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Abstract
We study the concepts of minimal dominating and maximal irredundant
sets of vertices in tournaments.

1 Introduction

A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every
vertex in V − S is adjacent to at least one vertex in S. Domination in graphs is
a well-studied branch of graph theory, and is the subject of two books by Haynes,
Hedetniemi and Slater [8, 9]. However, about 90% of the papers on domination have
considered only undirected graphs. Thus, relatively little is known about domination
and related concepts in directed graphs, and much of what is known is related to the
study of kernels in digraphs. For an excellent survey of most of this literature the
reader is referred to a chapter on this topic by Ghoshal, Laskar and Pillone [6]. The
focus of this paper is the application of the concepts of domination and irredundance
in undirected graphs to the study of tournaments. These terms are defined in the
next section.

2 Definitions and terminology

Let D = (V, A) be a directed graph with a set of vertices V and a set A ⊆ V × V
of directed edges, called arcs. If (u, v) ∈ A, we write u → v and say u dominates v
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or u beats v. Define the outset of a vertex v ∈ V as O(v) = {w ∈ V |v → w ∈ A}
and the inset of v as I(v) = {u ∈ V |u → v ∈ A}. We also define O[u] = O(u) ∪ {u}
and I [u] = I(u) ∪ {u}. The outdegree of a vertex u is defined as od(u) = |O(u)|.
Similarly, the indegree of u is id(u) = |I(u)|. In the obvious way, we can define O(S)
for any subset S ⊆ V by: O(S) =

⋃
v∈S O(v). The definitions of I(S), I [S] and O[S]

are similar. Also, let ∆+(D) = max{od(u)|u ∈ V }.
A digraph T is a tournament if for every pair u, v of distinct vertices, either u → v

or v → u, but not both. Furthermore, if vertex u beats every vertex in a set S we
use the notation u ⇒ S. Note that if T = (V, A) is a tournament, then the subgraph
T [S] = (S, A ∩ S × S) induced by any subset S ⊆ V is also a tournament.

The subtournament induced by a set S ⊆ V is transitive if its vertices can be
(uniquely) ordered u1, u2, . . . , uk, such that ui → uj ∈ A if and only if i < j. In part
of this paper we are interested in transitive subtournaments of tournaments. Let us
define tr(T ) and TR(T ) to equal the minimum and maximum orders, respectively,
of a maximal transitive subtournament of a tournament T .

A set S ⊆ V is a dominating set in a directed graph D = (V, A) if for every vertex
v ∈ V − S there exists a vertex u ∈ S for which u → v ∈ A; equivalently, S is a
dominating set if O[S] = V (D). The domination number of a digraph D, denoted
γ(D), equals the minimum cardinality of a dominating set in D. The upper domi-
nation number of D, denoted Γ(D), equals the maximum cardinality of a minimal
dominating set in D.

In a directed graph D = (V, A), if S ⊆ V , the private neighbor set of a vertex
u ∈ S with respect to S is the set pn(u, S) = O[u] − O[S − {u}]. So pn(u, S) =
{x ∈ O[u]|x ⇒ S − {u}}. A set S ⊆ V is irredundant if for every vertex u ∈ S,
pn(u, S) �= ∅. If pn(u, S) �= ∅ then every vertex in pn(u, S) is called a private neighbor
of u (with respect to S). Note that if u ∈ pn(u, S), then no vertex in S − {u}
dominates u, from which it follows that if S is an irredundant set in a tournament T ,
then at most one vertex u ∈ S can satisfy u ∈ pn(u, S). Let ir(D) and IR(D) denote,
respectively, the minimum and maximum cardinalities of a maximal irredundant set
of vertices in D; these invariants are called the irredundance number and the upper
irredundance number of D, respectively.

In a directed graph D = (V, A), a set S ⊆ V is called independent if no two
vertices in S are joined by an arc. The independent domination number, i(D), and
the independence number, β(D), equal the minimum and maximum cardinalities,
respectively, of a maximal independent set in D.

Analogously, the independence, domination and irredundance parameters can
be defined for undirected graphs G, and are related by the following well-known
inequality chain [1]:

ir(G) ≤ γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G) ≤ IR(G). (1)

However, for arbitrary directed graphs this sequence of inequalities does not hold.
The first and fifth of these inequalities follow from the following simple result.

Proposition 1 Every minimal dominating set in a digraph D is a maximal irredun-
dant set.
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Corollary 1 For any digraph D,

ir(D) ≤ γ(D) ≤ Γ(D) ≤ IR(D).

For undirected graphs, it is easy to see that every maximal independent set is a
minimal dominating set, and therefore

γ(G) ≤ i(G) ≤ β(G) ≤ Γ(G).

However, these inequalities are not always true for directed graphs. Consider the
directed 3-cycle D1 with three vertices, u, v and w, and with u → v and v → w and
w → u. For this graph,

γ(D1) = 2 > i(D1) = 1.

