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Abstract

A total labelling of a graph with v vertices and e edges is a one-to-one
map taking the vertices and edges onto the set {1, 2, 3, . . . , v + e}. A
labelling can be used to define a weight for each vertex and edge. For
a vertex the weight is the sum of the label of the vertex and the labels
of the incident edges. For an edge {x, y} the weight is the sum of the
label of the edge and the labels of the end vertices x and y. A labelling is
vertex-magic if all the vertices have the same weight. A labelling is edge-
magic if all the edges have the same weight. A labelling is totally-magic if
it is both vertex-magic and edge-magic. In this paper we generalize these
concepts to A-labellings of a graph, that is labellings with the elements
of an abelian group A of order v + e. We consider in detail A-labellings
of star graphs.

1 Introduction

There are many types of graph labellings, and a detailed description and survey of
many of them can be found in the dynamic survey of graph labellings by Gallian [7].
A labelling of a graph is an assignment of labels to the vertices (a vertex labelling),
or an assignment of the labels to the edges (an edge labelling), or an assignment of
the labels to the combined set of vertices and edges of the graph (a total labelling).
A magic labelling of a graph with v vertices and e edges is a total labelling of the
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graph by the integers 1, 2, 3, . . . , v + e with constant edge or vertex weights. It can
be viewed as a generalisation of the concept of a magic square. Magic labellings have
recently been considered by various authors, for example vertex-magic labellings by
MacDougall et al [10], edge-magic labellings by Baskaro et al [1] and labellings which
are both vertex-magic and edge-magic by Exoo et al [5] and by Wood [14]. There
are many more references in the book by Wallis [13].
Clearly a labelling over consecutive integers can be viewed as a labelling over a
cyclic group. There are many natural generalisations of this idea. In this paper we
introduce the idea of A-magic labellings, where the labels are the elements of an
arbitrary abelian group, A, of order v + e.
We illustrate the idea of magic labellings over groups by considering star graphs.
Labellings (not group labellings) of star graphs were considered by Exoo et al [5],
who show that, although there are various edge-magic labellings, there are no vertex-
magic labellings of any star with more than 2 rays. The situation is different with
labellings of stars over groups. In our main result we prove that for all choices of
abelian group A of appropriate order, all stars have various edge-magic A-labellings,
and further any star with more than than 4 rays has a plentiful supply of vertex-
magic A-labellings.
Previously some authors have considered labelling graph elements by groups, but
none were considering total labellings or labellings with “magic” properties. Fukuchi
[6] and Egawa [4] considered labelling the vertices of a graph by an elementary
abelian group such that the connected components of the graph (rather than vertices,
or edges) have constant weight. Gimbel [8] and Edelman and Saks [3] considered
labellings of vertices and labellings of edges over abelian groups, and the relationship
between vertex and edge labellings.

2 A-labellings of graphs

2.1 Definitions

In this paper, a graph G is a finite graph with no loops and no multiple edges. The
graph need not be connected. The vertex set is V = V (G), with v = |V | > 0. The
edge set E = E(G) is a set of unordered pairs of vertices, with e = |E| ≥ 0. The set
V ∪ E is the set of graph elements. If x and y are vertices, then x ∼ y means there
is an edge between x and y, and the edge is denoted by xy (or yx). The complete
graph with v vertices, and e =

(
v
2

)
, is denoted by Kv. The circuit with v vertices (and

e = v) is denoted Cv. The path with v vertices and v − 1 edges is denoted Pv. The
star with e edges (and v = e + 1) is denoted Te. There are many general references
for graph theory concepts, for example [2] or [9]. We take v + e as a measure of the
size of G.

In this paper the group A is always a finite abelian group. (It would be nice to
generalise labellings to non-abelian groups as well, but it is not clear to the authors
how to do this.) Note that in the original definition of a labelling over the integers
{1, 2, . . . }, the weights were defined by addition, but we find it convenient to consider
our groups to be multiplicative. The cyclic group of order n is denoted Cn, and in
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any example where it will not cause confusion, we will consider Cn to be generated
by a.

