
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 29 (2004), Pages 231–247

Simpler methods for generating better Boolean
functions with good cryptographic properties

L. Burnett, W. Millan, E. Dawson and A. Clark

Information Security Research Centre,
Queensland University of Technology,

GPO Box 2434, Brisbane
Queensland 4001

Australia
{ld.burnett, b.millan, e.dawson, a.clark}@qut.edu.au

Abstract

We present two heuristic optimisation methods for generating N -variable
boolean functions which exhibit particular cryptographic properties. Each
method targets one or more properties and consistently produces a large
number of N -variable boolean functions with those properties. The first
method presented is shown to outperform any other heuristic technique
previously reported, in terms of generating highly nonlinear, low auto-
correlation balanced boolean functions. The second method discussed in
this paper again outperforms any other existing heuristic technique used
to generate resilient functions with high nonlinearity and algebraic degree
maximising Siegenthaler’s inequality.

1 Introduction

The extensive research on the analysis of boolean functions which has taken place
in recent years has been important in both the design and cryptanalysis of cipher
systems. Boolean functions exhibiting strong cryptographic properties have become
an essential part of secure symmetric cipher systems. Not only is it common for block
and stream ciphers to incorporate boolean functions into their design, but they often
also form the foundation of cryptographic hash functions.

Modern symmetric block ciphers such as the Advanced Encryption Standard,
Rijndael [13], depend on their component s-boxes for complexity largely in the form
of diffusion and nonlinearity. In turn, the strength of these s-boxes is derived from
the boolean functions comprising them. The stronger the properties exhibited by
the combined boolean functions, the stronger the formed s-box will be. A number of
stream ciphers (for example [4], [16]) use boolean functions to combine the output
of multiple linear feedback shift registers. These combining boolean functions must
simultaneously exhibit high nonlinearity and a degree of correlation immunity which

232 BURNETT, MILLAN, DAWSON AND CLARK

reflects an acceptable tradeoff of these properties in order for the stream cipher to
be considered resistant to correlation attacks such as the divide-and-conquer attack
[20]. Further, boolean functions with low autocorrelation can reduce the likelihood
of a stream cipher exhibiting predictable periodic sequences in the output. This is of
particular significance to self-synchronising stream ciphers and stream ciphers with
memory [6] to resist resynchronisation attacks. In some cryptographic hash functions,
boolean functions are utilised in the round function. The use of highly nonlinear
boolean functions can prevent the hashed output exhibiting excessive degrees of bit
bias. This minimises the occurrence of collisions in the output of the hash function.

For many years, heuristic techniques have been shown to be an effective and flex-
ible way of generating strong boolean functions and s-boxes. Heuristic techniques
involve directed search methods and have been successful in not only finding func-
tions with “good” properties but also are able to produce a large number of such
functions. Some of the best known techniques for heuristic optimisation include Hill
Climbing, Genetic Algorithms, and Simulated Annealing. Examples of significant
results produced by these methods can be found in [11], [12], [3] respectively.

Among the advantages of heuristic techniques over algebraic constructions are the
ability of heuristics to generate a large number of boolean functions with the desired
properties. Further, the non-deterministic nature of heuristic techniques results in
an inherent randomness that tends to generate predominantly strong functions with
a complex structure. Whilst algebraic constructions are typically able to produce
optimal functions, the basis of some algebraic constructions result in weaker functions
with a structure which is more easily cryptanalysed.

In this paper we present two simple heuristic methods which have proven to be
powerful tools for generating a large number of balanced boolean functions with
target cryptographic properties for enhancing security. These methods provide re-
searchers with alternative means for generating strong boolean functions for appli-
cations which require the existence of the cryptographic properties they are able to
produce. The first heuristic is a very simple method that outperforms other currently
known heuristics in that it is capable of discovering balanced boolean functions with
better combinations of the properties of high nonlinearity and low autocorrelation
that are currently achievable by other heuristics. As an example, the first method
presented easily generates many 8-variable balanced boolean functions with a nonlin-
earity of 116 and a maximum autocorrelation value of 16, which have not previously
been found directly by heuristic techniques. This first method generates a large
number of boolean functions with good properties in a short period of time.

The second method presented in this paper is easily able to generate known
optimal m-resilient boolean functions with high nonlinearity, some of which other
heuristic techniques have been incapable of generating. This method was able to
successfully produce a large number of examples of boolean functions with almost
all of the optimal cryptographic property combinations: high nonlinearity, varying
degrees of resilience and maximum algebraic degree, that have been discovered. The
results obtained are particularly significant given that the algorithm used is substan-
tially simpler than existing heuristic techniques. In addition, this method is able
to efficiently generate a wide range of functions with these optimal combinations of

GENERATING BETTER BOOLEAN FUNCTIONS 233

properties directly within a single method and without requiring linear transforma-
tions to achieve any of its varying degrees of resilience.

