known, than it might be an idea to revisit these
connections once more.

Since in the reduction proving NP-hardness of MRCM we never introduced con-
secutive ones in a line, the same proof can be used to show NP-hardness of the
following bipartite version of 4HS which could be of independent interest:

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 289

Bipartite 4-Hitting Set (B4HS)
Given: A hypergraph G = (V = V1 + V2, E), a linear order on V1 and V2, where
each hyperedge is incident to four vertices, two of them are neighbours in V1 and the
other two neighbours in V2

Parameter: positive integer k
Question: Is it possible to find a cover C ⊆ V with |C| ≤ k, i.e., each hyperedge is
incident to at least one vertex in C?

Corollary: B4HS is NP-complete.

In fact, the reduction proving NP-hardness of MRCM was obtained by showing
NP-hardness of B4HS in a suitable way, since this problem appears to be intuitively
more appealing. The reader is encouraged to draw the hypergraphs corresponding
to the clause and interconnection gadgets in the given NP hardness proof in order to
discover the similarities with the well-known construction for showing NP-hardness
of vertex cover.

7.2 vertex cover

Sometimes, it is useful to look at special cases of the problem under consideration.
In our case, considering the following sub-problem turns out to be fruitful:

Matrix Row Merging (MRM)
Given: n × m {0, 1}-matrix M
Parameter: positive integer k
Question: Is it possible to get the all-zeros-matrix by merging at most k neighbour-
ing rows?

Obviously, an instance of MRM M has a (feasible) solution iff there is at least
one 0 in each column of M , see Obs. 1 in Sec. 2.

This can be seen best by exhaustively applying the following reduction rule, given
some MRM instance (M, k):

Row merging rule: If the first row of M contains a one, merge that row with the
second row to obtain an instance (M ′, k − 1). If the last row of M contains a one,
merge that row with the penultimate row to get an instance (M ′, k − 1).

The correctness of that rule is evident: a one in the first row can only be fixed by
RM(1,2). Call an instance row-reduced if the row merging rule is not applicable. A
row-reduced MRM instance is not feasibly solvable if and only if it consists of only
one row which contains a one somewhere.

Conversely, every row-reduced instance (M, k) having one 0 in each column can
be converted into an equivalent instance (GM , k) of vertex cover:

The vertices of GM are the row merging operations. For simplicity, write ri =
RM(i, i + 1). So, V (GM) = {r1, . . . , rm−1}. Put an edge between ri and rj , i < j,
if and only if there is a column c in M in which M [r, c] = 1 for all i < r ≤ j. The
correctness of this translation is seen by the following lemma.

290 HENNING FERNAU

Lemma: Let M be a row-reduced matrix having more than one row.

1. If S is a set of row mergers solving M , then S is a vertex cover of GM .

2. If S is a vertex cover of GM , then S is a solution of M .

For the proof, it is crucial to observe that a sequence of ones M [r, c] = 1 for
i < r ≤ j can be fixed by any j− i+1 out of the j− i+2 row mergers {ri, . . . , rj+1}.2
Conversely, the vertices {ri, . . . , rj+1} will form a clique in GM . Therefore, (at least)
j − i + 1 out of these clique vertices belong to a feasible cover set.

Further properties of the translation are:

1. If GM is split into two components, say there is no path between ri and ri+1,
this happens iff M ’s i + 1th row contains no ones.

2. Each connected component C has a sequence of consecutive rows as its vertex
set, i.e., C can be described by (i, j) such that C = {r� | i ≤ � ≤ j}. Moreover:
{r�, r�+1} are all edges in GM , with i ≤ � < j, forming the backbone of GM .