Let G be a graph, and A a group with order |A| = v + e. Then a total A-labelling
of G, or a total labelling of G over A, is a bijection from V ∪E to A. Our A-labellings
will always be total, that is they will always be labellings of the union V ∪ E and
not just vertex labellings or edge labellings, so, without risk of confusion, we will
refer to them as A-labellings or labellings of G over A. Clearly the total labellings
considered in [1], [5] and [10] all yield labellings over the appropriate cyclic group.
See Example 7 for an illustration of this when we consider labellings of the path P3

over C5.
Let λ be a labelling of G over a group A. We define the λ-weight, ω = ωλ, of the

graph elements as follows:
(i) for x ∈ V , the weight is the product of the label of x and the labels of the edges
incident with x, that is

ω(x) = λ(x) ×
∏

y∈V : x∼y

λ(xy);

(ii) for xy ∈ E, the weight is the product of the label of xy and the labels of x and
y, that is

ω(xy) = λ(x) × λ(xy) × λ(y).

The labelling λ is a vertex-magic A-labelling of G if there is an element h = h(λ)
of A such that for every x ∈ V , ω(x) = h. The element h is the vertex constant.

The labelling λ is an edge-magic A-labelling of G if there is an element k = k(λ)
of A such that for every xy ∈ E, ω(xy) = k. The element k is the edge constant.

The labelling λ is a totally-magic A-labelling of G if it is both a vertex-magic
A-labelling and an edge-magic A-labelling.

A graph G is said to be vertex A-magic if there exists a vertex-magic labelling
over A. Similarly G is edge A-magic if there exists an edge-magic labelling over A;
and G is totally A-magic if there exists a totally magic labelling over A.

2.2 Examples

Example 1. The case v + e = 1. The graph K1, with v = 1, e = 0, is (trivially)
vertex-magic, edge-magic, and totally-magic over the trivial group.

Example 2. The case v + e = 2. The only graph in this category has two vertices
and no edges. The graph is trivially edge-magic and not vertex magic over C2.

Example 3. The case v + e = 3. The only graph here with e �= 0 is P2. The only
group is C3. Any labelling over C3 is trivially edge-magic. There are no vertex-magic
C3-labellings of P2. No disconnected graph with P2 as a connected component has a
vertex magic labelling over any group.

Example 4. The case v + e = 4. The only graph here with e �= 0 is P2 ∪ K1, and
has v = 3 and e = 1.
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� � �

This does not have any vertex-magic labelling. There are two groups of order 4,
these are C4 and C2 ×C2. (This is the smallest order for which there is a non-cyclic
abelian group, however we do not here get any interesting labellings.) Since e = 1,
the graph is trivially edge-magic for any labelling over either group.

2.3 Equivalence of labellings

A graph automorphism of a graph G can be viewed as a bijection f : V ∪E −→ V ∪E
which preserves the graph structure.

Two A-labellings λ1, λ2 of G are graph equivalent, denoted λ1 ∼G λ2 if there exists
a graph automorphism f such that ∀z ∈ V ∪ E, λ1(z) = λ2(f(z)). The labelling λ1

is the composite of λ2 and f , and is denoted λ1 = λ2 ◦ f . Clearly graph equivalence
is an equivalence relation on labellings.

Two A-labellings λ1, λ2 of G are group equivalent, denoted λ1 ∼A λ2, if there exists
a group automorphism ρ such that ∀z ∈ V ∪ E, λ1(z) = (λ2(z))ρ. The labelling λ1

is the product of λ2 and ρ, and denoted λ1 = (λ2)
ρ. Clearly group equivalence is an

equivalence relation on labellings.
If λ is a vertex-magic A-labelling of G then every labelling which is graph equiv-

alent or group equivalent to λ, is also vertex-magic. Similarly, if λ is an edge-magic
A-labelling of G then every labelling which is graph equivalent or group equivalent
to λ, is also edge-magic.

