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Abstract

A two-valued function f defined on the vertices of a graph G = (V, E),
f : V → {−1, 1}, is a signed total dominating function if the sum of
its function values over any open neighborhood is at least one. That
is, for every v ∈ V, f(N(v)) ≥ 1, where N(v) consists of every vertex
adjacent to v. The weight of a total signed dominating function is f(V ) =∑

f(v), over all vertices v ∈ V . The total signed domination number
of a graph G, denoted γs

t (G), equals the minimum weight of a total
signed dominating function of G. If, instead of the range {−1, 1}, we
allow the range {−1, 0, 1}, then we get the concept of a total minus
dominating function. Its associated parameter, called the total minus
domination number of a graph G, is denoted γ−

t (G). In this paper, we
show that the decision problem corresponding to the computation of the
total minus domination number of a graph is NP-complete, even when
restricted to bipartite graphs or chordal graphs. For a fixed k, we show
that the decision problem corresponding to determining whether a graph
has a total minus dominating function of weight at most k may be NP-
complete, even when restricted to bipartite or chordal graphs. Linear
time algorithms for computing γ−

t (T ) and γs
t (T ) for an arbitrary tree T

are also presented.
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1 Introduction

Generally, we will use the notation of [1]. Let G = (V, E) be a graph, and let v be
a vertex in V . The open neighborhood of v is N(v) = {u ∈ V | uv ∈ E} and the
closed neighborhood of v is N [v] = {v} ∪ N(v). A total dominating set (TDS) of
a graph G without isolated vertices is a subset S ⊆ V (G) such that every vertex
in V (G) is adjacent to a vertex in S (other than itself). A total dominating set
of minimum cardinality is called the total domination number of G, denoted γt(G).
A total dominating set of cardinality γt(G) is called a γt(G)-set. Total domination
in graphs was introduced by Cockayne, Dawes, and Hedetniemi [2] and is now well
studied in graph theory (see, for example, [14] and [22]). The literature on this
subject has been surveyed and detailed in the two books by Haynes, Hedetniemi,
and Slater [18, 19].

For a real-valued function f : V → R the weight of f is w(f) =
∑

v∈V f(v), and
for S ⊆ V we define f(S) =

∑
v∈S f(v), so w(f) = f(V ). Let f : V → {0, 1} be a

function which assigns to each vertex of a graph an element in the set {0, 1}. We say
f is a total dominating function (TDF) if for every v ∈ V , f(N(v)) ≥ 1. To ensure
existence of a TDF, we henceforth restrict our attention to graphs without isolated
vertices. A TDF f is minimal if no g < f is also a TDF.

Several authors have suggested changing the allowable weights. Well-known is
fractional total domination where the weights are allowed to be in the range [0, 1].
For a graph G = (V, E), a function f : V → [0, 1] is called a fractional total dominating
function (FTDF) of G if f(N(v)) ≥ 1 for each v ∈ V . The fractional total domination
number of G is the minimum weight among all FTDFs of G, and so γt(G) = {w(f) | f
is a TDF of G}. The integer-valued TDFs are precisely the characteristic functions
of total dominating sets. This fractional version of total domination has been studied
in [4, 5, 6, 7, 15, 30, 33, 34] and elsewhere.

Let f : V → {−1, 1} be a function which assigns to each vertex of G an element
of the set {−1, 1}. The function f is defined in [12] to be signed dominating function
of G if

∑
u∈N [v] f(u) ≥ 1 for every v ∈ V . The signed domination number , denoted

γs(G), of G is the minimum weight of a signed dominating function on G. Signed
domination has been studied in [3, 12, 13, 16, 17, 20, 21, 27, 32, 35, 36] and elsewhere.

Let f : V → {−1, 0, 1} be a function which assigns to each vertex of G an element
of the set {−1, 0, 1}. The function f is defined in [11] to be minus dominating
function of G if

∑
u∈N [v] f(u) ≥ 1 for every v ∈ V . The minus domination number ,

denoted γ−(G), of G is the minimum weight of a minus dominating function on G.
Minus domination has been studied in [8, 9, 10, 11, 24, 25, 26, 28, 31] and elsewhere.

