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Abstract

In a given graph, we want to partition the set of its vertices into two
subsets, such that each vertex is satisfied in that it has at least as many
neighbours in its own subset as in the other. We exhibit some sufficient
conditions for the existence of a partition where all vertices are satisfied.
In particular, we characterize for which graphs of girth at least 5 and
which line-graphs of triangle-free graphs there exists a solution to the
problem.

1 Introduction

We consider an undirected, finite, simple graph G = (V, E). The neighbourhood of
a vertex v is denoted by N(v). Let dG(v) be the degree of vertex v, and δ(G) (resp.
∆(G)) the minimum (resp. maximum) degree in G. In the following we shall use
additional graph theory terms whose definitions can be found in [2].

We want to partition the set of vertices of a given graph into two non-empty
subsets such that each vertex has at least as many neighbours in its own subset as in
the other. A vertex is said to be satisfied if it has at least as many neighbours in its
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subset as in the other. Our problem, the Satisfactory Graph Partitioning problem,
consists in determining if a graph can be partitioned into two such that each vertex is
satisfied. More precisely, we define the Satisfactory Graph Partitioning SGP problem
as follows.

INSTANCE SGP: A graph G = (V, E).

QUESTION: Is there a partition of V in two non-empty subsets such that each
vertex is satisfied?

For an interpretation of this problem we consider a group of people, among which
certain persons are friends. We want to partition the group into two such that every
person is satisfied, i.e., everyone has at least as many friends in his group as in the
other, and therefore does not want to change group. This problem can be modelled
by an instance of SGP on a graph where the people are the vertices and two vertices
are linked if the corresponding persons are friends.

For a graph G = (V, E) and a partition (V ′, V \V ′) of V , we define, for each
vertex v, IN(v) as the number of neighbours of v that are in the same subset of the
partition as v, and OUT (v) as the number of neighbours of v that are in the other
subset than v (and therefore dG(v) = IN(v) + OUT (v)). The SGP problem then
consists of deciding the existence of a partition such that IN(v) ≥ OUT (v) for each
vertex v.

The Different Than Majority Labelling (DTML) problem [8] is a graph partition
problem closely related to SGP: partition the vertices of an undirected graph into two
sets such that for every vertex v, OUT (v) ≥ IN(v). This can be done in polynomial
time. This problem is also referred to as the unfriendly graph partition problem by
[1] and [11]. While there exists an unfriendly partition for any graph, this is not
the case for satisfactory partitions (take a clique for example). The complexity of
determining the existence of a satisfactory partition is open (see Section 5).

While an algorithmic approach to solving SGP has been presented in [4], in this
paper we will provide some theoretical results on SGP and provide directions for
future research. More precisely, we start in Section 2 with some initial observations.
We then show in Section 3 exactly which graphs of girth at least 5 have a satisfactory
partition. The girth of a graph is the length of its shortest chordless induced cycle.
In Section 4, we characterize the line-graphs of triangle-free graphs that have a
satisfactory partition. Finally, we conclude in Section 5 with some final remarks and
open questions.

2 Some initial observations

To simplify the reading, we say a graph is partitionable, or can be partitioned, when
the corresponding problem SGP has a solution.

There exist both graphs that can be partitioned, and graphs that cannot be
partitioned. For example, the complete bipartite graph Kp,q is partitionable if and
only if p and q are even (in particular, stars cannot be partitioned). The complete
graphs are also examples of graphs which cannot be partitioned.
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It is easy to see that every disconnected graph can be partitioned. Some other
graphs can also be partitioned in a simple way. For example, in the case of a cycle
on n ≥ 4 vertices, we put 1 < i < n − 1 consecutive vertices in one subset and the
remaining n− i vertices in the other subset. If the graph is a tree, but not a star, the
partition of the vertices is given by the connected components obtained by removing
a non-pendant edge of the tree (see Proposition 2 below). Also, any graph G can be
made partitionable by for example adding dG(v) leaves to any vertex v of G.

Since SGP is trivial for disconnected graphs, we will only consider connected
graphs in the remainder of this paper.

We say that a cut is non-trivial if it partitions the set of vertices into two subsets
of size greater than 1. As the unfriendly partition problem mentioned in the intro-
duction has a close link to maximum cuts (every maximum cut provides an unfriendly
partition), SGP has a link to minimum cuts. Indeed, any non-trivial minimum cut
provides a satisfactory partition: if a vertex was not satisfied, then a smaller cut
could be obtained by flipping that vertex to the other subset. Moreover, all min-
imum cuts in a graph can be generated in polynomial time (see for example [9]).
Hence, we have:

Proposition 1 If a graph G has a non-trivial minimum cut, then G is partitionable.
Moreover, the solution can be found in polynomial time.