The actions of composition and product are independent right and left actions
on the set of A-labellings of G. That is:

Lemma 5. If λ1 and λ2 are A-labellings of G, and there exists an A-labelling λ such
that λ1 ∼G λ and λ ∼A λ2, then there exists an A-labelling µ such that λ1 ∼A µ and
µ ∼G λ2.

Proof. Since λ1 ∼G λ, there exists a graph automorphism f such that λ1 = λ ◦ f .
Since λ ∼A λ2, there exists a group automorphism ρ such that λ = λρ

2. Therefore,
for all z ∈ V ∪ E, λ1(z) = λ(f(z)) = (λ2(f(z)))ρ = (λ2 ◦ f(z))ρ. Hence, taking
µ = λ2 ◦ f , λ1 ∼A µ and µ ∼G λ2.

Two A-labellings λ1, λ2 of G are equivalent, denoted λ1 ∼ λ2 if there exists an
A-labelling λ such that λ1 ∼G λ and λ ∼A λ2. By the previous lemma, this is an
equivalence relation.

Two A-labellings λ1, λ2 of G are translation equivalent, denoted λ1 ∼τ λ2 if there
exists a ∈ A, such that ∀z ∈ V ∪E, λ1(z) = aλ2(z). The labelling λ1 is the translation
of λ2 by a, and written λ1 = aλ2. Clearly translation equivalence is an equivalence
relation on labellings.

The following lemma is immediate:

Lemma 6. If λ is edge-magic with edge-constant k, then any translation of λ is also
edge-magic. Furthermore, if a ∈ A, then aλ has edge-constant a3k.
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If λ is vertex-magic, then translations of λ are not necessarily vertex-magic unless
the graph itself is regular.

A similar argument to the above shows that we can combine all three concepts
of equivalence to get an equivalence relation where two A-labellings λ1, λ2 of G are
equivalent if there exist labellings λ and µ such that λ1 ∼G λ, λ ∼A µ and µ ∼τ λ2.

2.4 Further Examples

Example 7. The case v + e = 5.

The only group is C5, with elements {1, a, a2, a3, a4} and a5 = 1. There are two
graphs with e �= 0:

1. The union of P2 and two isolated vertices.

� � � �

This is trivially edge-magic and not vertex-magic.

2. P3 = T2.
� � �

In [5] it is shown that P3 has two totally-magic labellings. Viewed as labellings over
C5 these are group equivalent labels. We explain this in some detail:

A labelling in [5] is a labelling from the set {1, 2, 3, 4, 5, 6}. Writing the labels in
the sequence vertex-edge-vertex-edge-vertex the two labellings given are:

labels 4, 2, 3, 1, 5, vertex-magic constant 6, edge-magic constant 9,
labels 3, 4, 1, 2, 5, vertex-magic constant 7, edge-magic constant 8.
Each of these labellings could be written in the reverse order to give a magic-

labelling with the same magic numbers (magic constants). By its construction the
labelling is graph equivalent to its “reverse” labelling. Dual (or inverse) labellings
are obtained by replacing any label, i, by 6 − i. The dual labellings are edge-magic,
with magic numbers 9, and 10 respectively, but are not vertex-magic.

Corresponding to the two labellings above, the totally-magic C5-labellings of P3

are
a4, a2, a3, a, 1 vertex constant is a, edge constant is a4,
a3, a4, a, a2, 1 vertex constant is a2, edge constant is a3.
The dual (inverse) C5-labellings are both totally C5-magic:
a, a3, a2, a4, 1 vertex constant is a4, edge constant is a,
a2, a, a4, a3, 1 vertex constant is a3, edge constant is a2.
All of these are group equivalent.
Viewed as a star graph rather than a path, P3 = T2. This is the largest star

which has a vertex-magic labelling, as shown in [5]. In this paper we show that
almost every star Tn has magic labellings, edge-magic labellings, and totally-magic
labellings over every (abelian) group of the appropriate order.
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2.5 Abelian groups and involutions

Recall that any group element of order 2 is called an involution, and that a non-trivial
finite group has elements of order 2 if and only if the order of the group is even.