Recently, Henning [23] introduced the concept of total signed domination that
arises when one changes “closed” neighborhood in the definition of signed domination
to “open” neighborhood. Let f : V → {−1, 1} be a function which assigns to each
vertex of a graph G = (V, E) an element of the set {−1, 1}. We define the function f
to be total signed dominating function (TSDF) of G if f(N(v)) ≥ 1 for every v ∈ V .
The total signed domination number , denoted γs

t (G), of G is the minimum weight
of a TSDF on G. A TSDF f is minimal if no g < f is also a TSDF. A (minimal)
TSDF of weight γs

t (G) will be called a γs
t (G)-function. The concept of total minus
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domination may be defined similarly. Specifically, let f : V → {−1, 0, 1} be a function
which assigns to each vertex of a graph G = (V, E) an element of the set {−1, 0, 1}.
We define the function f to be total minus dominating function (TMDF) of G if
f(N(v)) ≥ 1 for every v ∈ V . The total minus domination number , denoted γ−

t (G),
of G is the minimum weight of a TMDF on G. A (minimal) TSDF of weight γ−

t (G)
will be called a γ−

t (G)-function.

In this paper, we show that the decision problem for the total minus domina-
tion number of a graph is NP-complete, even when restricted to bipartite graphs or
chordal graphs. For a fixed k, we show that the decision problem corresponding to
determining whether a graph has a TMDF of weight at most k may be NP-complete,
even when restricted to bipartite or chordal graphs. Linear time algorithms for com-
puting γ−

t (T ) and γs
t (T ) for an arbitrary tree T are also presented.

The motivation for studying this variation of the total domination number is rich
and varied from a modelling perspective. For example, by assigning the values −1, 0
or +1 to the vertices of a graph we can model networks of people or organizations in
which global decisions must be made (e.g. negative, neutral or positive responses or
preferences). We assume that each individual has one vote and that each individual
has an initial opinion. We assign +1 to vertices (individuals) which have a positive
opinion, 0 to vertices which have no opinion and −1 to vertices which have a negative
opinion. We also assume, however, that an individual’s vote is affected by the opin-
ions of neighboring individuals. In particular, each individual gives equal weight to
the opinions of neighboring individuals (thus individuals of high degree have greater
“influence”). A voter votes ‘aye’ if there are more vertices in its (open) neighborhood
with positive opinion than with negative opinion, otherwise the vote is ‘nay’. We
seek an assignment of opinions that guarantee an unanimous decision; that is, for
which every vertex votes aye. We call such an assignment of opinions a uniformly
positive assignment. Among all uniformly positive assignments of opinions, we are
interested primarily in the minimum number of vertices (individuals) who have a
positive or neutral opinion. The total minus domination number is the minimum
possible sum of all opinions, −1 for a negative opinion, 0 for a neutral opinion and
+1 for a positive opinion, in a uniformly positive assignment of opinions. The total
minus domination number represents, therefore, the minimum number of individuals
which can have positive or neutral opinions and in doing so force every individual to
vote aye.

2 Complexity Issues

In this section we discuss complexity issues regarding the computation of γ−
t (G) and

γs
t (G) for a graph G.

The following decision problem corresponding to the computation of the total
domination number is known to be NP-complete, even when restricted to bipartite
graphs or chordal graphs [29].

Total Domination (TD)

Instance: A graph G = (V, E) and a positive integer k ≤ |V |.
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Question: Does G have a total dominating set of cardinality k or less?
We will demonstrate a polynomial time reduction from this problem to the fol-

lowing decision problem:
Total Minus Domination (TMD)
Instance: A graph H = (V, E) and a positive integer � ≤ |V |.
Question: Does H have a TMDF of weight � or less?

Theorem 1 TMD is NP-complete, even when restricted to bipartite or chordal
graphs.