3. If {r�, r�′′} is an edge in GM , then for all � ≤ �′ ≤ �′′, {r�, r�′} and {r�′ , r�′′} are
edges in GM (interval property).3

In other words, GM forms an interval graph, a notion introduced by G. Hajos [8].
Further important properties were exhibited in [5, 9], also see the book [4].4 On these
graphs, vertex cover can be solved in polynomial time, since interval graphs are
cocomparability graphs and hence perfect graphs. Improving on the “standard”
O(|V |2.5)-algorithm for computing vertex covers in perfect graphs by maximum
matchings, dynamic programming can be used to derive a linear time algorithm5

(also see [7, 10]):

Lemma: Given a feasible instance M of MRM, minimum vertex cover for GM

can be solved in linear time.

Proof: Assume w.l.o.g. that GM is connected. Let V = {r1, . . . , rm−1} be the vertex
set of GM . Let C(ri) be some minimum vertex cover of G({ri, . . . , rm−1}). Let
c(ri) = |C(ri)|. Then, clearly, C(rm−1) = ∅ and c(rm−1) = 0. For consistency, we
will also set C(rm) = ∅ and c(rm) = 0. We now claim that

c(ri) = min{1 + c(ri+1), δi(ri) + c(ri+δi(ri)+1)}.
Here, δi denotes the degree of the corresponding vertex within the induced graph
G({ri, . . . , rm−1}). The correctness of this formula is best seen by considering how
to compute the corresponding cover sets C(ri). Assume that C(ri+1), . . . , C(rm) are
already computed (induction hypothesis). Then, for C(ri) we obtain two subcases:

2Confer also the box fixing lemma in the next section.
3Basically, this shows that GM is also a chordal graph.
4A good online source of information on intersection graphs is the “Journey through Intersection

Graph County” by Erich Prisner, available at:
http://www.math.uni-hamburg.de/spag/gd/mitarbeiter/prisner/Pris/Rahmen.html

5We provide a version of this algorithm to keep the exposition of the overall algorithm self-
contained.

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 291

1. If ri ∈ C(ri), then all edges incident with ri are covered, so that exactly those
edges in G({ri+1, . . . , rm−1}) remain to be covered. Hence, we get

{ri} ∪ C(ri+1)

as one candidate cover.

2. Alternatively, ri /∈ C(ri). Then, all neighbours of ri within the induced graph
G({ri, . . . , rm−1}) are in C(ri). Due to the interval property, these neigh-
bours are ri+1, . . . , ri+δi(ri). The only uncovered edges belong therefore to
G({ri+δi(ri)+1, . . . , rm−1}). This makes

{ri+1, . . . , ri+δi(ri)} ∪ C(ri+δi(ri)+1)}

an alternative candidate cover.

Let us re-consider Example 3; the corresponding row-reduced instance looks as
follows:

1 2 3 4 5 6 7 8 9
1
2 1 1
3 1 1
4 1
5 1
6 1
7 1 1
8

For simplicity, we labelled the row obtained by merging the first two rows 1, and the
row obtained by merging the last two rows 8.

The connected graph GM has vertices {r1, . . . , r7}. Besides the backbone con-
nections we have the following edges: {r1, r3}, {r1, r4}, and {r2, r4}. The dynamic
programming solution for a minimum vertex cover on GM can be summarized in
tabular form:

C c
r7 ∅ 0
r6 {r6} 1
r5 {r6} 1
r4 {r4, r6} 2
r3 {r4, r6} 2
r2 {r2, r4, r6} 3
r1 {r1, r2, r4, r6} 4

Overall, this translates into the following “rows only” solution to that instance:
RM(0,1) (enforced by row merging rule), RM(1,2), RM(2,3), RM(4,5), RM(6,7)
(these four operations inferred by the vertex cover algorithm), RM(8,9) (enforced
by row merging rule). So, as we already saw when first discussing this example, row

292 HENNING FERNAU

mergings aren’t a very good choice here. It is easy to check that for the corresponding
“column merging only” instance, the solution derived in Example 3 gives a vertex
cover for the “column merging graph.”

Observe that conversely each interval graph can be converted into a row-reduced
MRM instance; the interior of an interval basically corresponds to a sequence of
ones in a certain column of the MRM instance. This makes the following lemma
more generally applicable.