The structure of finite abelian groups is well known, see for example van der
Waerden [11], [12]. Let A be a non-trivial abelian group, then A can be expressed
as a direct product of cyclic groups of prime power orders. This product is unique
up to the order of the direct product. If k be the number of these cyclic components
whose order is a power of 2, then A has 2k −1 involutions, and the product of all the
group elements is equal to the product of the involutions and the identity element
1A. This product we denote by iA.

iA =
∏

g∈A

g =
∏

g∈A,g2=1

g.

The following lemma follows immediately by induction on k:

Lemma 8. Let A be an abelian group.
(i) If A has exactly one involution i, say, then iA = i.
(ii) If A has no involutions, or more than one involution, then iA = 1A.

2.6 Preliminary lemmas

Lemma 9. Let G be a graph with a vertex-magic A-labelling with vertex constant h.
Then the product of the edge labels is equal to hv × iA.

Proof. Suppose λ is a vertex-magic A-labelling of G with vertex constant h. The
product of the weights of all the vertices consists of the product of the labels of the
vertices and the squares of the labels of the edges, since each edge enters the product
twice. That is:

hv =
∏

y∈V

ω(y) =
∏

y∈V

λ(y)(
∏

zy∈E

λ(zy))
2

=
∏

f∈A

f ×
∏

zy∈E

λ(zy) = iA ×
∏

zy∈E

λ(zy)

Hence ∏

zy∈E

λ(zy) = iA × hv = hv × iA.

Corollary 10. Let G be a graph with a vertex-magic A-labelling with vertex constant
h, for some group A of odd order. Then the product of the edge labels is hv.

Analogously, for edge-magic A-labellings we have:

Lemma 11. Let G be a graph, and λ an edge-magic A-labelling of G with edge
constant k. For each vertex x denote the degree of x by dx. Then

ke = iA ×
∏

w∈V

λ(w)dw−1.
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Proof. The product of the weights of all the edges consists of the product of all the
labels of edges and the labels of the their end-vertices and is:

ke =
∏

xy∈E

ω(xy)

=
∏

xy∈E

λ(xy)λ(x)λ(y)

=
∏

xy∈E

λ(xy)
∏

z∈V

λ(z)dz

=
∏

xy∈E

λ(xy)
∏

z∈V

λ(z)
∏

w∈V

λ(w)dw−1

= iA ×
∏

w∈V

λ(w)dw−1.

Corollary 12. Let A be a group of odd order, and let λ be an edge magic A-labelling
of a graph G. Suppose that the vertex constant is k, and for each vertex x denote the
degree of x by dx. Then

ke =
∏

w∈V

λ(w)dw−1.

Finally, putting these together for A-labellings which are both vertex and edge-
magic, we have:

Lemma 13. Let λ be a totally-magic A-labelling of a graph, with vertex constant h
and edge constant k. For each vertex x denote the degree of x by dx. Then

k−e
∏

w∈V

λ(w)dw−1 = h−v
∏

zy∈E

λ(zy) = iA.

3 The star Tn

Theorem 14. Let Tn be the star with v = n + 1 and e = n, and let A be a group of
order 2n + 1. Then

(i) Tn has an edge-magic A-labelling with edge constant k if and only if k = a3 for
some a ∈ A;

(ii) Tn has a vertex-magic A-labelling with vertex constant h = 1A except when A

is C3, C5 or C3 × C3; and

(iii) for h ∈ A, h �= 1A, Tn has a vertex-magic A-labelling with vertex constant h
except when A is C3 or C3 × C3.
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Proof. For convenience we denote the central vertex of the star by x and the other
vertices by y1, y2, . . . , yn. Then the edges are xy1, xy2, . . . , xyn.

�

�

�

�

�

�

�

�

�
y5 y3

y4

y2y6

yn

y1y7

x

The graph has e = n, v = n + 1. The size v + e = 2n + 1 is odd. Let A be a
group of order 2n + 1, and λ be a A-labelling of Tn. The product of the elements of
A is the identity, that is iA = 1A.