Also, for the simple digraph D2 consisting of three vertices x, y and z, with x → y
and x → z, one can see that

β(D2) = 2 > Γ(D2) = 1.

The problem is that maximal independent sets in digraphs are not necessarily
dominating sets, and as we can see from the digraph D1, not every digraph has an
independent dominating set. Furthermore, no directed cycle of odd length has an
independent dominating set.

This is well known to those who study kernels in digraphs, which are defined as
follows. A set S ⊆ V in a digraph D = (V, A) is called absorbant if for every vertex
v ∈ V −S there is a vertex u ∈ S such that v → u. That is, S is a dominating set in
the directional dual D∗ = (V, A∗), where A∗ = {u → v|v → u ∈ A}. A set S which
is both independent and absorbant is called a kernel.

So a set S is an independent dominating set in a digraph D if and only if it is a
kernel in the dual digraph D∗.

Thus, while in general it is not true that

γ(D) ≤ i(D) ≤ β(D) ≤ Γ(D),

it is true for all digraphs D which have at least one independent dominating set.
It is worth noting, however, that it is an NP-complete problem to decide, given an
arbitrary digraph D, whether D has an independent dominating set [5].

Some Gallai-type results involving pairs of γ(D), max degree in D, i(D) and
ir(D) have been obtained by Merz and Stewart [13].

The next result establishes a relationship between dominating sets and transitive
subtournaments in a digraph.

Proposition 2 The vertex set of every maximal transitive subtournament of a tour-
nament T is a dominating set, but not necessarily a minimal dominating set of T .

Proof: Let S = {u1, u2, . . . , uk} be the unique ordering of the vertices of a
maximal transitive subtournament of a tournament T . Assume that S is not a
dominating set. Then there exists a vertex w ∈ V (T ) − S which is not dominated
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by any vertex in S, i.e. w → ui for every vertex ui ∈ S. But this means that
S′ = {w, u1, u2, . . . , uk} is a transitive subtournament of T , which contradicts the
maximality of S. �

Corollary 2 For every tournament T ,

(i) ir(T ) ≤ γ(T ) ≤ tr(T ) ≤ TR(T ) ≤ ∆+(T );
(ii) ir(T ) ≤ γ(T ) ≤ Γ(T ) ≤ IR(T );
(iii) γ(T ) ≤ n − ∆+(T );
(iv) γ(T ) ≤ δ−(T ) + 1.

We note that in general, no inequalities hold between either of {tr(T ), TR(T )}
and either of {Γ(T ), IR(T )}. For example, for the transitive tournament TTn on n
vertices, Γ(TTn) = IR(TTn) = 1, while tr(TTn) = TR(TTn) = n.

Proposition 3 If T is a tournament that is not strongly connected, with strong
components T1, T2, . . . , Tm, where every vertex in Ti dominates every vertex in Tj

whenever 1 ≤ i < j ≤ m, then

(i) γ(T ) = γ(T1);
(ii) Γ(T ) = Γ(T1);
(iii) ir(T ) = min{ir(Ti)|1 ≤ i ≤ m};
(iv) IR(T ) = max{IR(Ti)|1 ≤ i ≤ m}.

3 Domination in tournaments

We quote freely from [8] in order to review some pertinent background. In 1962, K.
Schütte [3] indirectly raised the question of whether there exist tournaments with
arbitrarily large domination numbers. In fact, he raised a slightly different question:
given any positive integer k > 0, does there exist a tournament Tn(k) in which for
any set S of k vertices, there is a vertex u which dominates all vertices in S. Such a
tournament is said to have property Sk.

Notice the following. If a tournament does not have property Sk, then there exists
a set S′ of k vertices such that for every vertex w /∈ S′, there is a vertex v ∈ S′ for
which v → w. That is, S′ is a dominating set in T of order k. Thus, a tournament
T has property Sk if and only if γ(T ) > k, or γ(T ) = k if and only if T has property
Sk−1 but does not have property Sk.

In [3] Erdös showed, by probabilistic arguments, that such a tournament Tn(k)

does exist, for every positive integer k.

Proposition 4 If Tn(k) has property Sk, then there is a tournament W of order
n(k) + 1 with property Sk.

Proof: Fix vertex u ∈ V (Tn(k)). Form W from Tn(k) by adjoining a new vertex
u′ such that O(u′) = O[u] and I(u′) = I(u). Let S ⊆ V (W ), |S| = k. If u′ /∈ S,
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S ⊆ V (Tn(k)), so there is a vertex v ∈ V (Tn(k)) so that v ⇒ S, since Tn(k) has
property Sk. If u′ ∈ S, either u /∈ S or u ∈ S.