Proof. It is obvious that TMD is a member of NP since we can, in polynomial
time, guess a function f : V → {−1, 0, 1} and verify that f has weight at most �
and is a TMDF. We next show how a polynomial time algorithm for TMD could
be used to solve TD. Given a graph G = (V, E) and a positive integer k, construct
the graph H by adding to each vertex vi of G a path of length four, consisting of
the consecutive vertices vi, wi, xi, yi and zi. It is easy to see that the graph H can be
constructed in polynomial time, and that if G is a bipartite or chordal graph, then
so too is H.

Lemma 2 γ−
t (H) = γt(H) = γt(G) + 2|V (G)|.

Proof. Let vi ∈ V (G) and let f be a γ−
t (H)-function. Since N(zi) = {yi} and

f(N(zi)) ≥ 1, we have f(yi) = 1. Also, 1 ≤ f(N(yi)) = f(zi)+f(xi), so that f(zi) ≥
0 and f(xi) ≥ 0. Similarly, using the facts that 1 ≤ f(N(xi)) and 1 ≤ f(N(wi)), we
have f(wi) ≥ 0 and f(vi) ≥ 0.

Thus, Im(f) ⊆ {0, 1}, and so f is a TDF of H. Consequently, γt(H) ≤ f(V (H)) =
γ−

t (H). On the other hand, if S is a γt(H)-set, then the characteristic function h of
S is a TMDF of H, so γ−

t (H) ≤ h(V (H)) = γt(H). Consequently, γ−
t (H) = γt(H).

Let n = |V (G)| and let S be a γt(G)-set. Then S ∪⋃n
i=1{xi, yi} is a TDS of H.

Thus, γt(H) ≤ γt(G) + 2n.
To see that the reverse inequality holds, let S be a γt(H)-set for which |S ∩

(
⋃n

i=1{wi, xi, yi, zi})| is minimized.
We may assume, without loss of generality, zi �∈ S and {xi, yi} ⊆ S. For suppose

zi ∈ S. It follows yi ∈ S. If xi ∈ S, then S − {zi} is a TDS, contradicting the
minimality of S. Thus, xi �∈ S, and S′ = S − {zi} ∪ {xi} is a γt(H)-set such that
zi �∈ S′ and {xi, yi} ⊆ S′.

We next show that wi �∈ S for all 1 ≤ i ≤ n. For suppose, to the contrary, wi ∈ S
for some 1 ≤ i ≤ n. Since S−{wi} is not a TDS, vi is uniquely (open) dominated by
wi. Let vj be any vertex adjacent to vi. Then vj �∈ S. If vi ∈ S, then S′ = S−{wi}∪
{vj} is a γt(H)-set with |S′∩(

⋃n
i=1{wi, xi, yi, zi})| < |S∩(

⋃n
i=1{wi, xi, yi, zi})|, which

is a contradiction. We may, therefore, assume vi �∈ S. If vj is dominated by some
vertex v� ∈ S, then S − {wi} ∪ {vj} is a γt(H)-set, contradicting our choice of S, as
before. Thus, vj must be uniquely dominated by wj. But then S−{wi, wj}∪{vi, vj}
is a γt(H)-set, again contradicting our choice of S.

Since wi �∈ S for all 1 ≤ i ≤ n, S − ∪n
i=1{xi, yi} is a TDS of G, so γt(G) ≤

|S| − 2n = γt(H)− 2n. It now follows that γt(H) = γt(G) + 2|V (G)|. �
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Figure 1:

Lemma 2 implies that if we let � = k + 2|V (G)|, then γt(G) ≤ k if and only if
γ−

t (H) ≤ �, and our proof is complete. �
Problem TDS is polynomial for fixed k. To see this, let G = (V, E) be a graph

with |V | = n. If k ≥ n, then V is a TDS of G of cardinality at most k. On the
other hand, if k < n, then consider all the r-subsets of V , where r = 1, . . . , k. There
are

∑k
r=1

(
n
r

)
of these subsets, which is bounded above by the polynomial

∑k
r=1 nr.

It takes a polynomial amount of time to verify that a set is or is not a TDS. These
remarks show that it takes a polynomial amount of time to verify whether G has a
TDS of cardinality at most k when k is fixed. Hence for fixed k, TD ∈ P .