Therefore, all non-partitionable graphs G have δ(G) equal to the size of a mini-
mum cut, and all minimum cuts are trivial.

Another simple result concerns graphs that are “almost disconnected”. In a graph
G, a pendant edge is an edge with (at least) one endpoint of degree 1 in G.

Proposition 2 If a graph G has a

• disconnecting edge that is a non-pendant edge, or

• disconnecting vertex that is not an endpoint of a pendant edge,

then G is partitionable.

Proof. The first condition is a corollary of Proposition 1.
Consider the connected components V1, V2, . . . , Vk (k ≥ 2) obtained by removing

the disconnecting vertex v. For any positive integer k′ < k, we define c1 = |N(v) ∩
V1 ∩ V2 ∩ . . . ∩ Vk′| and c2 = |N(v) ∩ Vk′+1 ∩ Vk′+2 ∩ . . . ∩ Vk|. If c1 ≥ c2, then we set
V ′ = V1 ∪V2 ∪ . . .∪Vk′ ∪{v}, otherwise we set V ′ = V1 ∪V2 ∪ . . .∪Vk′. We now have
for every vertex w /∈ N(v) ∪ {v}

IN(w) ≥ 0 = OUT (w),

for every vertex w ∈ N(v)

IN(w) ≥ 1 ≥ OUT (w),

(since v is not an endpoint of a pendant edge), and for vertex v

IN(v) = max(c1, c2) ≥ min(c1, c2) = OUT (v). �
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3 Graphs of girth at least 5

If G = (V, E), and A ⊆ V , G[A] is the subgraph of G induced by A. For an induced
subgraph H and a vertex x of H, dH(x) represents the number of neighbours of x in
H. To simplify the notation, dG[A](x) will be written as dA(x).

Studying a somewhat related partitioning problem, Stiebitz [12] proved the fol-
lowing result.

Theorem 1 [12] Let G = (V, E) be a graph and a, b : V → IN two functions.
Assume that dG(x) ≥ a(x) + b(x) + 1 for every vertex x ∈ V . Then there is a
partition (V ′, V \V ′) of V such that:

• IN(x) ≥ a(x) for every vertex x ∈ V ′, and

• IN(x) ≥ b(x) for every vertex x ∈ V \V ′.

We would like to use a(x) = b(x) =
⌈

dG(x)
2

⌉
in order to have a satisfactory

partition, but this does not satisfy the condition dG(x) ≥ a(x)+ b(x)+1. Theorem 1
only shows that for any graph G = (V, E), there is a partition (V ′, V \V ′) such that

IN(x) ≥ OUT (x) − 2 for every vertex x (by choosing a(x) = b(x) =
⌊

dG(x)−1
2

⌋
). We

therefore need to improve the lower bound a(x) + b(x) + 1.
As a corollary of Theorem 1, the vertex set of a graph with minimum degree at

least s + t + 1 can be partitioned into two parts inducing subgraphs with minimum
degree at least s and t, respectively. In [7], Kaneko showed that this result holds
for triangle-free graphs with minimum degree s + t. Then Diwan showed that the
bound can be improved to s + t− 1 for graphs with girth at least 5 when s, t ≥ 2 [3].
Unfortunately, both papers [7, 3] only consider minimum degrees, and no longer
the more general situation of Theorem 1 where different values can be assigned to
different vertices. On the other hand, the bound used in [3] suits our need.

Hence, to obtain further results for SGP, we first generalize Diwan’s theorem [3]
as follows.

Theorem 2 Let G = (V, E) be a graph of girth at least 5, and a, b : V → IN two
functions. Assume that dG(x) ≥ a(x) + b(x) − 1, a(x) ≥ 2 and b(x) ≥ 2 for every
vertex x ∈ V . Then there is a partition (V ′, V \V ′) of V such that:

• dV (x) = IN(x) ≥ a(x) for every vertex x ∈ V ′, and

• dV \V ′(x) = IN(x) ≥ b(x) for every vertex x ∈ V \V ′.

Although the proof of this generalization will closely follow Diwan’s proof in [3],
we nevertheless present it here to allow us to obtain further results (such as Theorem 3
and its corollary below) that require some changes to the proof. Before giving the
proof, let us introduce further helpful notions.

A pair (A, B) is said to be feasible if A and B are disjoint non-empty subsets of
V such that
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• dA(x) ≥ a(x) for every vertex x ∈ A, and

• dB(x) ≥ b(x) for every vertex x ∈ B.