If u /∈ S, then |(S − {u′}) ∪ {u}| = k, and (S − {u′}) ∪ {u} ⊆ V (Tn(k)). As Tn(k)

has Sk, there is a vertex v′ ∈ V (Tn(k)) with v′ ⇒ (S − {u′}) ∪ {u}. In particular,
v′ ∈ I(u). Thus, v′ → u′ in W , so v′ ⇒ S in W .

If u ∈ S, let z be any vertex of V (Tn(k)), z /∈ S. Then |(S − {u′}) ∪ {z}| = k
and (S − {u′}) ∪ {z} ⊆ V (Tn(k)), so there is a vertex v” ∈ V (Tn(k)) with v” ⇒
((S − {u′}) ∪ {z}. Since u ∈ (S − {u′}) ∪ {z}, v” ∈ I(u). So v” → u′ in W , and
v” ⇒ S in W . In any case, there is a vertex w ∈ W so that w ⇒ S. So, W has Sk.
�

Corollary 3 If Tn(k) has property Sk, then for every n ≥ n(k), there is a tournament
of order n with property Sk.

If we let f(k) be the minimum value of n(k) for which a Tn(k) exists, then Erdös
showed that

f(k) ≤ k22k(log 2 + ε),

for any ε > 0, provided k is sufficiently large.
We can restate this theorem as follows.

Theorem 1 (Erdös) For every ε > 0, there is an integer K such that for every
k ≥ K, there exists a tournament Tk with no more than k22k(log 2 + ε) vertices, for
which γ(Tk) > k.

Proof: Let T be a random tournament on n vertices, where for every pair
of vertices u and v, either the u → v arc or the v → u arc is chosen with equal
probability, and independently of the other arcs of T . The probability, therefore,
that vertex u dominates vertex v is 1/2. For every set S of k vertices and every vertex
u /∈ S, the probability that u dominates every vertex in S is 2−k. The probability that
S is a dominating set is therefore (1− 2−k)n−k. The expected number of dominating
sets of cardinality k is (

n
k

)
(1 − 2−k)n−k.

If n is sufficiently large, the value of this expression will be less than 1, and therefore
there exists a tournament T on n vertices with γ(T ) > k. In fact, if n > k22k(log 2+ε)
then (

n
k

)
(1 − 2−k)n−k < 1.

�

The fact that there are tournaments with γ(T ) > k, for arbitrary positive integers
k, is also discussed in Moon’s 1968 monograph on tournaments [14] (cf. Exercise 5,
p. 32). Let γ(n) be the maximum of γ(T ) over all tournaments T with n vertices,
so that for each n there is some tournament with n vertices for which γ(T ) = γ(n).
Moon attributes the following result to Leo Moser (without any reference):



162 REID, MCRAE, HEDETNIEMI AND HEDETNIEMI

log n − 2 log(log n) ≤ γ(n) ≤ log(n + 1),

where n ≥ 2 and log is to the base 2. Thus, there is a tournament T for which
γ(T ) ≥ log n − 2 log(log n), i.e. for every positive integer k there is a tournament T
for which γ(T ) > k.

Szekeres and Szekeres [17] later established a lower bound for f(k):

(k + 2)2k−1 − 1 ≤ f(k). (2)

Still later, Graham and Spencer [7] gave an explicit construction of a tournament
Tn(k) which has property Sk, although their construction takes n(k) to be larger than
k222k−2. Their construction is as follows:

Select the smallest prime number p > k222k−2, where p ≡ 3 (mod 4). The vertices
of Tn(k) correspond to {0, 1, . . . , p − 1}. For two distinct vertices u and v, u → v if
u − v ≡ a2 (mod p), for some a ∈ {0, 1, . . . , p − 1}. This is the quadratic residue
tournament, denoted QRTp.

They pointed out, however, the following [7]:

The value k222k−2 is nearly the square of the nonconstructive upper bound
of Erdös. Specific constructions show that much smaller values p suffice
to endow Tp with property Sk. For example, QRT7 has property S2 and
QRT19 has property S3. In [17] it is shown that f(2) = 7 and f(3) = 19,
so that these tournaments are minimal. Also, it is true that QRT67 has
property S4. Since ( 2) gives f(4) ≥ 47, it is possible that QRT67 is also
minimal.

There is another method for constructing tournaments with arbitrarily large dom-
ination number, but the order of the tournaments becomes quite large. Recall that
a tournament T has property Sk if and only if γ(T ) > k.

Theorem 2 (Tyszkiewicz [18]) Let T be a tournament with n-set V as vertex set.
Suppose T has property Sk. Form a new tournament W with n3-set V × V × V as
vertex set in which (a1, b1, c1) beats (a2, b2, c2) if at least two of the pairs (a1, a2),
(b1, b2), (c1, c2) describe arcs in T (and all other arcs in W are abritrary). Then W
has property S�3k/2�.

Starting with QRT7 (which has property S2) and using Theorem 2 repeatedly
yields a tournament with 73m

vertices that has property Sk, with k slightly smaller
than 2(3/2)m. Although the order of this tournament is much larger than required
by Erdös’proof and by the construction of Graham and Spencer, the construction is
simple and elementary.