This paper is organised in the following manner. Necessary definitions and a
description of the notation used can be found in Section 2. Section 3 describes a
method for generating highly nonlinear balanced even-dimensional boolean functions
with low autocorrelation and presents experimental results which demonstrate that
this method is at least equal to, and in some instances superior to any other reported
heuristic technique. In Section 4, a second method for generating optimised resilient
boolean functions for 5 ≤ N ≤ 9 is proposed, with experimental results supporting
the value of this method in generating highly nonlinear resilient boolean functions.
In Section 5 we draw conclusions about the methods we have developed and make
some suggestions for future work which could be done in this area.

2 Preliminaries

We now introduce the notation used throughout this paper and present some neces-
sary and well established definitions.

2.1 Notation and Well Known Definitions

A single output N -variable boolean function is a mapping from N bits to a single
bit. An NxM s-box is a mapping from N input bits to M output bits. Each of the
M -bit binary output vectors is a boolean function containing 2N elements. The truth
table representation of an N -variable boolean function f(x) is a vector containing
2N elements, each element ∈ {0, 1}. A more convenient form of a boolean function
is its polarity truth table representation, denoted by f̂(x), containing 2N elements ∈
{1, -1}. f̂(x) may be derived from f(x) by the equation, f̂(x) = 1 - 2f(x).

The Algebraic Normal Form (ANF) is another representation of a boolean func-
tion. The coefficients ai ∈ {0, 1} (i = 0,..,N) form the elements of the ANF of f(x),
an N -variable boolean function. Every ANF representation corresponds to a unique
boolean function truth table. The Algebraic Normal Form of a boolean function of
N variables is written in the form:

f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ ... ⊕ aNxN ⊕ a12x1x2 ⊕ a13x1x3 ⊕ ... ⊕
a(N−1)NxN−1xN ⊕ ... ⊕ a123...Nx1x2x3...xN .

The algebraic degree, or simply degree, of a boolean function is the order of the
largest product term in the function’s ANF, which we shall denote by deg. The well
known inequality due to Siegenthaler [20] gives an upper bound on the degree of a
boolean function as it relates to the number of input variables, N , and the degree of
correlation immunity, m. This has been defined as

N ≥ m + d + ε where ε =

{
0 if function is balanced
1 if function is unbalanced

234 BURNETT, MILLAN, DAWSON AND CLARK

The Hamming weight of a boolean function f(x) of N variables denoted hw(f) is

defined as Σ2N−1
x=0 f(x), the number of ones in its truth table. The Hamming distance

between two boolean functions f(x) and g(x), denoted by hd(f, g), is the number of
differing elements in corresponding positions between the two truth tables.

A boolean function of the form f(x) = a0 ⊕ a1x1 ⊕ a2x2 ⊕ ... ⊕ aNxN where
ai (i = 0,...,N) ∈ {0, 1} is called an affine function. If a0 = 0, then the function is
a linear function. A linear transformation on an N -variable boolean function, f(x),
is defined as the resultant function, g(x), being produced by replacing the input
vector x with the product of x with the transformation matrix, A, where A is an
NxN non-singular binary matrix, expressed as g(x) = f(Ax). The Walsh Hadamard
Transform (WHT) of the polarity truth table of a boolean function f̂(x), denoted
by F̂ (ω), is a measure of the correlation between a function and the set of all affine
functions. It is defined by the equation F̂ (ω) = Σxf̂(x)L̂ω(x) where L̂ω(x) is the
linear function defined by ω ∈ {1,-1}.

If a function is boolean, then the values in its WHT vector must satisfy Parseval’s
Equation:

Σω

(
F̂ (ω)

)2
= 22N

The converse is not always true. That is, if a function satisfies Parseval’s Equa-
tion, it may not necessarily be boolean.

We denote the concatenation of two (N -1)-variable boolean functions, f(x) and
g(x), to form an N -variable boolean function, h(x), by h(x) = f(x) ‖ g(x) (or
conventionally f ‖ g). In terms of the Algebraic Normal Form, the concatenation,
h(x) = f(x) ‖ g(x), can be expressed as:

h(x1, x2, .., xN) = (1 ⊕ xN)f(x1, .., xN−1) ⊕ xNg(x1, .., xN−1)

= f(x) ⊕ xN (f(x) ⊕ g(x))

The Walsh Hadamard Transform of h(x) can be achieved computationally by the
following process:

Ĥ(ω) = F̂ (ω) + Ĝ(ω) for ω ∈ {0, .., 2N−1 − 1}
Ĥ(ω + 2N−1) = F̂ (ω) − Ĝ(ω) for ω ∈ {0, .., 2N−1 − 1}

A bent function is an unbalanced N -variable boolean function (N even) which

achieves the maximum possible nonlinearity of 2N−1 - 2
N
2
−1. The hamming weight

of a bent function is 2N−1 ± 2
N
2
−1 and all bent functions have degree ≤ N

2
for N >

2.

2.2 Some Properties of Boolean Functions

We now define the cryptographic properties of boolean functions that will be of
interest to this paper.

Autocorrelation: Denote the autocorrelation function of f̂(x) (the polarity
truth table of f(x)) by r̂(α). This function may be written as

GENERATING BETTER BOOLEAN FUNCTIONS 235

r̂(α) = Σxf̂(x)f̂(x ⊕ α) with α and x ∈ {0,..,2N - 1} and r̂(0) = 2N .