We have to show the existence of a feasible partition of V . In fact, as the following
property shows, it is enough to show the existence of a feasible pair (A, B).

Proposition 3 [12] If there exists a feasible pair, then there exists a feasible partition
of V .

Proof. Let (A, B) a feasible pair such that A∪B is maximal. Assume A∪B �= V .
Therefore, C = V \(A ∪ B) is not empty. By maximality of A ∪ B, (A, B ∪ C)
is not feasible, and there is a vertex x ∈ C such that dB∪C(x) ≤ b(x) − 1. Since
dG(x) ≥ a(x) + b(x) − 1, we have dA(x) ≥ a(x). But then (A ∪ {x}, B) is a feasible
pair, contradicting the maximality of (A, B). �

An induced subgraph H of G = (V, E) is said to be (a − 1)-degenerate (resp.
(b − 1)-degenerate) if for every induced subgraph H ′ of H there is a vertex x such
that dH′(x) ≤ a(x) − 1 (resp. dH′(x) ≤ b(x) − 1).

By an (a, b)-partition of V , we mean a partition (A, B) of V such that G[A] is
(a − 1)-degenerate and G[B] is (b − 1)-degenerate (both A and B not empty). The
weight w(A, B) of an (a, b)-partition is the number of edges that have both endpoints
in a same subset, plus

∑
x∈A

b(x) +
∑
x∈B

a(x).

Finally, an a-good (resp. b-good) set V ′ ⊂ V is a non-empty subset such for every
vertex x ∈ V ′, we have dV ′(x) ≥ a(x) (resp. dV ′(x) ≥ b(x)).

Proof of Theorem 2. The three claims along the proof will point out where we
use the fact that a(x) ≥ 2 and b(x) ≥ 2 for every vertex x ∈ V .

Suppose there is a graph G = (V, E), with functions a and b, for which there is
no feasible partition (hence also no feasible pair by Proposition 3), and choose such a
graph with minimum number of edges. We can therefore assume that, for every edge
(u, v) ∈ E, we have dG(u) = a(u) + b(u) − 1 or dG(v) = a(v) + b(v) − 1 (otherwise,
remove the edges that do not satisfy this condition, and the feasible partition found
on that subgraph is also feasible for G).

We first show that there exists an (a, b)-partition. Consider an (inclusionwise)
minimal a-good subset S ⊂ V .

Claim 1 S is a proper subset of V .

Proof. Consider a vertex v ∈ V . For any vertex x �= v,

dV \{v}(x) ≥ dG(x) − 1 ≥ a(x) + b(x) − 2 ≥ a(x)

since b(x) ≥ 2. Hence, V \{v} is an a-good set. �
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Let T = V \S. Since there is no feasible pair in G (by Proposition 3), G[T ] must
be (b−1)-degenerate. By minimality of S, there is a vertex u in S with dS(u) = a(u).
Moreover, for any proper non-empty subset S′ of S, there is a vertex v ∈ S′ with
dS′(v) ≤ a(v) − 1. By setting S′ = S\{u}, we find a vertex v ∈ S, adjacent to u,
with dS(v) = a(v). We have dG(u) = a(u) + b(u) − 1 or dG(v) = a(v) + b(v) − 1;
let us assume dG(u) = a(u) + b(u)− 1. Then (S\{u}, T ∪ {u}) is an (a, b)-partition,
since dT (u) = b(u) − 1 and S\{u} is not empty (contains v).

Claim 2 For any (a, b)-partition (S, T ), we have |S| ≥ 2 and |T | ≥ 2.

Proof. Indeed, by definition, there is a vertex u ∈ S with dS(u) ≤ a(u) − 1
and a vertex v ∈ T with dT (v) ≤ b(v) − 1. By the condition on functions a
and b, this implies |T | ≥ dT (u) ≥ a(u) + b(u) − 1 − dS(u) ≥ b(u) ≥ 2 and
|S| ≥ dS(v) ≥ a(v) + b(v) − 1 − dT (v) ≥ a(v) ≥ 2. �

Among all (a, b)-partitions (we now know there is at least one), consider an (a, b)-
partition (S, T ) that has maximum weight. Let C = {u ∈ S | dS(u) ≤ a(u)− 1} and
D = {v ∈ T | dT (v) ≤ b(v) − 1}. By definition of an (a, b)-partition, neither C nor
D is empty.