The weight of an edge xyi is w(xyi) = λ(x)λ(xyi)λ(yi) = λ(x)w(yi), and so if
the vertices have constant weight h, then the edges have constant weight k = hλ(x).
Therefore, if λ is a vertex-magic A-labelling of Tn then it is also edge-magic.

Suppose λ is edge-magic with edge constant k. Then, by Corollary 12,

kn = (λ(x))n−1.

Squaring this gives

k−1 = k2n+1−1 = k2n = (λ(x))2n−2 = (λ(x))2n+1−3 = (λ(x))−3.

Therefore k = (λ(x))3, and hence k = a3 for some a = λ(x) ∈ A.
Now the identity 1A must label a vertex or an edge.
Suppose firstly that λ(x) = 1A. Then, by Corollary 12, kn = (λ(x))n−1 = 1A.

Therefore, since n and 2n + 1 are coprime, k = 1A. Now, for each i = 1, 2, . . . , n,

1A = ω(xyi) = 1A × λ(xyi) × λ(yi) = λ(xyi)λ(yi).

Since A has odd order, there are many ways of partitioning the non-identity elements
of A into two sequences a1, a2, . . . , an and a−1

1 , a−1
2 , . . . , a−1

n . For any such partition,
setting λ(yi) = ai and λ(xyi) = a−1

i for each i = 1, 2, . . . , n gives a A-labelling of Tn

which is edge-magic with k = 1A.
Will any, or all, of these be vertex-magic? If such a labelling were vertex-magic

with vertex-magic constant h, then this would require h = 1A and a1a2 . . . an = 1A.
Now for an odd order abelian group A there are many partitions as described above,
and for some groups there is a suitable partition and for others there is not. For
example, in the case of T4, there is a vertex-magic labelling over C9 with λ(x) = 1A

but there is no such vertex-magic labelling over C3 × C3. In Theorem 15 in the
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Appendix to this paper we prove that such a partition will exist for any odd order
abelian group A except when A = C3, C5 or C3 × C3. This proves (ii).

Next suppose that λ(x) = a �= 1A. Choosing any partition as above, and setting
λ(yi) = aai and λ(xyi) = aa−1

i for each i = 1, 2, . . . , n gives a A-labelling of Tn which
is edge-magic with k = a3. Therefore there is an edge-magic A-labelling of Tn with
edge constant k = a3 for each element a ∈ A. This completes the proof of (i).

Let λ be an edge-magic A-labelling of Tn with λ(x) = a, then the translation
a−1λ is edge-magic with a−1λ(x) = 1A. So every edge-magic A-labelling of Tn with
edge constant k = a3 is of the form that has just been described.

Finally, will any such labelling be vertex-magic? If it is, the vertex constant
h is determined, h = aaiaa−1

i = a2. For the labelling to be vertex-magic requires
in addition that a2 = ω(x) = an+1a−1

1 a−1
2 . . . a−1

n , and hence a partition in which
a1a2 . . . an = an−1.

In Theorem 15 in the appendix to this paper we prove that if A is not C3, C5 or
C3 × C3, then for each f ∈ A there is a partition with a1a2 . . . an = f .

If A = C5 then the star is T2, n = 2 and an−1 = a �= 1A. In Theorem 15 in the
Appendix we show that if a ∈ C5 , a �= 1C5, there is a partition with a1a2 = a.

Since A has odd order, for any h ∈ A, h = a2 for some a ∈ A. Therefore, if A is
not C3 or C3×C3 we have shown that there is a vertex-magic labelling with constant
h for any h ∈ A.

If A = C3, then the star is T1 = P2. There are no vertex-magic labellings of
P2 since any vertex-magic labelling would have to have the same label on both end
vertices.

If A = C3 × C3, then the star is T4, and an−1 = a3 = 1. By Theorem 15 there is
no partition of C3 × C3 = {1C3×C3} ∪ {a1, a2, a3, a4} ∪ {a−1

1 , a−1
2 , a−1

3 , a−1
4 } for which

a1a2a3a4 = 1A. Therefore T4 has no vertex-magic labellings over C3 × C3.
This completes the proof of (iii).