Lemma: An MRM instance can be completely solved (i.e., reduced to some 1 × m-
matrix) by applying the row merging rule and the 0-borderline rule and Rule 4 from
Sec. 2.

Proof: We consider a 1×m-matrix as “completely solved;” more precisely, the given
instance is a YES-instance if the obtained reduced matrix is a 1×1-matrix containing
a zero, and it is a NO-instance if the obtained reduced matrix is a 1 × m-matrix
containing a one.

The first row of an MRM instance with more than one row either contains a one
(triggering the row merging rule) or only zeros. If the first row contains only zeros
and the second row contains only zeros, then Rule 4 is applicable. If the first row
contains only zeros and the second row contains a one, then either the matrix does
not contain more than two rows, in which case the row merging rule is applicable,
or it has more than two rows, in which case the 0-borderline rules applies.

So, we have shown that any MRM instance will be finally reduced to some 1×m-
matrix, since any instance with more than one row triggers (at least) one reduction
rule. If the obtained 1×m-matrix only consists of zeros, Rule 4 can be used to finally
arrive at a 1 × 1-matrix having one zero.

So, in our case the derived reduction rules immediately yield a deterministic
solving algorithm, without the need of dynamic programming at all. This could be
of independent interest, since it gives a simple deterministic linear-time algorithm for
computing minimum vertex covers or maximum independent sets in interval graphs.

Let us write down this algorithm more formally:

Algorithm MRM-SOLVER:

Let M, k be an MRM instance.

Call S :=solve-MRM(M, k, ∅, 0).
If M contains a one and S = ∅, then M, k is a NO-instance.

Otherwise, M is a YES-instance, solved by S.

solve-MRM(M,k,S,offset) returns set of mergings:

Let r be the number of rows in M.

If ((r = 1) ∨ (k ≤ 0)) and M contains a one, return ∅.
If r = 1 and M contains only zeros, return S.
//Otherwise: r > 1
If the first row of M contains a one, then

op:=RM(1,2);

return solve-MRM(op(M),k−1,S∪{RM(1+offset, 2+offset),offset+1).

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 293

else // the first row of M contains only zeros

if the second row of M contains only zeros or if r > 2 then

op:=delete first row;

return solve-MRM(op(M),k,S,offset+1).
else // r = 2 and the second=last row contains a one

op:=RM(1,2);

return solve-MRM(op(M),k−1,S∪{RM(1+offset, 2+offset),offset+1).

Here, the variable offset counts the number of recursive calls.
Reconsidering again Example 3 as an MRM instance, the preceding algorithm

will generate, when called with parameter 6, the following solution (in that order):
RM(0,1), RM(2,3), RM(3,4), RM(4,5), RM(6,7), RM(8,9).

8 The final parameterized algorithm

Having found this simple solution for row (or column) mergers only, we can now
formulate an algorithm for which we can show a further improved running time:

Algorithm MRCM-PARAM:

Let (M, k) be the given MRCM instance.

A is an initially empty auxiliary matrix.

Call S :=solve-MRCM(M, k, ∅, 0, k, A, 1, 0).
If M contains a one and S = ∅, then M, k is a NO-instance.

Otherwise, M is a YES-instance, solved by S.

solve-MRCM(M, k, S, �, A, a,offset) returns set of mergings:

// � is an auxiliary parameter.

// a is pointing to the ‘‘next’’ free row in A
Let c be the number of columns of M.

Apply:

a) // 0-borderline-rule to columns:

if the first column of M contains only 0s and if c > 2 then

op:=delete first column;

return solve-MRCM(op(M),k,S,�,A,a + 1,offset+1).
b) if the first column of M contains 2s but no 1s then do

copy the first column of M into the as column of A,

thereby turning 2s into 1s;

op:=delete first column;

return solve-MRCM(op(M),k,S,�,A,a + 1,offset+1).