We now show that every vertex in C is adjacent to every vertex in D. Let
u ∈ C and v ∈ D be two vertices, and assume they are not adjacent. The partition
(S\{u}, T ∪ {u}) cannot be an (a, b)-partition, since

w(S\{u}, T ∪ {u}) − w(S, T ) ≥ −(a(u) − 1) + b(u) − b(u) + a(u) = 1 .

The only possibility is that G[T ∪ {u}] is not (b − 1)-degenerate. Therefore, there
exists a b-good subset B ⊆ T ∪{u}. Since dT (v) ≤ b(v)−1 and v is not adjacent to u,
vertex v does not belong to B. Similarly, there exists an a-good subset A ⊆ S ∪{v},
that does not contain u. But then, (A, B) forms a feasible pair, a contradiction.

Since G is triangle-free, and every vertex in C is adjacent to every vertex in D,
both C and D must be independent sets.

Claim 3 We have C �= S and D �= T .

Proof. As mentioned above, for any vertex v ∈ D, there exists an a-good set
A ⊆ S ∪ {v}. For a vertex x ∈ A, we have dA(x) ≥ a(x) ≥ 2. If C = S, C being an
independent set, we cannot have dA(x) ≥ 2. Hence, C ⊂ S. Similarly, D ⊂ T . �

Since G has girth at least 5, a vertex in S\C has at most one neighbour in C
(otherwise, consider a vertex in S\C, two of its neighbours in C and a vertex in D).
S being (a − 1)-degenerate, there exists a vertex u1 in S\C such that dS\C(u1) ≤
a(u1)− 1. But since u1 /∈ C, we also have dS(u1) ≥ a(u1). Therefore dS(u1) = a(u1),
and u1 has exactly one neighbour u in C. Similarly, there is a vertex v1 in T\D with
dT (v1) = b(v1) and adjacent to exactly one vertex v in D.

We already know there exists a b-good subset B ⊆ T ∪{u}. If such a set does not
contain v, then every a-good subset A ⊆ S∪{v} must contain u; otherwise, A and B



CLASSES OF GRAPHS THAT CAN BE PARTITIONED 207

are disjoint and we have a feasible pair. So, either every a-good subset A ⊆ S ∪ {v}
contains u or every b-good subset B ⊆ T ∪{u} contains v. Without loss of generality,
we assume the latter. Since dT (v) ≤ b(v)−1, B also contains all neighbours of v in T ,
in particular v1. Therefore, both G[(T ∪{u})\{v}] and G[(T ∪{u})\{v1}] are (b−1)-
degenerate. Depending on whether dG(v) = a(v)+b(v)−1 or dG(v1) = a(v1)+b(v1)−1
(at least one holds), we consider two cases.

Assume dG(v) = a(v) + b(v) − 1. Since v belongs to every b-good subset of
T ∪{u}, dT (v) = b(v)− 1. Hence, dS(v) = a(v) and dS\{u}(v) = a(v)− 1. Therefore,
G[(S\{u})∪{v}] is (a− 1)-degenerate, and ((S\{u})∪{v}, (T ∪{u})\{v}) forms an
(a, b)-partition. This (a, b)-partition also has maximum weight, since

w((S\{u}) ∪ {v}, (T ∪ {u})\{v}) − w(S, T ) ≥ a(v) + b(u) − b(u) − a(v) = 0 .

G being triangle-free, v is not adjacent to u1 and u is not adjacent to v1. Therefore, u1

has degree a(u1)−1 in G[(S\{u})∪{v}] and v1 has degree b(v1)−1 in G[(T∪{u})\{v}].
But we showed earlier that in an (a, b)−partition (S, T ) of maximum weight, every
vertex x ∈ S with dS(x) ≤ a(x) − 1 has to be adjacent to every vertex x′ ∈ T with
dT (x′) ≤ b(x′)−1. Therefore, u1 and v1 must be adjacent, giving a cycle (u, v, v1, u1)
of length 4 in G, a contradiction.

Assume now dG(v1) = a(v1)+ b(v1)−1. Similarly as above, ((S\{u})∪{v1}, (T ∪
{u})\{v1}) is an (a, b)-partition and has maximum weight. To avoid the cycle
(u, v, v1, u1) of length 4, u1 and v1 are not adjacent. Therefore, d(S\{u})∪{v1}(u1) =
a(u1)− 1 and d(T∪{u})\{v1}(v) = dT (v) ≤ b(v)− 1. As previously, this implies that u1

and v are adjacent, yielding a triangle in G. This concludes the proof of Theorem 2.
�

As mentioned above, Theorem 2 generalizes the result in [3]. But, more important
for us in the study of SGP, Theorem 2 has the following corollary.