From the autocorrelation function (AC), we define the measure commonly re-
ferred to as the absolute indicator or maximum absolute autocorrelation value, as:

|ACmax| = max |r̂(α)| α ∈ {1,..,2N - 1}

Hereinafter in this paper we shall simply use ACmax to refer to the maximum
absolute autocorrelation value.

The sum-of-square indicator, also derived from the autocorrelation function, may
be calculated as follows:

σ = Σαr̂2(α) α ∈ {0,..,2N - 1}

Balance: An N -variable boolean function f(x) is said to be balanced if hw(f)
= 2N−1, or, #{x | f(x) = 0} = #{x | f(x) = 1}.

Correlation Immunity: An N -variable boolean function f(x) is mth-order
correlation immune, denoted by CI(m), if, for every ω such that 1 ≤ hw(ω) ≤ m,
F̂ (ω) = 0. The effect of a linear transformation on the Walsh Hadamard Transform of
a boolean function is that it permutes the values in the Walsh Hadamard Transform
but does not change the magnitude of those values. Thus, where a boolean function
is mth-order correlation immune (m ≤ N − 2), it may be possible to increase the
degree of correlation immunity by performing a linear transformation on the boolean
function.

Global Avalanche Criteria (GAC): The concept of GAC was first proposed
by Zhang and Zheng [21] whereby the overall avalanche characteristic of a boolean
function is evaluated with the use of the absolute indicator (or maximum absolute
autocorrelation value), as well as the sum-of-square indicator.

Nonlinearity: The nonlinearity of a boolean function f(x), denoted by NLf ,
is the minimum hamming distance to the set of all affine functions. Mathematically,
the relationship between the nonlinearity of a boolean function f(x) and the Walsh
Hadamard Transform of the function is given by the following equation:

NLf = 1
2

x (2N - WHTmax)

where WHTmax represents the maximum absolute value of the Walsh Hadamard
Transform.

Resilience: An N -variable boolean function which is both balanced and mth-
order correlation immune is known as an m-resilient boolean function.

Strict Avalanche Criteria (SAC): An N -variable boolean function f(x) is
said to satisfy strict avalanche criteria if, for every s such that hw(s) = 1, Σxf(x)
⊕ f(x⊕ s) = 2N−1. Alternatively, the strict avalanche criteria is said to be satisfied
for a boolean function, f(x), iff the autocorrelation function of f̂(x) contains zero
values in all positions s where hw(s) = 1.

236 BURNETT, MILLAN, DAWSON AND CLARK

3 Generation of Highly Nonlinear Balanced Boolean Func-
tions with Low Autocorrelation, N even

In this section, we describe the method which we use for generating even-dimensional
highly nonlinear balanced boolean functions with low autocorrelation. This is re-
ferred to as “Method 1”. The importance of each of these properties relates to
a quantifiable measure of the resistence of boolean functions to various forms of
cryptanalysis. A high measure of nonlinearity is required for a higher probability of
resisting linear approximation attacks. The balance property ensures that no bitwise
bias in the truth table of a boolean function exists. Low autocorrelation enhances the
difficulty of approximating a boolean function’s first order derivatives. In particular,
the existence of these combined properties provides a higher degree of resistance to
linear and differential cryptanalytic attacks [1, 9].

The basic principle of Method 1 is to concentrate the heuristic search process
to regions of the N -dimensional input space (N even) that are expected to exhibit
high nonlinearity. By definition, these regions comprise functions that are at greater
distances from the affine set of boolean functions. The significance of concentrating
the search in this manner becomes important for efficiency as we consider larger and
larger dimensions of N input variables.

As with all heuristic methods, particularly for the purposes of efficiency, the first
important step is to always begin with a good starting function. This should be one
which has reasonably good fitness in the hope that subsequent steps of the method
will “discover” better functions with an improved fitness measure. In the case of
Method 1, the targeted fitness measure is nonlinearity. Many heuristic techniques
simply initiate the process by choosing a starting function at random, or by iteration
to a randomly chosen function with a nonlinearity measure above a reasonable value,
specified by the code. The approach which we have taken is to indeed begin with a
good starting function, although rather than hope to get, or iterate to, a reasonably
good starting function, we randomly choose a starting function known to have the
maximum nonlinearity value. In the case of an even dimensional input space, this
function will be a bent or perfect nonlinear function. Bent functions only exist for
even-dimensional N . Thus, in Method 1, for even N , we select our starting function
randomly from a constructed subset of N -variable bent functions. In addition to
achieving maximal nonlinearity, bent functions have the property of zero autocor-
relation. This makes them an obvious choice of starting function when trying to
achieve high nonlinearity and low autocorrelation. As Method 1 makes small incre-
mental changes to the starting bent function, the resultant boolean function from
Method 1 possesses a similar structure and like characteristics to the chosen starting
bent function.