// After applying a) and b),

// the first column of M contains a 1 or c ≤ 2.
// The remaining simple cases are solved with the MRM-solver

If (c ≤ 1) ∨ (� < 1) then do

copy all columns from M into A, starting at position a,

294 HENNING FERNAU

thereby turning 2s into 1s;

return solve-MRM(A, k, S, 0).

// Branch according to two subcases

op:=CM(1,2);

Supdate := S ∪ {CM(1 + offset, 2 + offset)};
S′ :=solve-MRCM(op(M),k − 1,Supdate,� − 1,A,a,offset+1).

If S′ �= ∅ then return S′

else do // look into alternative branch

if c = 2 then do // the only remaining simple case

copy all columns from M into A, starting at position a,
thereby turning 2s into 1s;

return solve-MRM(A, k, S, 0).
else // c > 2 Hence, the first column of M contains a one.

λ := 0;
set the ath column of A to be the all-zero-vector;

for each row i in the first column of M with M [i, 1] = 1 do

λ := λ + 1;
for each column j > 1 of M with M [i, j] = 1 do

M [i, j] := 2;
for each row i in the first column of M with M [i, 1] �= 0 do

A[i, a] := 1;
op:=delete first column;

return solve-MRCM(op(M),k,S,� − λ/2,A,a + 1,offset+1).

The idea of this algorithm is pretty simple and similar to the previous case: a one
in the first column can be either solved by a column merger or by some row mergers.
The trick is that we defer solving by row mergers till the very end, which is possible
due to Observation 3 in Sec. 2. Observe that λ ≥ 1 due to the fact that M contains
at least one one in the first column.

We allow ourselves to override some ones in M by twos, namely, if we decide
that the corresponding row containing that one should be resolved by a row merger.
Then, we should not consider the possibility of repairing a column containing only
zeros and twos by column mergings (at all). Rather, in this sense a two would be
treated as a zero by the 0-borderline-rule within M , deferring the solution to the
polynomial-time phase for GA. This justifies part b) of the reduction in M . Still, if
we decide to merge the first column with the second which may contain a two, then
this two is treated as if it were a one. More precisely, merging within M is then done
according to the following algebraic laws:

• 0 AND X = 0 for X = 0, 1, 2;

• X AND X = X for X = 0, 1, 2.

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 295

Note that we will never merge a one with a two, since all ones in a row will be turned
into twos (when we assume that that row is fixed by row merging) or not. Hence,
the given rules cover all cases that may occur.

The idea behind the new variable � is that for each row which we decide to
be resolved by row mergers only, we can be sure to put aside at least one half of a
parameter value, since one row merger can completely resolve at most two rows to be
fixed by row mergers only. This “book-keeping trick” (which might be in fact wider
applicable: use simple approximation bounds to account for cases to be resolved later
in a deterministic, polynomial-time fashion) gives us the following recursion:

T (�) ≤ T (� − 1) + T (� − 1/2) + O(1)

Assuming T (�) = c� yields c = (3 +
√

5)/2 ≈ 2.6181. Alternatively, c = φ2 = φ + 1,
where φ ≈ 1.6181 is the number of the golden ratio.

Hence, we may state as our final version:

Theorem 3: MRCM can be solved in time O(2.6181kmn), given an n×m matrix
M and a parameter k.
Let us follow the work of this algorithm by having another look at the first example,

solving it as instance (M, 3). For clarity, we put the value of the offset variable
into each table.

offset = 0 1 2 3 4 5 6 7 8 9
1 1 1 1
2
3 1
4 1 1 1
5
6
7 1 1

The first branch would take CM(1,2), and one application of the 0-borderline-rule
leaves us with a new instance (M{1}, 2), using curly brackets to denote the different
subcases:

offset = 2 1 2 3 4 5 6 7
1 1 1
2
3
4 1 1 1
5
6
7 1 1

Alternatively, the second branch would copy the first column of M into A and
colour some 1s into 2s, arriving at the following matrix instance (M{2}, 2), after one
application of the 0-borderline-rule:

296 HENNING FERNAU

offset = 2 1 2 3 4 5 6 7
1 2 2
2
3
4 1 1 1
5
6
7 1 1

To shortcut the exposition, let us now focus on what further happens with this
second branch, i.e., with (M{2}, 2): Again, we have CM(1,2) as first alternative,
yielding as next instance (M{2.1}, 1). Notice that since the current offset is two, the
operation CM(3,4) will be put into the partial solution in this branch. So, we arrive
at:

offset = 3 1 2 3 4 5 6
1 2
2
3
4 1 1
5
6
7 1

Obviously, this is a dead end (it cannot be repaired by only one merging operation).
Alternatively, deferring the row merging yields (M{2.2}, 1.5):

offset = 3 1 2 3 4 5 6
1 2 2
2
3
4 2 2
5
6
7 1 1

The matrix A looks up to now as follows:

1 2
1 1
2
3 1
4 1
5
6
7

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 297

Since column mergers alone surely would not resolve (M{2.2}, 1.5), let us follow up
the situation assuming row mergers. At an intermediate state, in M{2.2} all ones
would be turned into twos. The copy operations would then finally turn A besides
one missing 0-column) into the original matrix M . solve-MRM(A, 3, ∅, 0) will then
return as solution

S = {RM(1, 2), RM(3, 4), RM(6, 7)}.
Of course, there are many places where we could improve on this algorithm, at

least in practice:

1. At the beginning, we can use the rules derived in Sec. 2 in a kind of pre-
processing phase. Especially, Rules 1 and 2 may give some (advantageous)
2k-branching behaviour for “lines with many ones.”

2. Heuristics can be used to prune search branches as early as possible, see, e.g.,
the lemma derived in Sec. 5.

3. In the same spirit, we can improve on the estimate for λ by repeatedly running
solve-MRM.

4. Applying Observation 1 from Sec. 6 also slightly improves on the running time
of our final algorithm, although this gain might be overridden by the additional
(implementational) complexity, since now row mergers are to be implemented
“inbetween”, affecting both M and A.

5. The 0-borderline-rule can be also applied to rows. Again, this may affect both
M and A.

In this more practical spirit, we mention in the following a couple of more rules
which we encountered but could not make use of for improving our analysis:

• Whenever the instance (M, k) contains a one at (i, j) such that in the k-
Manhattan-neighbourhood of (i, j) there are only ones, (M, k) is a NO-instance.
This rule can be used for pruning search-tree branches.

• If �′ and �′′ are the neighbouring lines of line � such that the line vectors v′

and v corresponding to line index �′ and � obey v′ ≤ v (comparison by 0 < 1,
componentwisely extended), then never merge lines � and �′ but prefer to merge
� and �′′ instead.

To understand this rule, observe that merging rows � and �′ gives the line vector
v′ again (due to v′ ≤ v), with neighbouring line �′′, while merging � and �′′ keeps
the “first” line �′ unchanged and produces a neighbouring line which is, as a
merger of line �′′ with something, never greater than �′′.

In fact, the 0-borderline-rule might be viewed as special case of the preceding
rule.

As a rule of thumb, it would be also advantageous to make as many “good
branches” as possible in the very beginning, bringing the parameter in the generated
subinstances as much down as possible. Typical candidates for a good branching are:

298 HENNING FERNAU

• lines with many ones;

• agglomerations of ones.

To understand what is meant by the second point, we give some results in the
following. These are also of importance to derive the “parameterized reduction” to
4-hitting set as mentioned in the previous section, since it may be used to destroy
situations where a one is neighbour of another one.

Box fixing lemma: If M contains an r× c submatrix completely filled with ones (i.e.,
an r × c box), then, in order to fix M , either at least r row merging operations or at
least c column merging operations are necessary. More precisely, if i + 1, . . . , i + r
describe the rows and j + 1, . . . , j + c the columns of the box B, then either r out
of the r + 1 row merging operations RM(i, i + 1), . . . , RM(i + r, i + r + 1) or c out
of the c + 1 column merging operations CM(j, j + 1), . . . , RM(j + c, j + c + 1) are
necessary to fix all ones in B.