Corollary 1 Let G be a graph of girth at least 5 and minimum degree at least 3.
Then G is partitionable.

Proof. For every vertex x, set a(x) = b(x) =
⌈

dG(x)
2

⌉
. Since the minimum degree

in G is at least 3, we have a(x) = b(x) ≥ 2 for every vertex x, and we can apply
Theorem 2. �

Theorem 2 cannot be improved by having a bound on the girth of less than 5;
indeed, complete bipartite graphs Kp,q, with p odd, are not partitionable (in the SGP
sense), and have girth 4. Similarly, Theorem 2 also cannot be improved by having a
lower bound on the minimum value of functions a and b, as illustrated by the cycle
on n ≥ 5 vertices, a the constant function 1 and b the constant function 2.

But there is room for improving the result stated in Corollary 1. Indeed, when we

consider a(x) = b(x) =
⌈

dG(x)
2

⌉
, we have the additional information that a(x) = b(x)

for everty vertex x. This property is useful to prove the following result.

Theorem 3 Let G be a graph of girth at least 5, and minimum degree at least 2.
Then G is partitionable.
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Proof. In the proof of Theorem 2, the fact that a(x) ≥ 2 and b(x) ≥ 2 for every
vertex x has only been used to prove the three claims. We now show how to prove

these claims in the specific case where a(x) = b(x) =
⌈

dG(x)
2

⌉
and every vertex has

degree at least 2.

Let us first consider Claim 1. Let v be a vertex of degree 2. If no such vertex
exists, or if every neighbour of v has degree at least 3, the same argument as in the
proof of Theorem 2 applies. Otherwise, there is a neighbour u of v that has degree
2. But then, ({u, v}, V \{u, v}) is a feasible partition:

IN(u) = IN(v) = 1 = OUT (u) = OUT (v)

and, since G is triangle-free,

IN(x) ≥ dG(x) − 1 ≥ 1 ≥ OUT (x)

for every vertex x in V \{u, v}.

Let us now consider Claim 2, and assume |S| = 1. Since G[T ] is (b−1)-degenerate,
there is a vertex v ∈ T with dT (v) ≤ b(v) − 1. Hence, we have 1 ≥ dS(v) ≥ a(v),
implying a(v) = 1. But this in turn implies that dT (v) ≤ b(v) − 1 = 0, contradict-
ing the fact that dG(v) = dS(v)+dT (v) ≥ 2. Therefore |S| ≥ 2, and similarly |T | ≥ 2.

Finally, let us consider Claim 3, and assume C = S. Let v be a vertex in D.
As shown before Claim 3 in the proof of Theorem 2, there exists an a-good set
A ⊆ S ∪ {v}. We also know at this point that C, and hence S, is an independent
set. Since a(x) ≥ 1 for any vertex x, A must contain at least two vertices, including
v. We will show that (A, V \A) is a feasible pair, a contradiction. By definition, A is
a-good. It remains to show that V \A is b-good.

Let A′ = A ∩ S. For any vertex x ∈ A′, we have 1 = dA(x) ≥ a(x). Therefore,
every vertex x in A′ satisfies a(x) = b(x) = 1 and has degree 2. For such a vertex,
let v(x) be the neighbour of x different from v (every vertex x ∈ A′ ⊆ C is adjacent
to v ∈ D). If x and x′ are two distinct vertices of A′, v(x) and v(x′) are two distinct
vertices (of T ); indeed, if that was not the case, we would have a cycle (x, v(x) =
v(x′), x′, v) of length four. Moreover, since G is triangle-free, v(x) cannot be adjacent
to v. Hence, dV \A(v(x)) = dG(v(x))−1. A vertex w ∈ V \A that is not a vertex v(x)
for any x ∈ A′ can only have v as neighbour in A (the vertices in A′ have degree
2), and therefore dV \A(w) ≥ dG(w)− 1. Hence, dV \A(w) ≥ dG(w) − 1 for any vertex
w ∈ V \A. If dG(w) is even, dG(w) = a(w) + b(w), and thus dV \A(w) ≥ dG(w) − 1 =
a(w) + b(w) − 1 ≥ b(w). If dG(w) is odd, dG(w) ≥ 3, hence a(w) = b(w) ≥ 2, and
thus dV \A(w) ≥ dG(w) − 1 = a(w) + b(w) − 2 ≥ b(w). �

Corollary 2 Let G be a graph of girth at least 5. Either G is a star K1,m (and is
therefore not partitionable), or G is partitionable.