Bent functions are not weight balanced and have a hamming weight of 2N−1

± 2
N
2
−1. As balance is an important property for cryptographic applications, we

seek to achieve balance while retaining high nonlinearity and low autocorrelation.
In Method 1, this is done by progressively setting or clearing k-bits at a time, and
retaining resultant functions which remain above a certain nonlinearity threshold. It

GENERATING BETTER BOOLEAN FUNCTIONS 237

is a well known fact that a one bit change in the truth table of a boolean function
results in a change to the Walsh Hadamard Transform of the function ∈ {2,-2}. This
in turn produces the effect of a small increase or decrease to the nonlinearity of the
function. The key factor of Method 1 is the generation of boolean functions with a
specified hamming distance from the original starting function and subsequently from
retained functions. By doing so, we are maintaining much of the distance needed to
provide us with boolean functions with high nonlinearity and low autocorrelation.
The degree of bit changing, which depends on the imposed hamming distance/s,
allows a branching effect to take place.

Define MAXCHANGES to be the maximum number of distinct k-bit changes to
be considered for each function. Note that our experiments using Method 1 were per-
formed by choosing k = 2. MAXCHANGES is fixed for each run of the program and
it’s most optimal value may be determined by experimentation. However, typically
MAXCHANGES took a random value for each program run. NLmin is defined as the
minimum nonlinearity value which is acceptable for the resulting boolean function.
The basic algorithm for Method 1 is provided below:

1. Let ∆ be a constructed subset of N -variable bent functions.

2. Select a random function r = (r0, r1, ..., r2N−1), where r ∈ ∆.

3. Define T0 as the set of positions i, where ri = 0, T1 as the set of positions j,
where rj = 1, and hw(r) as the hamming weight of r.

4. Call the REPLACE function.

5. Return to Step 1 to obtain more functions, if needed.

REPLACE function:

1. Check hw(r):

(a) If hw(r) < 2N−1, select a1 ∈ T0, a2 ∈ T0, where a1 �= a2.

(b) If hw(r) > 2N−1, select a1 ∈ T1, a2 ∈ T1, where a1 �= a2.

(c) If hw(r) = 2N−1 then selection criteria met; output r, NL, AC and exit
REPLACE function.

2. Derive candidate function c from r, with a1 = 1 ⊕ a1; a2 = 1 ⊕ a2.

3. Check NL of c.

4. If NL ≥ NLmin, call the REPLACE function recursively.

5. If NL < NLmin, discard c, return to Step 1 (to a limit of MAXCHANGES
times).

In our experiments we have used bent functions based on the construction by
Maiorana-McFarland [10]. Note, however, that any bent function construction tech-
nique may be used to generate the random function, r.

238 BURNETT, MILLAN, DAWSON AND CLARK

3.1 Results for Method 1

Trials of Method 1 successfully generate many examples of balanced N -variable (N
even) highly nonlinear functions with low autocorrelation. Some of the best examples
of boolean functions which we have generated using Method 1 are shown below:

N NL deg ACmax σ
6 26 5 16 6,784
8 116 7 16 89,728
10 488 8 40 1,268,608
10 488 9 40 1,272,448
12 2000 11 64 18,757,120
12 2002 11 64 18,776,704
14 8100 13 104 284,931,328
14 8102 13 104 284,891,392
14 8104 13 112 284,919,808

Table 1: Even-dimensional balanced boolean functions with optimal combination
of above properties generated by Method 1. An example of boolean functions with
selected property combinations from Table 1 can be found in the Appendix.

Table 2 provides the highest nonlinearity and lowest sum-of-square indicator com-
bination of properties for even N , 6 ≤ N ≤ 14.

N NL σ
6 26 6,784
8 116 86,656
10 488 1,262,464
12 2000 18,743,680
12 2002 18,754,048
14 8100 284,866,432
14 8102 284,891,392
14 8104 284,919,808

Table 2: Even-dimensional balanced boolean functions with optimal combination
of nonlinearity and sum-of-square indicator generated by Method 1

In the table below we list the maximal nonlinearity values which we have achieved
by Method 1 for balanced boolean functions in the range N = 6,..,14 inclusive (N
even).

N 6 8 10 12 14
NL 26 116 488 2002 8104

Table 3: Highest nonlinearity found by Method 1 for balanced N -variable boolean
functions, 6 ≤ N ≤ 14, N even

GENERATING BETTER BOOLEAN FUNCTIONS 239

We now discuss our results in comparison with related work in this area. In 2000,
the authors of [2] used the heuristic techniques of simulated annealing and simulated
annealing combined with hill climbing to produce the then best known results of
balanced boolean functions with high nonlinearity and low autocorrelation. These
properties can be directly compared to our results in Table 1. For 8 ≤ N ≤ 12, N
even, we have found a great number of N -variable balanced boolean functions with
consistently lower ACmax values for identical values of nonlinearity. In addition,
Method 1 is capable of finding functions which achieve lower ACmax values with
higher nonlinearity than in [2]. A further comparison can be made, using Table 3,
between the maximum nonlinearity they were able to achieve for balanced functions
for 6 ≤ N ≤ 12, N even, and the balanced boolean functions we were able to generate
with this property using Method 1. For each number of even inputs N in this range,
Method 1 either achieved an equal nonlinearity value or a higher nonlinearity value.