4 Appendix: Partitions of inverse pairs in Abelian groups
of odd order

Let A be an abelian group of odd order greater than 1. A set {g, g−1} with g �= 1A,
will be called an inverse pair. The set of non-identity elements in A \ {1A} is a
disjoint union of inverse pairs. We are interested to know which elements of A can
be written as a product of a set of representatives of such pairs. We call an element
g ∈ A representable if it can be represented as a product of a set of representatives
of inverse pairs.
In this section we prove the following theorem:

Theorem 15. Let A be an abelian group of odd order greater than 1.

(i) If A is C3, C5 , or C3 × C3, then every element except the identity is repre-
sentable.
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(ii) If A is not C3, nor C5, nor C3 × C3, every group element is representable.

Let Aut(A) be the automorphism group of A. Inverse pairs are preserved un-
der automorphisms of A. Hence the set of representable elements is preserved by
automorphisms of A. Further, the number of distinct sets of representatives which
multiply to give an element g ∈ A depends only on the Aut(A) orbit of g.

Lemma 16. Let Cn be a cyclic group of odd order n = 2r + 1 > 1.

(i) If n ≥ 7, then every element of Cn is representable.

(ii) If n = 3 or 5, then every element is Cn is representable except the identity.

Proof. Assume that Cn is cyclic of odd order 2r + 1, r ≥ 1, with generator a. Then

{a, a−1} ∪ {a2, a−2} ∪ · · · ∪ {ar, a−r}

partitions Cn \ {1Cn} as a disjoint union of inverse pairs.
To determine which elements of Cn are representable, i.e. to find those g with

g =

r∏

i=1

gi, gi ∈ {ai, a−i},

reduces to determining which congruence classes modulo 2r + 1 can be represented
as a sum

ε1 + · · · + εr, εi = ±i.

Taking successively r = 1, 2, 3, etc we can write down a list of these values.
r = 1: −1, 1
Subtracting 2 and adding 2 to each sum above:
r = 2: −3, −1, 1, 3
Subtracting 3 and adding 3 to each sum above:
r = 2: −6, −4, −2, 0, 2, 4, 6
Subtracting 4 and adding 4 to each sum above:
r = 3: −10, −8, −6, −4, −2, 0, 2, 4, 6, 8, 10

Continuing, we have inductively that for each r the sums
∑r

i=1 εi, εi = ±i, form an
arithmetic progression with first term −1

2
r(r + 1), last term 1

2
r(r + 1) and common

difference 2. As there are 1
2
r(r + 1) + 1 terms in the sequence, and 2 is prime to

2r + 1 we get all residue classes as soon as 1
2
r(r + 1) + 1 ≥ 2r + 1, i.e. for r ≥ 3. In

the case r = 1 or 2 we get all classes but the zero class.

Lemma 17. Let H and K be non-trivial abelian groups of odd order. Suppose h is
representable in H and k is representable in K. Then (h, k), (h, 1K) and (1H, k) are
representable in H × K.

Proof. The inverse pairs of H × K are of three types,

{(f1, f2), (f
−1
1 , f−1

2 )}, {(f1, 1K), (f−1
1 , 1K)}, {(1H, f2), (1H, f−1

2 )},
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where 1H �= f1 ∈ H, 1K �= f2 ∈ K.
We can make up a set of inverse pair representatives as follows. We have |H| =

2s + 1 for some s ≥ 1. Let X = {h1, . . . hs} be a set of representatives of inverse
pairs in H. For each i = 0, 1, . . . , s, let Yi be a set of representatives of inverse pairs
in K. Let Z be the subset of H×K made up of all elements (hi, y) and (h−1

i , y) with
hi ∈ X and y ∈ Yi, for i = 1, 2, . . . , s, together with all (hi, 1K) with hi ∈ X , and all
(1H, y) with y ∈ Y0. Then Z is a set of representatives of inverse pairs of H × K.