Proof. If G = (V, E) is not connected, G is trivially partitionable; so let us assume
that G is connected. Let G′ be the graph obtained from G by removing all leaves



CLASSES OF GRAPHS THAT CAN BE PARTITIONED 209

(vertices of degree 1) and their incident edge. If G′ has no edge (zero or one vertex),
G is a star K1,m with m ≥ 1.

If G′ has minimum degree 1, let u be a vertex of G′ of degree 1, and v its neighbour
in G′. Then G can be partitioned as follows: V ′ ⊂ V contains u and all neighbours
of u of degree 1 in G (that is, V ′ = ({u}∪NG(u))\{v}). It is easy to check that this
is indeed a satisfactory partition.

If G′ has minimum degree at least 2, G′ has a satisfactory partition by Theorem 3.
This partition can be extended to a satisfactory partition of G by putting every leaf
in the same subset as its unique neighbour. �

As mentioned earlier, complete bipartite graphs Kp,q, with p odd, are not parti-
tionable and have girth 4. It is therefore tempting to generalize the previous corollary
to graphs of girth at least 4 and excluding those complete bipartite graphs. Unfortu-
nately, there are other graphs of girth 4 that are not partitionable. Consider a graph
G constructed as follows. We start with Kp,q, p ≥ 3 odd and q ≥ 2. We then add
another q′ < q vertices, each linked to at least one of the p vertices. Such a bipartite
graph G is not partitionable (notice that all q vertices have to be in the same subset
of any satisfactory partition, since p is odd). Moreover, there exist also non-bipartite
graphs that are not partitionable. Consider a graph G = (V, E) defined by:

V = V0 ∪ V1 ∪ V2 ∪ V3 ∪ V4 with |Vi| = i + 1 0 ≤ i ≤ 4 .

The edge set E consists of all possible edges between Vi and V(i+1 mod 5), 0 ≤ i ≤ 4.
This graph is not bipartite and is not partitionable (all vertices of V4 have to be in
the same subset of a satisfactory partition, since they have an odd number of neigh-
bours). This construction can easily be generalized to create more non-bipartite
non-partitionable graphs of girth 4.

Notice that in all these non-partitionable graphs of girth 4, there are vertices of
odd degree. In fact, we can extend the result of Kaneko [7] in the same way as we did
for Diwan’s result; this would allow us to prove that every triangle-free graph with all
vertices of even degree and minimum degree at least 4 is partitionable. Here again,
the condition on the minimum degree can be dropped with a little more work (while
in a counter-example graph |S| ≥ 2 (|T | ≥ 2) no longer holds for every (a, b)-partition
(S, T ) (now defined slightly differently than above), it still holds for (a, b)-partitions
of maximum weight, which is enough for our needs). For space reasons, we do not
include this proof here.

We now know exactly which graphs of girth at least 5 are partitionable. Can
we also determine whether their line-graphs are partitionable? The main theorem
of the next section answers this question and goes even further: it indicates which
line-graphs of graphs of girth at least 4 are partitionable.

4 Partitionable line-graphs

Given a graph G = (V, E), its line-graph L(G) = (E, F ) has the edge-set of G as
vertex-set, and there is an edge (e1, e2) in L(G) if and only if in G the two edges e1
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and e2 are adjacent.
Let T1,m,m′ , with m′ ≤ m, be the graph defined by the vertex-set

V = {v0, v1, v2, . . . , vm, w1, w2, . . . , wm′}

and edge-set

E = {(v0, vi) i = 1, 2, . . . , m} ∪ {(vi, wi) i = 1, 2, . . . , m′}

Notice that T1,m,0 is the star K1,m.

Theorem 4 Let G be a triangle-free graph. Then its line-graph L(G) is partitionable
if and only if G is not T1,m,m′ with m′ < m or m odd.

Proof. Let us first consider the case where G is not T1,m,m′ for any m′ ≤ m, and
let v be a vertex of maximum degree in G = (V, E). We partition the vertices of
L(G) by E ′ and E\E ′, with E ′ the set of edges e = (x, y) of G such that:

• either e is incident to v, or

• dG(x) = 2, dG(y) = 1, and x is adjacent to v.

In this situation, E ′ is a proper subset of E. We now show that it is a satisfactory
partition for L(G). For e = (v, y), we have:

IN(e) ≥ dG(v) − 1 ≥ dG(y) − 1 ≥ OUT (e) .

For e = (x, y) ∈ E ′ not incident to v, we have IN(e) = 1 and OUT (e) = 0. For
e = (x, y) ∈ E\E ′, we consider two cases. If x is adjacent to v, then IN(e) ≥
dG(x) + dG(y) − 3 ≥ 1 = OUT (e). Otherwise, by symmetry, neither x nor y is
adjacent to v, and then IN(e) ≥ 0 = OUT (e).