In 2002, Maitra [7] used a combination of computer search and algebraic construc-
tion to demonstrate a lower bound for the sum-of-square indicator than previously
known. The paper gave specific results for N=6 and N=15 for the combined prop-
erties of balance, nonlinearity, absolute indicator, sum-of-square indicator, SAC and
degree. We provide below an example truth table (in hex notation) of a 6-variable
boolean function generated by Method 1 with the same combined properties but
more optimal absolute indicator and sum-of-square indicator values:

Example 1: 6-variable balanced boolean function with deg = 5, NL = 26, ACmax

= 16, σ = 6784 and satisfying SAC can be expressed as

04511b5e37e23e6d

In [7], a linear transformation was applied to their function in order to achieve
the SAC property. This was not necessary for Method 1 as it was quickly able to
generate examples of functions with the properties above satisfying SAC.

Further optimal results were obtained in 2002 [3] by combining simulated anneal-
ing, hill climbing and linear transformation. From Table 3 in Section 3 of their paper
we are able to compare their combined balance, nonlinearity, degree, and ACmax

properties for 6 ≤ N ≤ 12 (N even) with the results obtained from our Method 1
in Table 1. For all even N in this range, Method 1 was able to at least equal their
results for these properties, and for most values of N ≥ 8 could improve on both the
nonlinearity and ACmax values. In addition, the sum-of-square indicator values in
our Table 2 above are as low or lower than those found in Table 4 of [3].

Method 1 has been successful in obtaining the best known combinations of even-
dimensional balanced boolean functions with high nonlinearity and low autocorrela-
tion, as well as successfully making improvements to a number of these best known
combinations of boolean function properties. Furthermore, Method 1 is reasonably
efficient and capable of generating a large number of these N -variable (N even)
boolean functions with optimal properties. Method 1 initiates its search from func-
tions with maximal nonlinearity and minimal autocorrelation. As a result, for these
values of N , although the focus of the search is on nonlinearity, boolean functions

240 BURNETT, MILLAN, DAWSON AND CLARK

with good autocorrelation are achieved with little effort.

4 Generation of Optimised Resilient Boolean Functions for
5 ≤ N ≤ 9

In this section, we describe a method which we have designed for generating opti-
mised resilient boolean functions. For this method, optimality is defined as the best
known combination of balance, high nonlinearity and degree of correlation immunity,
together with an algebraic degree which maximises Siegenthaler’s inequality. In this
paper this method is referred to as “Method 2”. Resilient functions provide a high
degree of tolerance against correlation attacks.

For Method 2, we operate in the Walsh Hadamard spectrum. This enables us to
force the generation of functions that satisfy correlation immunity goals. Operating
in the Walsh Hadamard spectrum also enables direct limiting of maximal values
within the Walsh Hadamard vector, which has a direct relation to nonlinearity.

It is well known that the concatenation of two valid Walsh Hadamard vectors
of dimension N results in a valid Walsh Hadamard vector of dimension N + 1.
The building of higher dimension functions using step-by-step concatenation of their
Walsh Hadamard Transform vectors forms the basis of Method 2. It is a trivial
exercise to generate a complete list of all 4-variable (N=4) boolean functions and
their characteristics. We use this as our starting pool for Method 2.

We define selection criteria independently for boolean functions, f and g, at each
dimension N , for N = 4 to targetN , where targetN is the dimension of the desired
boolean functions. The selection criteria used for Method 2 are maximum Walsh
Hadamard Transform vector value WHTmaxN , minimum non zero Walsh Hadamard
Transform vector value WHTminN and minimum degree of correlation immunity
CIN . It should be noted that the code for Method 2 automatically incorporates the
balance property for any degree of correlation immunity ≥ 1.

We now describe the Method 2 algorithm:

1. Let L4 be a set of T boolean functions, where N=4, that satisfy WHTmaxL4,
WHTminL4 and CIL4 . Let R4 be a set of T boolean functions, where N=4,
that satisfy WHTmaxR4, WHTminR4 and CIR4 .

2. For N = 5 to targetN

(a) Call the BUILD procedure(N , LN−1, LN)

(b) Call the BUILD procedure(N , RN−1, RN)

GENERATING BETTER BOOLEAN FUNCTIONS 241

BUILD procedure(N , SN−1, SN):

1. Select f where f ∈ SN−1

2. Select g where g ∈ SN−1

3. Concatenate the WHTs of f and g to form the WHT of an N -dimensional
boolean function, h

4. Add h to the set SN iff h satisfies WHTmaxSN
, WHTminSN

and CISN
.

5. Return to Step 1. until the set SN is of the desired size.

Many examples of the best known boolean function combinations of properties
have been generated by this method, using a range of parameters for WHTmax,
WHTmin, CI , and set sizes. The size of the sets are specified by the code. Generally,
the larger the set size for a given N , the more (N + 1)-variable boolean functions
satisfying the selection criteria are found. Clearly, it is more useful, to decrease the
set size as N increases and tends to targetN , as the number of functions satisfying
the selection criteria at each dimension N will be less than the number of functions
in the set.

In Steps 1. and 2. of the BUILD procedure, a selection process to choose a
function from the set occurs. Among the different selection functions which have
been trialled for Method 2 are random selection and exhaustive pairing. Each of
these processes is described below.