As pointed out by Duncan and Jacobson [2], whenever there is a tournament T
with γ(T ) > k, by deleting vertices one can obtain a tournament T ′ with γ(T ′) =
k. Duncan and Jacobson also give a construction of a tournament with exactly m
minimum dominating sets of order k. It starts with a tournament T of order n with
γ(T ) > k and requires (k + m − 1) + kn vertices. We describe the construction for
m = 1.
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Theorem 3 (Duncan and Jacobson [2]) Let T be a tournament with γ(T ) > k.
Form a new tournament W as follows: use k copies of T , T1, T2, . . . , Tk, where the
copy of vertex a of T in Ti is denoted (a, i), 1 ≤ i ≤ k, and add k new vertices
x1, x2, . . . , xk. In W , vertex xi beats each vertex in V (Tj) if and only if i = j
(1 ≤ i ≤ k; 1 ≤ j ≤ k), each of x2, x3, . . . , xk beats x1, for a �= b in V (T ), (a, i)
beats (b, j) if and only if a beats b in T , and for a = b in V (T ), (a, i) beats (b, j) if
and only if i < j. Arcs of W between vertices in {x2, x3, . . . , xk} are arbitrary. Then
{x1, x2, . . . , xk} is the unique minimum dominating set in W , and γ(W ) = k.

In 1988 Megiddo and Vishkin [12] revisited this old problem, but from a compu-
tational point of view.

TOURNAMENT DOMINATING SET
INSTANCE: A tournament T = (V, A) and a positive integer k.
QUESTION: Does T have a dominating set of cardinality at most k?

The following theorem is attributed by Moon to Erdös (cf. [14], p. 28).

Theorem 4 (Erdös) If T is a tournament with n ≥ 2 vertices, then γ(T ) ≤ �log2 n
.
Proof: If od(u) equals the number of vertices dominated by u, then clearly∑

u∈V od(u) = n(n − 1)/2. It follows that there must be at least one vertex which

dominates at least � (n−1)
2


 vertices. Select a vertex u1 which dominates at least

� (n−1)
2


 vertices. We remove this vertex and all of the vertices it dominates. We

repeat this process on the remaining tournament which has at most � (n−1)
2


 vertices,
by selecting a second vertex u2 which dominates at least half of the remaining vertices,
and then deleting u2 and the vertices it dominates. By continuing this process we
can find a dominating set with no more than �log2 n
 vertices. �

Corollary 4 (Megiddo, Vishkin) A minimum dominating set in a tournament can
be found in nO(log n) time.

Proof: The proof of Theorem 4 implies that a minimum dominating set can be
found by examining all subsets of V of cardinality no greater than �log2 n
. There

are Σ
�log2 n�
i=1

(
n
i

)
such subsets. �

In effect, what Megiddo and Vishkin are saying is that there is an algorithm for
computing the domination number of a tournament which runs in subexponential,
yet superpolynomial time. It remains an open problem whether it is possible to
compute the domination number of a tournament in polynomial time.

Figure 1 provides examples of tournaments with domination numbers 2 and 3.
The tournament QRT3 in Figure 1 is called the cyclic triple and requires two vertices
to dominate it; in fact it is the unique smallest tournament with γ(T ) = 2. The
tournament C3[C3], which is the composition of the cyclic triple with itself, consists
of three cyclic triples; all of the vertices in one cyclic triple beat all of the vertices in
the next cyclic triple, in cyclic order. It is a nice exercise to show that γ(C3[C3]) = 3.
The tournament labeled QRT7 is the smallest tournament with γ(T ) = 3.
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γ(C3[C3]) = 3

γ(QRT3) = 2

0

1

25

4

6

3
γ(QRT7) = 3

Figure 1: Tournaments with small domination numbers.

Proposition 5 For every tournament T with less than seven vertices, γ(T ) ≤ 2.

Proof: Let T be a tournament with six vertices. Since T must have at least one
vertex which dominates at least �(n−1)/2
 = 3 vertices, select a vertex of maximum
outdegree, say u, for a dominating set of T . If od(u) = 5, then {u} is a dominating
set for T and γ(T ) = 1. If od(u) = 4, then γ(T ) > 1 and exactly one vertex v
dominates u, so {u, v} is a dominating set for T and γ(T ) = 2. So, assume that
od(u) = 3. At most two vertices, say x and y are left undominated. Either x → y or
y → x. Thus, either {u, x} or {u, y} is a dominating set for T . Notice that if every
tournament with six vertices has γ(T ) ≤ 2, then every tournament with fewer than
six fewer vertices also satisfies γ(T ) ≤ 2. �

In order to prove a result about tournaments with γ(T ) ≤ 3, we will need a few
preliminary results. Proposition 3 yields the following:

Observation 1 If T is a tournament on n vertices and γ(T ) = k, then for every
m > n there exists a tournament Tm on m vertices with γ(Tm) = k.