This justifies the following box branching rule: If M contains a box of size r × c
with r + c ≥ 3, then branch according to the r + 1 possibilities for row mergings and
the c + 1 possibilities for column mergings.

If r + c = 3, we arrive at a running time described by the recurrence

T (k) ≤ 3T (k − 2) + 2T (k − 1) + O(1),

which can be solved by T (k) = 3k. Obviously, “larger boxes” may yield much better
branches. For example, in the case r = 3 and c = 1,

T (k) ≤ 4T (k − 3) + 2T (k − 1) + O(1),

which means that T (k) ≤ 2.60k, and r = c = 2 gives

T (k) ≤ 6T (k − 2) + O(1),

implying that T (k) ≤ 2.45k.

9 Conclusions

This paper demonstrated how a problem emanating from the theory of statistical
databases can be attacked by making use of parameterized algorithmics or of ap-
proximation algorithms.

In passing, we developed a novel book-keeping technique for computing the be-
haviour of parameterized algorithms which might be of independent interest. An
interesting related question is here whether a similar technique can be also used
to assess the approximation behaviour of (similarly designed) approximation algo-
rithms, at least in some randomized setting. This would not be too surprising due to
the usually closely linked nature of approximation and search-tree algorithms (if the
search-tree branches don’t get too tricky, but this is not the case in our problem).

COMPLEXITY OF A {0,1}-MATRIX PROBLEM 299

Conversely, this “matrix puzzle” can be also seen as a sort of solitaire game, easily
implementable on a computer. Here, it might be also interesting to consider different
“merging rules”; at present, we considered the rule of ANDing neighbouring rows or
columns, but other Boolean operations are thinkable as well. It is not immediately
clear whether, seen on a classical complexity scale, these problems would still be
NP-complete, constant-factor approximable and fixed parameter tractable. Possibly,
some of them are easier (up to trivial for the constant boolean functions), while
others might be PSPACE-hard.

Last but not least, the MRCM problem also contains a “didactic” component:
since it is easy to formulate and since its NP-hardness proof is quite similar to the
one found for vertex cover in textbooks introducing the Theory of Computation,
it might be a good candidate for an example explained in a tutorial accompanying a
lecture on Computation Theory.

Acknowledgment: We like to thank Ljiljana Branković, Stephan Chalup, Mike Fel-
lows, Pablo Moscato and Christian Sloper for interesting discussions on this topic.
Special thanks to Ljiljana for communicating us the problem. We express our hope
that this paper will stir further fruitful cooperation on database-related problems.
The author is indebted to the referee because he pointed to some flaws in the sub-
mitted version of the paper.

References

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, M. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation. Springer, 1999.

[2] R. Bar-Yehuda. One for the price of two: a unified approach for approximating
covering problems. Algorithmica, 27:131–144, 2000.

[3] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.

[4] P.C. Fishburn. Interval Orders and Interval Graphs. Wiley, 1985.

[5] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific
J. Math. 15:835–855, 1965.

[6] M.R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[7] U. I. Gupta, D.T. Lee and J.Y.T. Leung. Efficient algorithms fo interval graphs
and circular-arc graphs. Networks 12:459–467, 1982.

[8] G. Hajós. Über eine Art von Graphen. Internat. Math. Nachr. 11, 1957, Problem
65.

[9] P.C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and
of interval graphs. Canad. J. Math. 16:539–548, 1964.

300 HENNING FERNAU

[10] W.L. Hsu and K.H. Tsai. Linear time algorithms on circular-arc garphs. In-
formation Processing Letters 40:123–129, 1991.

[11] R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm for
3-hitting set. J. Discrete Algorithms, To appear, 2002.

(Received 19 Dec 2002; revised 28 Aug 2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