The random selection process allows a boolean function to be chosen randomly
from each of the sets LN−1 and RN−1. These two chosen boolean functions are con-
catenated to form an N -variable boolean function, which is retained if the selection
criteria is met. Our experimental trials of Method 2 always employ random selection
for at least N = 5 and 6 so that non-deterministic factors influence the computation.

The exhaustive pairing process may be used in the higher levels of Method 2
to ensure that all distinct pairings of boolean functions at N − 1 are tested for
satisfaction of the selection criteria. This is a practical approach at this stage of
Method 2 since the retained sets of boolean functions for higher N become smaller
and exhaustive concatenation of pairs is not too computationally intensive. We
typically used this process for the targetN and targetN − 1 variable levels.

4.1 Results for Method 2

Previously, many different methods have had to be used (for example, [19], [18],
[14], [8]) to generate these optimal boolean functions. We have demonstrated that
Method 2 is, by itself, able to reproduce many examples of these best results within a
single method. We present in Table 4 the best functions which our method was able
to achieve in (N ,m,deg,NL) notation, where N is the dimension, m is the degree
of resilience, deg is the algebraic degree and NL represents the nonlinearity, of the
function.

242 BURNETT, MILLAN, DAWSON AND CLARK

N Optimal known functions
5 (5,1,3,12), (5,2,2,8)
6 (6,1,4,24), (6,2,3,24), (6,3,2,16)
7 (7,1,5,56), (7,2,4,56), (7,3,3,48), (7,4,2,32)
8 (8,1,6,112), (8,2,5,112), (8,3,4,112), (8,4,3,96), (8,5,2,64)
9 (9,1,7,240), (9,2,5,240), (9,3,5,224), (9,5,3,192), (9,6,2,128)

Table 4: Optimal combinations of properties currently known, which were able to be
achieved by Method 2. Note, however, that (8,1,6,112) is not optimal for nonlinearity.

The set sizes for the starting pool of 4-variable functions are dependent on the
number of functions which satisfy the selection criteria specified at that level. As
the selection criteria can be varied for each program execution, these 4-variable set
sizes will differ accordingly. For our experimental runs, typical set sizes for the lower
dimensional functions (eg N = 5 and 6) were between 30,000 and 50,000. Set sizes
for the higher dimensional functions (N = 7, 8 and 9) were typically between 1,000
to 10,000 but usually tending to 1,000 for the targetN -variable set. It is, however,
a flexible parameter of the Method and may be decreased or increased beyond these
values to achieve a balance between a desired number of final functions and the
execution time.

Example truth tables (in hex notation) of some of the best known functions that
have been obtained by Method 2 are listed below. We also set out below tables
containing the typical parameters at each level of the concatenation process, N = 4
to targetN , which were used to achieve these results. The reader should note, how-
ever, that most of the property combinations are able to be achieved by a number
of different sets of parameters.

Example 2: (7,2,4,56)

6369d82d56ac8b71499bb5c27a64863d

N WHTmaxN CIN

4 8 0
5 8 1
6 16 2
7 16 2

Example 3: (8,1,6,112)

54aa27d9eb324c562299f3ac4fe5341c813dc2f69f29f8054d9d78292cb2e356

N WHTmaxN CIN

4 8 0
5 8 0
6 16 1
7 32 1
8 32 1

GENERATING BETTER BOOLEAN FUNCTIONS 243

Example 4: (9,2,5,240)

92cd3d629e31c16ea51d96b8d2a64b5692cd3d629e31c16ea51d96b8d2a64b56

d83c2769c32796d849b567a8ba49586727c3d8963cd86927b64a985745b6a798

N WHTmaxN WHTminN CIN

4 8 0 0
5 8 0 1
6 16 0 2
7 16 16 2
8 32 32 2
9 32 0 2

A comprehensive summary of much of the work which has been done to date
on correlation immune and resilient functions can be found in [17]. The majority
of recent research in the area of resilient functions have had to perform a linear
transformation on the resulting boolean function in order to obtain some degree of
correlation immunity. Method 2 uses concatenation of selected boolean functions to
achieve the desired degree of correlation immunity and no linear transformations are
required.

We compare our results with the directed search for resilient functions in [15]. The
best resilient functions found were (8,1,6,112) and (9,1,6,236). Method 2 equals or
surpasses the results obtained by this directed search. For example, Method 2 is able
to find 9-variable resilient boolean functions with a nonlinearity of 240, whereas the
directed search proposed in [13] found 9-variable resilient functions with nonlinearity
at most 236. The authors of [15] report taking up to two weeks to generate these
results, compared with a few hours at most for N = 9 and up to a few minutes for
N = 8 for Method 2 to produce 1000 functions each with these properties.

In [3], resilient functions were generated using Simulated Annealing. Again,
Method 2 was able to generate resilient functions that were at least equal to, and in
some instances with better properties than those found by [3]. For example, Method
2 was easily able to achieve many (7,1,5,56) functions and 9-variable resilient func-
tions with nonlinearity 240. It should be noted, however, that Method 2 does not
measure autocorrelation in its computation.