Proposition 6 If T is a tournament for which γ(T ) = k, for some k > 1, then T
contains a subtournament W for which γ(W ) = k − 1.

Proof: Let T be a tournament for which γ(T ) = k and let S = {x1, x2, . . . , xk}
be a dominating set in T . By Proposition 1, S is irredundant. Let pn(xi, S) = {x ∈
V (T )∩O[xi]|x ⇒ S−{xi}} be the private neighbor set of xi. Note that every vertex
in S′ = V (T ) − (

⋃k
i=1 pn(xi, S) ∪ S) is dominated by at least two vertices in S.
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Let T [W ] be the subtournament of T induced by the set W = V (T ) − ({xi} ∪
pn(xi, S)). Now, S − {xi} is a dominating set of T [W ] of cardinality k − 1. For, if
z ∈ W −S, and z ⇒ S −{xi}, then xi → z, as S is a dominating set of T . But then
z ∈ pn(xi, S), contrary to the assumption that z ∈ W . So, S − {xi} is a dominating
set of T [W ].

Any dominating set S′ in T [W ] of cardinality less than or equal to k − 2 yields a
dominating set S′ ∪ {xi} in T with cardinality at most k − 1, which contradicts the
fact that γ(T ) = k. Thus, γ(T [W ]) = k − 1. �

Corollary 5 If T is a tournament for which γ(T ) = k, then there exist nested
subtournaments T [W1] ⊂ T [W2] ⊂ . . . ⊂ T [Wk−1] ⊂ T such that for 1 ≤ i ≤ k − 1,
γ(T [Wk−i]) = k − i.

Proposition 7 Let T be a smallest tournament such that γ(T ) = k ≥ 2. Then for
every vertex v ∈ V (T ), γ(T [I(v)]) = k − 1.

Proof: Let v ∈ V (T ). Since γ(T ) = k ≥ 2, we know that |I(v)| ≥ 1. If T [I(v)]
has a dominating set S′ with at most k−2 vertices, then S′∪{v} is a dominating set
of T with at most k−1 vertices, which contradicts the assumption that γ(T ) = k. On
the other hand, if γ(T [I(v)]) ≥ k + r (r ≥ 0), then by Corollary 5, T [I(v)] contains
a subtournament T [W ] with γ(T [W ]) = k. But W has fewer vertices than T , which
contradicts the minimality of T. �

Proposition 8 Let T be a smallest tournament with γ(T ) = k, and let T have n
vertices. Then a smallest tournament W with γ(W ) = k+1 must have at least 2n+1
vertices.

Proof: Let W be a smallest tournament with γ(W ) = k + 1, and let W
have m vertices. Let v be any vertex in W with od(v) ≥ �(m − 1)/2
. Then
the tournament T ′[I(v)] has at most m − �(m − 1)/2
 − 1 vertices, and has, by
Proposition 7, γ(T ′[I(v)]) = k. But since a smallest tournament T with γ(T ) = k
has n vertices, we have n ≤ m−�(m−1)/2
−1 vertices. This implies that m ≥ 2n+1.

�

Proposition 9 Let T be a smallest tournament with γ(T ) = k ≥ 2. Then for
every vertex v ∈ V (T ), if S is a minimum dominating set for T [I(v)] (and so, by
Proposition 7, |S| = k − 1), then

a. at least one vertex w ∈ O(v) dominates all vertices in S (otherwise, S
dominates all of T );

b. no set S′ ⊆ I(v) with |S′| < k − 2 dominates all vertices in V (T ) −
O(v) − S (otherwise, {v} ∪ {w} ∪ S′ dominates T ).

Theorem 5 For every tournament with less than 19 vertices, γ(T ) ≤ 3.
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Proof: Let T be a smallest tournament with γ(T ) = 4, and let v be an arbitrary
vertex in V (T ). Then γ(T [I(v)]) = 3 (by Proposition 7) and |V (T [I(v)])| ≥ 7 (by the
comment preceding Proposition 5). Let u be a vertex having maximum outdegree
in T [I(v)]. Suppose that id(v) ≤ 8. Then there will be three vertices in I(v) − O[u]
(if fewer, then γ(T [I(v)]) < 3). If S = I(v) − O[u] is a (minimum) dominating set
for T [I(v)], then, if w is as in condition a in Proposition 9, {u, v, w} is a dominating
set for T , contradicting the assumption that γ(T ) = 4. If I(v) − O[u] is not a
dominating set for T [I(v)], then there exists some vertex w ∈ O(u) ∩ I(v) that
dominates every vertex in I(v) − O[u]. But then {u, w} forms a dominating set for
T [I(v)], contradicting the assumption that γ(T [I(v)]) = 3.