In contrast, we now show that for a fixed k, TMD may be NP-complete. To
see this, we will demonstrate a polynomial time reduction of TMD to the following
decision problem.

Zero Total Minus Domination (ZTMD)

Instance: A graph G = (V, E).

Question: Does G have a TMDF of weight at most 0?

Theorem 3 ZTMD is NP-complete, even when restricted to bipartite or chordal
graphs.

Proof. It is obvious that ZTMD is a member of NP since we can, in polynomial
time, guess at a function f : V (G) → {−1, 0, 1} and verify that f has weight at
most 0 and is a TMDF.

We next show how a polynomial time algorithm for ZTMD could be used to
solve TMD in polynomial time. Before proceeding further, we prove the following
helpful result.

Lemma 4 γ−
t (Gi) = γs

t (Gi) = −1 for i = 1, 2 (see the above figure).

Proof. Suppose f is a γ−
t (G)-function (γs

t (G)-function, respectively). Every vertex
adjacent to an endvertex must receive 1 under f , since otherwise that endvertex
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would not have an open neighborhood sum of at least 1 under f . If any endvertex has
a value other than −1 assigned to it by f , we may reassign −1 to it and the resulting
function will still be a TMDF (TSDF, respectively) of Gi, which is a contradiction.
Thus, each endvertex of Gi is assigned −1 by f . It now follows that γ−

t (Gi) =
γs

t (Gi) = −1. �
Note that G1 is bipartite, while G2 is chordal.
Given a graph H = (V, E) and a positive integer �, let J1 = H ∪⋃�

j=1 H1,j , where

H1,j
∼= G1 for j = 1, . . . , � (J2 = H ∪ ⋃�

j=1 H2,j , where H2,j
∼= G2 for j = 1, . . . , �,

respectively). It is clear that J1 (J2, respectively) can be constructed in polynomial
time. Note that if H is bipartite (chordal, respectively), then so too is J1 (J2,
respectively).

We now show that γ−
t (H) ≤ � if and only if γ−

t (Ji) ≤ 0 for i = 1, 2. Let 1 ≤ i ≤ 2.
Suppose first γ−

t (H) ≤ � and f is a γ−
t (H)-function. Let fj be any TDMF of weight

−1 for Hi,j for j = 1, . . . , �. Define g : V (G) → {−1, 0, 1} by g(x) = fj(x) if
x ∈ V (Hi,j), (j = 1, . . . , �), while g(x) = f(x) for x ∈ V (H). Then g is a TMDF of
G of weight γ−

t (H) + �(−1) ≤ �− � = 0. Conversely, suppose γ−
t (Ji) ≤ 0 and g is a

γ−
t (Ji)-function. Let f be the restriction of g on V (H) and let fj be the restriction

of g on V (Hi,j) for j = 1, . . . , �. Then γ−
t (H) + �(−1) = γ−

t (H) +
∑�

j=1 γ−
t (Hi,j) ≤

f(V (H)) +
∑�

j=1 fj(V (Hi,j)) = g(V (Ji)) = γ−
t (Ji) ≤ 0, so that γ−

t (H) ≤ �. �
Henning [23] showed that the following decision problem is NP-complete.
Total Signed Domination (TSD)
Instance: A graph H = (V, E) and a positive integer � ≤ |V |.
Question: Does H have a TSDF of weight � or less?

Theorem 5 TSD is NP-complete, even when restricted to bipartite or chordal graphs.

As before, by using Lemma 4, one may show that the following decision problem
is NP-complete, even for bipartite and chordal graphs.

Zero Total Signed Domination (ZTSD)

Instance: A graph G = (V, E).

Question: Does G have a TSDF of weight at most 0?

3 A Linear Algorithm for Trees for Computing the Total
Minus Domination Number

Next we present a linear algorithm for finding a γ−
t (T )-function in a nontrivial tree

T . The variable OpenSum denotes the sum of the values assigned to the open
neighborhood of v.