Method 2 is more suited to discovering functions where targetN ≤ 9. The reason
for this is that as the concatenation process commences from a pool of N = 4 boolean
functions, as N increases, a larger targetN will become increasingly computationally
intensive. Another limitation of Method 2 is that for larger targetN and small m,
functions which possess multi-valued Walsh Hadamard Transform vector values are
increasingly difficult to generate. Regardless, Method 2 has demonstrated the ability
to successfully and quickly generate the majority of currently known functions with
optimal combinations of properties, and a large number of them.

244 BURNETT, MILLAN, DAWSON AND CLARK

5 Conclusions

We have developed two simple heuristic methods to enable the rapid generation of
many different boolean functions with good or optimal cryptographic properties. We
have demonstrated that Method 1 successfully generates optimal high nonlinearity,
low autocorrelation, even-dimensional functions for 6 ≤ N ≤ 14, some of which
are the best known for these combination of properties. The computational effort
required for Method 1 ranged from a few seconds for N = 6 to as little as 30 minutes
for N = 14. We have also shown that Method 2 enables the generation of highly
nonlinear resilient functions with a range of degrees of resilience for each N in the
experiments for N ∈ {5,6,7,8,9}. The majority of experimental runs for Methods 1
and 2 were performed on a Pentium III 700 MHz PC (typically for N ≤ 8) and a
Pentium III 1000 MHz PC (typically for N ≥ 8).

Although the research in this paper has focussed on the development of heuristic
techniques, it should be noted that the algebraic construction of boolean functions
can provide functions with optimal cryptographic properties that are, for large N ,
generally better than those able to be discovered by heuristic techniques. However,
typically algebraic constructions are unable to provide a large number of functions
with these optimal properties. Heuristic techniques, on the other hand, are capable
of generating a significantly larger set of boolean functions with good properties.
Both algebraic constructions and heuristic techniques are important ways in which
good boolean functions can be generated.

Future work in this area could involve further experimentation to extend the
heuristic methods proposed in this paper. For example, adapting Method 1 to en-
able the generation of odd-dimensional boolean functions with these properties is
one avenue of further research. Also, the careful selection of starting bent functions
for Method 1, as opposed to random selection, may be useful in generating balanced
boolean functions with maximal nonlinearity, as conjectured by Dobbertin [5]. With
regard to Method 2, a logical continuation to the work would involve investigations
into ways of generating a pool of starting N -variable functions (N > 4) to begin the
concatenation process in order to achieve targetN boolean functions where targetN
> 9. Finally, an obvious future direction is the development of new heuristic tech-
niques for the generation of optimal boolean functions to be utilised in the design of
cryptographic cipher systems.

Appendix

Example of a 6-variable boolean function (in hex notation) from Table 1 with NL
= 26, deg = 5, ACmax = 16 and σ = 6,784

a4ebd7d8b0b6808d

Example of a 8-variable boolean function (in hex notation) from Table 1 with NL
= 116, deg = 7, ACmax = 16 and σ = 89,728

7eb4719b4da742a8bbe124ce18fa17fd7e6b716c4d58c2572b3e3431180d1702

GENERATING BETTER BOOLEAN FUNCTIONS 245

Example of a 10-variable boolean function (in hex notation) from Table 1 with NL
= 488, deg = 9, ACmax = 40 and σ = 1,272,448

b024e3e6e571b6a3bf2bece9ea76b9bc8317d0d5d64285808c18cfd8d94d8a8fb0

dbe311e58eb64cbfd4ec06ea81b94383e8d02ad6bd857f0ce75f25d9b28a70b024

1c19e571494cbf2b1306ea7e06438317272ad6427a7d8c182025d94d7570b0db1c

e6e50e49b3bfd413e9ea8146bc82e82fd556bd7a808ce720dad992758f

Example of a 12-variable boolean function (in hex notation) from Table 1 with NL
= 2000, deg = 11, ACmax = 64 and σ = 18,757,120

2c63a66c3ce83d0d7936f33969bde8582c63a66cc317c2f2793ef339964297a723

6ca96333e732027639fc3666b26757236ca963cc18cdfd7639fc36994d9ca82c9c

a6933c1f3df279c9f3c6694268a72c9ca693c3e8c20d79c9f3c696bd97582393a9

9c331832fd76c6fcc9664d67a82393a99ccce7cd0276c6fcc999b29cd72c635993

3ce8e2f279360cc669bd97a72c635993c3173d0d79360cc696426858236c569c33

e7cdfd763903c966b298a8236c569ccc183202763903c9994d675f2c9c596c3c17

c20d79c90c3969429f582c9c596cc3e83df279c90e3996bd68a7239356633318cd

0277d60336664d9857239b5663cce732fd76c6033699b267a81f50955f0fdb8e3e

4a17c00a5a8e5b6b1f50955ff024f1c14a15c00aa571a494105f9a5120d4013145

0acf055581546c105f9a70ff2bfece450acf25aa7eab9b1faf95a00f240ec14afa

c0f55a715b941faf95a0f0dbf1be4afac0f5a58ea46b10a09aaf002b01ce45f5cf

fa557e549b10a09aafffd4fe31c7f5cffaaa81ab641f506aa00fdbf1c14b053ff5

5a8ea4941f506aa0f2240e3e4a053ff5a5715b6b105f65af00d4fece450b30fa55

81ab9b105f65afff2b0131450a30faaa7e54641faf6a5f0f24f1be4efa3f0a5a71

a46b1faf6a5ff0db0ec14afa3f0aa58e5b9410b06550002bfe3145f5b005557eab

6410a06550ffd401ce45f53005aa81549b

References

[1] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4:3–72, 1991.