Therefore, id(v) ≥ 9, and since vertex v was chosen arbitrarily, all vertices in T
must have indegree at least 9. Therefore, T must must have at least 19 vertices. �

We next present a quadratic residue tournament QRT19 on 19 vertices whose dom-
ination number equals four. The vertices of QRT19 are labeled {0, 1, . . . , 18}. For 0 ≤
j ≤ 18, vertex j dominates vertex (j+k) mod 19, for all k ∈ {1, 4, 5, 6, 7, 9, 11, 16, 17}.

By constructing the adjacency matrix of QRT19, one can verify by hand that no
set of three vertices dominates QRT19, while, for example, {0, 1, 5, 8} is a minimum
cardinality dominating set. So, γ(QRT19) = 4.

Thus, from Theorem 5, we know that a smallest tournament T with γ(T ) = 4 has
19 vertices. It is interesting to note that since k222k−2 = (16)26 = 1024, the Graham
and Spencer construction requires 1031 vertices in order to construct a tournament
with γ(T ) = 4.

We report some computational results due to Fisher [4]. A rotational tournament
of order n = 2m+1 has as its vertex set {0, 1, 2, . . . , 2m} and vertex i beats vertex j
whenever j−i ∈ S, where S is an m-subset of {1, 2, . . . , 2m} such that s1+s2 �= 0 for
all s1, s2 ∈ S, where arithmetic is modulo n = 2m + 1. For example, QRTp, defined
earlier, is a rotational tournament where S is the set of quadratic residues modulo
p. Fisher verified via computer that

• the smallest rotational tournament with domination number 5 is QRT67,

• the smallest QRTp with domination number k has p = 331 if k = 6, and has
p = 1163 if k = 7,

• the smallest QRTp with domination number 8 has p ≥ 3079.

Lu, Wang and Wong [11] studied bounded domination numbers of tournaments
and proved that the minimum number of stars of degree at most k needed to cover
the vertex set is �n/(k + 1)
 for a tournament of order n ≥ 14k log k.

An upper bound on another domination parameter, the α-domination of a tour-
nament, has been studied by Langley, Merz, Stewart and Ward [10].

4 Irredundance in Tournaments

In this section we will examine some of the basic properties of irredundant sets in
tournaments and provide results relating the irredundance and domination numbers
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of tournaments.
A transmitter in a digraph is a vertex v with id(v) = 0. A receiver is a vertex with

od(v) = 0. So, a transmitter in a tournament is a vertex which beats every other
vertex, while a receiver is beaten by every other vertex. Clearly, for any tournament
T , γ(T ) = 1 if and only if T has a transmitter.

Proposition 10 For any tournament T , γ(T ) = 2 if and only if T has no transmit-
ter and there exist distinct vertices u and v such that I(u) ⊆ O(v).

Proof: Assume that T has no transmitter (so γ(T ) > 1) and contains two
distinct vertices u and v such that I(u) ⊆ O(v). Consider any other vertex w.
Either u dominates w or not. If u does not dominate w then w ∈ I(u). But this
implies that w ∈ O(v), i.e. v dominates w. Thus, the set {u, v} is a dominating set
and γ(T ) = 2.

Conversely, assume that γ(T ) = 2 and let {u, v} be a minimum dominating set.
Clearly T can have no transmitter, else γ(T ) = 1. Consider the set I(u). Vertex u
does not dominate any vertex in I(u). But since {u, v} is a dominating set, it must
be the case that v ⇒ I(u), and therefore I(u) ⊆ O(v), as required. �

Lemma 1 Let u and v be two distinct vertices in a tournament T . Then u and v
are contained in some (directed) 3-cycle if and only if {u, v} is an irredundant set.

Proof: Without loss of generality, assume that u → v. Let S = {u, v}. Suppose
u and v are contained in some 3-cycle with vertex w. Then v → w and w → u. Note
that u ⇒ S−{u}, so u ∈ pn(u, S). Also, w ∈ O[v] and w ⇒ S−{v}, so w ∈ pn(v, S).
As every vertex in S has a private neighbor, S is irredundant.

Conversely, assume that S is irredundant. So v has a private neighbor, say z.
Then z ∈ O[v] and z ⇒ S − {v}, that is, z ∈ O(v) ∪ {v} and z → u. Now z �= v,
since u → v, so z ∈ O(v) and T [{u, v, z}] is a 3-cycle in T . �

Proposition 11 For any tournament T , ir(T ) = 1 if and only if T contains a strong
component which consists of a single vertex.

Proof: Recall that every singleton set is irredundant. It follows that ir(T ) = 1
if and only if there exists a vertex u which has the property that for every vertex
v �= u, the set {u, v} is not irredundant. By Lemma 1, this is equivalent to saying
that u and v are in no 3-cycle, for all v ∈ V (T ). And this is equivalent to saying
that {u} is a strong component of T . �

Corollary 6 For any tournament T , ir(T ) = 1 if and only if T contains a vertex u
such that for every vertex v �= u, either (i) v ⇒ O[u] or (ii) u ⇒ O[v].