We now consider the case where G = (V, E) is T1,m,m with m > 0 even, that is,

V = {v0, v1, v2, . . . , vm, w1, w2, . . . , wm}

and
E = {(v0, vi) i = 1, 2, . . . , m} ∪ {(vi, wi) i = 1, 2, . . . , m} .

We then set

E ′ =
{

(v0, vi) i = 1, 2, . . . ,
m

2

}
∪

{
(vi, wi) i = 1, 2, . . . ,

m

2

}
.

For any edge e = (v0, vi), we have IN(e) = m
2

= OUT (e). For an edge e = (vi, wi),
we have IN(e) = 1 and OUT (e) = 0. Therefore, E ′ and E\E ′ form a satisfactory
partition of L(G).

Finally, let us consider the case where G is T1,m,m′ with 0 ≤ m′ < m or m odd.
L(G) is then a clique on vertices e1, e2, . . . , em (corresponding to the edges (v0, vi) of
G), with m′ additional vertices e′i, each linked to ei. Assume there is a satisfactory
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partition (E ′, E\E ′) of E, with em ∈ E ′. Consider first the situation where m′ < m.
Then,

|E ′| ≥ IN(em) + 1 ≥
⌈

m − 1

2

⌉
+ 1 .

But for a vertex ei in E\E ′ we now have

OUT (ei) ≥ |E ′| ≥
⌈

m − 1

2

⌉
+ 1 >

m

2
≥ dL(G)(ei)

2
,

a contradiction. If m′ = m and m′ is odd, we have

|E ′| ≥ IN(em) + 1 ≥
⌈m

2

⌉
+ 1 ,

and for a vertex ei in E\E ′:

OUT (ei) ≥ |E ′| − 1 ≥ m + 1

2
>

m − 1

2
=

⌊
dL(G)(ei)

2

⌋
,

again a contradiction. �

The first part of this proof can be used to show the following result.

Theorem 5 Let G be a graph without vertices of degree 2. Then its line-graph L(G)
is partitionable if and only if G is not a star K1,m.

Proof. Let v be a vertex of maximum degree in G = (V, E). We partition the
vertices of L(G) into E ′ and E\E ′ with E ′ the set of edges e = (v, y) of G. If G is not
a star K1,m, E ′ is a proper subset of E. We show that it is a satisfactory partition
for L(G). For e = (v, y), we have:

IN(e) = dG(v) − 1 ≥ dG(y) − 1 = OUT (e) .

For e = (x, y) ∈ E\E ′, we consider two cases. If both x and y are adjacent to v,
their degree is at least 3, and we have

IN(e) = dG(x) + dG(y) − 4 ≥ 2 = OUT (e) .

If x and y are not both adjacent to v, we have

IN(e) = dG(x) + dG(y) − 3 ≥ 1 ≥ OUT (e)

(G being connected x and y cannot both have degree 1). �

While it is possible to extend this result a little bit further (with conditions about
the vertices of degree 2), it would be more interesting to determine exactly which
line-graphs are partitionable and which are not.
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5 Final remarks and open questions

The goal of this paper is to somewhat serve as an introduction to the Satisfactory
Graph Partitioning (SGP) problem, by providing some initial theoretical results and
provide interesting research directions. We showed that the only graphs of girth
at least 5 that do not admit a partition satisfying all their vertices are the stars
K1,m. Similarly, we characterized the line-graphs of triangle-free graphs that admit
a satisfactory partition. Unfortunately, the complexity of the general SGP problem
remains open.

Open question 1 Is the SGP problem NP-complete in general?

As shown in [5], more general versions of the SGP problem with weight functions
on the edges and/or the vertices of the graph are NP-complete in the strong sense.
More precisely, the Satisfactory Graph Partitioning SGP(s, w) problem is defined as
follows.

INSTANCE SGP(s, w): A graph G = (V, E) and two weight functions s : V → ZZ∗
+

and w : E → ZZ∗
+.

QUESTION: Is there a partition of V in two non-empty subsets V ′ and V \V ′ such
that each vertex is satisfied, that is, for each vertex v ∈ V ′ (v ∈ V \V ′ re-
spectively) we have fV ′(v) ≥ fV \V ′(v) (fV \V ′(v) ≥ fV ′(v) respectively) with
fA(v) =

∑
v′∈N(v)∩A

w(v, v′)s(v′)?