Suppose h is representable in H. Let k0, k1, . . ., ks be a sequence of s representable
elements in K. Since squaring is an automorphism of any abelian group of odd order
we have for each i ≥ 1, ki = l2i for some (unique) representable li in K. We can choose
X such the product of its elements is h, Y0 such that the product of its elements is
k0, and for each i ≥ 1, Yi such the product of its elements is li. Then the product of
the corresponding set Z of inverse pair representatives in H × K is

(h, k0l
2
1 . . . l2s) = (h, k0k1 . . . ks),

which is therefore representable in H × K.
Now suppose k is representable in K. Then again, as squaring is an automor-

phism, k = l2 for some (unique) representable l in K. We now consider two sequences
of representable elements of K. The first is the sequence with

k0 = k, k1 = k−1, k2 = k, k3 = k−1, . . .

The second is the sequence with

k0 = l, k1 = l , k2 = k−1, k3 = k, k4 = k−1, . . .

The first sequence has product k0k1 . . . ks equal to k when s is even, and to the
identity 1K when s is odd. The second sequence has product k0k1 . . . ks equal to the
identity 1K when s is even, and to k when s is odd. Thus the first sequence gives a set
of inverse pair representatives Z with product (h, k) if s is even, and product (h, 1K)
if s is odd. The second gives a set of inverse pair representatives Z with product
(h, 1K) if s is even, and product (h, k) if s is odd. Consequently, if h is representable
in H and k is representable in K, then both (h, 1K) and (h, k) are representable in
H × K. By symmetry we deduce also that (1H, k) is representable in H × K.

We are now ready to prove Theorem 15.

Proof. Recall that any non-trivial finite abelian group is, by the theory of elementary
divisors, a product

A = Cd1 × Cd2 × · · · × Cdn

of non-trivial cyclic groups Cdi
, with d1|d2| · · · |dn. For A of odd order all the Cdi

are
cyclic of odd order greater than 1.

From Lemma 17 we deduce that if two non-trivial abelian groups of odd order
each has every element, except possibly its identity, representable, then every element
in their product, except possibly for its identity, is representable. Further if every
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element in one of the factors is representable, and every element, except possibly
the identity, of the other factor is representable, then so is every element of their
product.

By Lemma 16, and induction on the number of elementary divisors, we deduce
that any non-trivial abelian group A of odd order has all its elements representable,
except possibly its identity. Further if every element in any one of the cyclic factors
is representable then so is every element of A. Again by Lemma 16 this last condition
holds except when all the di are either 3 or 5.

In the possible exceptional cases A is an elementary abelian p-group (Cp)
n with

p either 3 or 5. For these groups every element, except possibly the identity, is
representable. Further, if some (Cp)

m has every element representable, then the
same is true for all (Cp)

n, with n > m, since then (Cp)
m is a factor of A. To show

every element in a particular such group is representable it remains only to show
that its identity element is representable.

We know that Aut(A) acts transitively on the non-identity elements in an ele-
mentary p-group. There are 2r, r = 1

2
(pn − 1) choices of a set of representatives of

inverse pairs. Let A be the number of representations of the identity, and B those
of any non-identity element. Then

A + (pn − 1)B = 2r.

Thus A cannot be zero unless pn−1 is a power of 2. Since 52−1 = 24 is not a power
of 2, the identity is representable in C5 ×C5, and thus in all higher order elementary
abelian 5-groups. Since 33 − 1 = 26 is not a power of 2, the identity is representable
in C3 × C3 × C3, and thus in all higher order elementary abelian 3-groups.

To complete the proof of Theorem 15 it remains to show that the identity is not
representable in C3 × C3, i.e. that for this group A = 0. Suppose a generates C3.
Then

(a, 1)(1, a−1)(a−1, a)(a, a) = (a−1, 1)(1, a)(a, a−1)(a, a) = (a, a),

exhibits two distinct representations of (a, a). For this group with A + 8B = 16 we
have therefore B ≥ 2. This is only possible if B = 2 and A = 0.
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