The regular tournament of order 5 in Figure 2 is an example of a tournament
with ir(T ) = 2. Since any two vertices are in a 3-cycle, any two vertices form an
irredundant set. Furthermore, γ(T ) > 1 by Proposition 11.
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4 1

23

Figure 2: A tournament with ir(T ) = 2.

The quadratic residue rotational tournament QRT7, shown in Figure 1, is an
example of a tournament with ir(QRT7) = 3. Every pair of vertices is in a 3-cycle,
so all 2-sets of vertices are irredundant, by Lemma 1. Let {i, j} be any 2-set of
vertices. We show that there is a k �= i, j so that {i, j, k} is irredundant.

Without loss of generality, assume that i → j. So, j − i ∈ {1, 2, 4}. If j − i = 1,
then {i, i+1, i+2} is irredundant, since i ⇒ S−{i}, i+1 → i+5, i+5 ⇒ S−{i+1},
i + 2 → i + 6, and i + 6 ⇒ S − {i + 2}.

If j − i = 2, then {i, i + 1, i + 2} is irredundant as above.
If j− i = 4, then {i, i+3, i+4} is irredundant, since i+3 ⇒ S−{i+3}, i → i+2,

i + 2 ⇒ S − {i}, i + 4 → i + 6, and i + 6 ⇒ S − {i + 4}.
That is, no irredundant set of two vertices is maximal. Thus, ir(QRT7) ≥ 3.
Finally, by Corollary 2(i) and the comments preceding Proposition 5, ir(QRT7) ≤

γ(QRT7) = 3. Thus, ir(QRT7) = 3.
Note also that the rotational tournament QRT19 given earlier is an example of a

tournament for which ir(T ) = 4. In QRT19, S = {0, 1, 5, 8} is an irredundant set,
since 0 → 4 and 4 ⇒ S − {0}, 1 → 18 and 18 ⇒ S − {1}, 5 → 3 and 3 ⇒ S − {5},
8 → 13 and 13 ⇒ S − {8}. Furthermore, since there is no irredundant set with five
vertices, {0, 1, 5, 8} is a maximal irredundant set. The fact that ir(T ) = 4 follows
from the observation that QRT19 has no maximal irredundant set of size less than
four.

Proposition 12 For every positive integer k, there is a tournament T for which

ir(T ) = 1 < γ(T ) = k.

Proof: Let T2 be the unique tournament on two vertices, u → v. Let Tk be
any tournament with γ(Tk) = k. We know that such a tournament exists by Erdös’
Theorem 1. Now construct a tournament T from T2 and Tk by adding the arcs in
V (Tk) ⇒ V (T2). Since v is a receiver, ir(T ) = 1, yet γ(T ) = γ(Tk) = k. �

The following is an example of a rotational tournament T13 with 13 vertices for
which γ(T ) < Γ(T ). The vertices of T13 are the integers modulo 13, where a vertex
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i beats vertices (i + d) mod 13 for every integer d ∈ {1, 2, 3, 5, 6, 9}; thus T13 is a 6-
regular tournament. A minimal dominating set of size four is the set D = {0, 1, 2, 3}.
Let u �→ v denote the fact that v is a private neighbor of u, i.e. v ∈ pn(u, D). It is
easy to see that the set D is a dominating set of T13. The fact that D is a minimal
dominating set follows from the observation that every vertex in D has a private
neighbor, i.e. 0 �→ 0, 1 �→ 10, 2 �→ 11 and 3 �→ 12. Thus, Γ(T13) ≥ 4. On the other
hand, D′ = {0, 1, 6} is also a minimal dominating set, which implies that γ(T13) ≤ 3.
In fact, it can be seen that γ(T13) = 3. Therefore, γ(T13) < Γ(T13).

The tournament T13 consists of the three fourth powers of elements of Z13 and
their doubles. It is the extremal tournament for the disproof of a conjecture of
Erdös and Moser that there is a tournament of order 2k − 1 which contains no
transitive subtournament with k + 1 vertices [16]. The result in question is that
every tournament with n ≥ 14 vertices contains a transitive subtournament of order
five. Furthermore, every tournament with 13 vertices, save one, contains a transitive
subtournament of order five. The lone exceptional 13-tournament that does not
contain a transitive subtournament of order five is the one described above. It does,
however, contain a transitive subtournament of order four, as does every tournament
with n ≥ 8 vertices.

Reversing the 2-path 4 → 0 → 1 results in the regular tournament of order 5
that is shown in Figure 3 results in an example of a smallest tournament T with
γ(T ) < Γ(T ). One can see that {1, 3} is a minimum cardinality dominating set in
T , while {0, 3, 4} is a minimal dominating set in T .