Both special cases where either s or w is a constant function, denoted by SGP(1,w)
and SGP(s, 1) are NP-complete in the strong sense [5]. It would therefore be inter-
esting to determine classes of graphs on which these more general problems become
polynomially solvable. Such classes are already known for the unweighted problem
SGP, as we have seen with the classes of graphs of girth at least 5 and the line-graphs
of triangle-free graphs in this paper. The polynomiality of SGP on classes such as
the cographs and distance hereditary graphs are consequences of the general results
in [6].

While we exhibited various types of graphs that do not admit a satisfactory
partition, it seems that the more vertices a non-partitionable graph has, the higher
its maximum degree is. We could therefore set n∆ to be the smallest value such
that every graph with maximum degree ∆ and at least n∆ vertices is partitionable
(n∆ = ∞ if non-partitionable graphs with maximum degree ∆ can be arbitrarily
large).

Open question 2 Is n∆ finite for every ∆?

It is a simple exercise to see that n2 = 4. Determining n3 is also not very difficult.
Indeed, consider a graph G with ∆(G) = 3. If G has girth at least 5 and G is not
K1,3, G is partitionable by Corollary 2. If G = (V, E) has girth 3, G has a triangle
(v, w, x). Starting with V ′ = {v, w, x}, all vertices in V ′ are satisfied, and there are
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at most c(V ′, V \V ′) = 3 edges with one endvertex in V ′ and the other endvertex
in V \V ′. If there is an unsatisfied vertex y in V \V ′, we can switch it to V ′. We
still have that all the vertices in V ′ are satisfied, and c(V ′, V \V ′) has been reduced
by at least 1 (since y was not satisfied). If there is still an unsatisfied vertex z in
V \V ′, we proceed as for y and switch z over to V ′. Again, V ′ contains only satisfied
vertices, and c(V ′, V \V ′) ≤ 1. At this stage, if V \V ′ contains at least 2 vertices,
then all the vertices in V \V ′ must be satisfied. If that was not the case, we could
switch an unsatisfied vertex over to V ′ and we would have c(V ′, V \V ′) = 0 which
is not possible in a connected graph. In summary, if G = (V, E) has girth 3 and
has at least 7 vertices, G is partitionable. If G has girth 4, a similar analysis can
be done. Starting with V ′ containing the vertices of a cycle of length 4 in G, and
noticing that c(V ′, V \V ′) ≤ 4, we can prove that if G has at least 9 vertices, then
G is partitionable. We therefore have n3 ≤ max(5, 7, 9) = 9. Following the above
procedure, it is an easy exercise to show that n4 ≤ max(6, 10, 13) = 13.

Unfortunately, the same procedure doesn’t work for larger values of ∆, since a
cycle does no longer consist in a set of satisfied vertices. But if a graph G has a

clique on
⌈

∆(G)
2

⌉
+ 1 vertices, the above technique can be applied by starting with

the vertices of such a clique. One can then prove that if a graph G has a clique of

size
⌈

∆(G)
2

⌉
+ 1 and has at least

⌈
∆2+4∆+7

4

⌉
vertices, then G is partitionable.

Open question 3 What other sufficient conditions for a graph to be partitionable
can be found, in particular for graphs with low minimum degree and small cycles?

Independently of the complexity of the SGP problem, it would be interesting to
be able to characterize which graphs in certain classes are or are not partitionable.
A case study on the length of the largest induced cycle in an outerplanar graph
provides a characterization of the partitionable outerplanar graphs. Indeed, the only
outerplanar graph without leaves that is not partitionable consists of a path on m ≥ 2
vertices and an additional vertex adjacent to all the vertices of the path.

Open question 4 Is there a good characterization of partitionable planar graphs?

Bipartite graphs are also of interest, since their structure often simplify the study
of combinatorial problems on this class of graphs.

Open question 5 Is there a good characterization of partitionable bipartite graphs?
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[10] A.A. Schäffer and M. Yannakakis, Simple local search problems that are hard
to solve, SIAM J. Computing 20 (1991), 56–87.

[11] S. Shelah and E.C. Milner, Graphs with no unfriendly partitions, in A. Baker,
B. Bollobás and A. Hajnal (eds.), A Tribute to Paul Erdös, Cambridge University
Press, 1990, 373–384.

[12] M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23
(1996), 321–324.

Note added in proof

In a paper titled “Complexity of the satisfactory partition problem” written after this
paper has been accepted for publication, C. Bazgan, Z. Tuza and D. Vanderpooten
have been able to provide a positive answer to open question 1 (SGP is NP-complete).
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