[2] J.A. Clark and J.L. Jacob. Two-stage optimisation in the design of boolean
functions. In Australasian Conference in Information Security and Privacy
(ACISP 2000), volume 1841 of Lecture Notes in Computer Science, pages 242–
254. Springer Verlag, 2000.

[3] John A Clark, Jeremy L Jacob, Susan Stepney, Subhamoy Maitra, and William
Millan. Evolving boolean functions satisfying multiple criteria. In Third Inter-
national Conference on Cryptology in India (INDOCRYPT 2002), volume 2551
of Lecture Notes in Computer Science, pages 246–259. Springer Verlag, 2002.

[4] E Dawson, A Clark, J Goliç, W Millan, L Penna, and L Simpson. The LILI-128
keystream generator. In Proceedings of the First NESSIE Workshop, 2000.

246 BURNETT, MILLAN, DAWSON AND CLARK

[5] Hans Dobbertin. Construction of bent functions and balanced boolean functions
with high nonlinearity. In Fast Software Encryption, volume 1008 of Lecture
Notes in Computer Science, pages 61–74. Springer Verlag, December 1994.

[6] Jovan Dj. Goliç. Modes of operation of stream ciphers. In Selected Areas in
Cryptology (SAC’2000), volume 2012 of Lecture Notes in Computer Science,
pages 233–247. Springer Verlag, August 2000.

[7] Subhamoy Maitra. Highly nonlinear balanced boolean functions with good local
and global avalanche characteristics. Information Processing Letters, 83(5):281–
286, September 2002.

[8] Subhamoy Maitra and Enes Pasalic. Further constructions of resilient boolean
functions with very high nonlinearity. IEEE Transactions on Information The-
ory, 48(7):1825–1834, July 2002.

[9] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryp-
tology - EUROCRYPT’93, volume 765, pages 386–397. Springer Verlag, May
1993.

[10] R.L. McFarland. A family of difference sets in non-cyclic groups. Journal of
Combinatorial Theory, 15:1–10, 1973.

[11] William Millan, Andrew Clark, and Ed Dawson. Smart hill climbing finds bet-
ter boolean functions. In Selected Areas in Cryptology (SAC’97), pages 50–63,
August 1997.

[12] William Millan, Andrew Clark, and Ed Dawson. Heuristic design of crypto-
graphically strong balanced boolean functions. In Advances in Cryptology -
EUROCRYPT’98, volume 1403, pages 489–499. Springer Verlag, 1998.

[13] National Institute of Standards and Technology. Advanced encryption stan-
dard, fips-publication 197. In http://csrc.nist.gov/CryptoToolkit/aes/, Novem-
ber 2001.

[14] E. Pasalic, S. Maitra, T. Johansson, and P. Sarkar. New constructions of re-
silient and correlation-immune boolean functions achieving upper bound on non-
linearity. In Workshop on Coding and Cryptography - WCC 2001, volume 6 of
Electronic Notes in Discrete Mathematics. Elsevier Science, 2001.

[15] Enes Pasalic and Thomas Johansson. Further results on the relation between
nonlinearity and resiliency for boolean functions. In Proceedings of the 7th
IMA Conference on Cryptography and Coding, volume 1746 of Lecture Notes in
Computer Science, pages 35–44. Springer, 1999.

[16] G Rose. A stream cipher based on linear feedback over gf(28). In Third Aus-
tralasian Conference on Information Security and Privacy, volume 1438 of Lec-
ture Notes in Computer Science, pages 135–146. Springer Verlag, 1998.

GENERATING BETTER BOOLEAN FUNCTIONS 247

[17] Bimal Roy. A brief outline of research on correlation immune functions. In
Australasian Conference in Information Security and Privacy (ACISP 2002),
volume 2384 of Lecture Notes in Computer Science, pages 379–394. Springer
Verlag, July 2002.

[18] P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient
boolean functions. In Advances in Cryptology - CRYPTO 2000, volume 1880 of
Lecture Notes in Computer Science, pages 515–532. Springer Verlag, 2000.

[19] Palash Sarkar and Subhamoy Maitra. New directions in design of resilient func-
tions. In http://eprint.iacr.org/2000/009. Cryptology ePrint Archive, March
2000.

[20] T Siegenthaler. Correlation-immunity of nonlinear combining functions for
cryptographic applications. IEEE Transactions on Information Theory, IT-
30(5):776–780, 1984.

[21] Xian-Mo Zhang and Yuliang Zheng. GAC - the criterion for global avalanche
characteristics of cryptographic functions. Journal of Universal Computer Sci-
ence, 1(5):316–333, 1995.

(Received 12 Dec 2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