4 1

23

0

Figure 3: γ(T ) = 2 < Γ(T ) = 3.

The example in Figure 3 easily generalizes. Consider two transitive tournaments
of order n, T1 with V (T1) = {v1, v2, . . . , vn} and T2 with V (T2) = {u1, u2, . . . , un}.
Form the tournament of order 2n, denoted T2n from T1 and T2 by adjoining arcs
vi → ui, for 1 ≤ i ≤ n, and ui → vj if i �= j. For this class of tournaments,
γ(T2n) = 2 while Γ(T2n) = n.

The family of tournaments T2n can also be used to show that the difference
IR(T ) − Γ(T ) can be arbitrarily large. To each tournament T2n, add a new vertex
w for which w ⇒ V (T2n); let T+

2n be the resulting tournament. It is easy to see that
γ(T+

2n) = Γ(T+
2n) = 1, while IR(T+

2n) = n, since the set V1 is a maximal irredundant
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set. In fact, from this example the following is clear.

Proposition 13 For any tournament T of order n,

Γ(T ) ≤ IR(T ) ≤ �n/2
.

Proof: Let T be a tournament of order n. Let S be a maximal irredundant
set of maximum cardinality in T . If there is a vertex s ∈ S so that s ⇒ S − {s},
then consider the function pn : S − {s} → V (T ) − S, given by pn(x) is the private
neighbor of x (with respect to S). Then pn is one-to-one, so |S − {s}| ≤ n − |S|
or n ≥ 2|S| − 1. Thus, IR(T ) = |S| ≤ (n + 1)/2. If there is no such vertex
s ∈ S, then pn : S → V (T ) − S, given as above is one-to-one, so |S| ≤ n − |S|, or
IR(T ) = |S| ≤ n/2. In any case, IR(T ) ≤ �n/2
. �

5 Open Problems

We conclude this paper by presenting a collection of open problems suggested by this
research.

1. Can the value of γ(T ) be computed in polynomial time for an arbitrary tour-
nament T?

2. Can you settle the NP-completeness questions related to ir(T ), tr(T ), TR(T ),
Γ(T ) and IR(T )?

3. Can you characterize tournaments T for which ir(T ) = 2?

4. What are the smallest orders of tournaments with ir(T ) = 4 and ir(T ) = 5?
It is easy to see that the cyclic triple is the smallest tournament with ir(T ) = 2,
and one can verify, using Proposition 1, that the tournament QRT7 in Figure
1 is a smallest tournament with ir(T ) = 3. One can show that no two (or one)
element set of vertices in QRT7 is a maximal irredundant set.

5. What is the smallest order of a tournament with γ(T ) = 5?

Note that from Proposition 8 and the fact (near the end of Section 3) that
γ(QRT19) = 4, we only know that |V (T )| ≥ 39.

Proposition 14 If γ(T ) ≥ 5, then |V (T )| ≥ 47.

Proof: Suppose γ(T ) ≥ 5. Let a ∈ V (T ). Pick b ∈ I(a) and c ∈ I(a) ∩ I(b).
Let S = I(a) ∩ I(b) ∩ I(c). If I(a) = ∅ then {a} is a dominating set. If
I(a) ∩ I(b) = ∅, then {a, b} is a dominating set. If S = ∅, then {a, b, c} is a
dominating set. But γ(T ) ≥ 5, so I(a), I(a) ∩ I(b) and S are all non-empty.
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If there is a vertex x so that x ⇒ S, then {a, b, c, x} form a dominating set
in T , contrary to the fact that γ(T ) ≥ 5. Since S is a dominating set for T ,
|S| ≥ γ(T ) ≥ 5. As c was arbitrary in I(a) ∩ I(b), every vertex in I(a) ∩ I(b)
has indegree at least five in T [I(a) ∩ I(b)]. Thus, |I(a) ∩ I(b)| ≥ 11. As b was
arbitrary in I(a), every vertex in I(a) has indegree at least 11 in T [I(a)]. Thus,
|I(a)| = id(a) ≥ 23. As a was arbitrary in T , every vertex in T has indegree
at least 23. Thus, |V (T )| ≥ 47. �

Corollary 7 If γ(T ) ≥ 5, then |V (T )| ≥ 48.

Proof: From the proof of Proposition 14, |V (T )| ≥ 47. If |V (T )| = 47, then
equality holds throughout the proof above and T is a triply regular (5, 11, 23)-
tournament. But there are no non-trivial triply regular tournaments (Reid and
Brown, 1972 [15]), so we have a contradiction and |V (T )| ≥ 48. �

6. Can tr(T ) − γ(T ) be arbitrarily large?

7. Can TR(T ) − tr(T ) be arbitrarily large?

8. Is there a tournament with TR(T ) < Γ(T )?

Acknowledgment: The authors gratefully acknowledge several referee’s comments
that improved the presentation of results in this paper.
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