Algorithm: Total Minus Domination(TMD). Given a nontrivial tree T on n
vertices, root the tree T and label the vertices of T from 1 to n so that label(w) >
label(y) if the level of vertex w is less than the level of vertex y. Note the root of T
will be labeled n.
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for i := 1 to n do
f(i)← −1;

for i := 1 to n do
begin

1. if vertex i is a leaf and i < n
then begin

OpenSum← 1;
f(parent(i))← 1;

end
else OpenSum← f(N(i));

2. if i < n
then while (OpenSum < 1) and (f(parent(i)) < 1) do

begin
f(parent(i))← f(parent(i)) + 1;
OpenSum← OpenSum + 1;

end;
3. while OpenSum < 1 do

begin
Choose a child of i, say v, for which f(v) < 1;
while (OpenSum < 1) and (f(v) < 1) do
begin

f(v)← f(v) + 1;
OpenSum← OpenSum + 1;

end
end;

Theorem 6 Algorithm TMD produces a γ−
t (T )-function in a nontrivial tree T .

Proof. Let T = (V, E) be a nontrivial tree of order n and let f be the function
produced by the Algorithm TMD. Then f : V → {−1, 0, 1}. For convenience,
the variable OpenSum which was used by Algorithm TMD when it considered the
vertex v, will be denoted by OpenSum(v).

Lemma 7 The function f produced by Algorithm TMD is a TMDF.

Proof. First consider the case when v is a leaf. The algorithm assigns, in Step 1,
the value 1 to the parent of v, and since values are never decreased by the algorithm,
the open neighborhood sum of v is at least one.

Next consider the case when v is not a leaf. If OpenSum(v) ≥ 1, we are done. If
not, then Steps 2 and 3 of the algorithm increase the value of vertices in the open
neighborhood of v such that OpenSum(v) ≥ 1, as required. �

To show that the function f obtained by Algorithm TMD is a γ−
t (T )-function,

let g be any γ−
t (T )-function for the rooted tree T . If f �= g, then we will show that

g can be transformed into a new γ−
t (T )-function g′ that will differ from f in fewer

values than g did. This process will continue until f = g′. Suppose, then, that f �= g.
Let v be the lowest labeled vertex for which f(v) �= g(v). Then all descendants of v
are assigned the same value under g as under f .
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Lemma 8 If g(v) < f(v), then the initial value assigned to the vertex v was in-
creased in Step 3 of Algorithm TMD.

Proof. Suppose the value of v was increased in Step 1. Then v is the parent of some
leaf, say u. Since g(v) < f(v), we have g(v) ≤ 0. But then g(N(u)) = g(v) ≤ 0,
contradicting the fact that g is a TMDF of T .

Suppose the value of v was increased in Step 2. This occurred when the algorithm
was processing a vertex, say u, whose parent is v. Then f(N(u)) ≤ 1 and g(N(u)) =
g(N(u)−{v})+g(v) = f(N(u)−{v})+g(v) = f(N(u))−f(v)+g(v) < f(N(u)) ≤ 1,
which contradicts the fact that g is a TMDF for T . �

Lemma 9 If g(v) < f(v), then the function g′ defined by g′(u) = f(u) if u ∈
N(parent(v)) and g′(u) = g(u) if u /∈ N(parent(v)) is a γ−

t (T )-function that differs
from f in fewer values than does g.

Proof. By Lemma 8, the initial value of v is increased in Step 3 of Algo-
rithm TMD, which occurs when the parent of v was being processed. Let w be
the parent of v. So g′ is defined by g′(u) = f(u) if u ∈ N(w) and g′(u) = g(u) for all
remaining vertices in V .

The algorithm ensures that f(N(w)) = 1. Also, since g is a TMDF of T ,
f(N(w)) = 1 ≤ g(N(w)). Furthermore, g′(V ) = g′(V − N(w)) + g′(N(w)) =
g(V −N(w)) + f(N(w)) ≤ g(V −N(w)) + g(N(w)) = g(V ). Thus, g′(V ) ≤ g(V ).

Since all the descendants of w, other than its children, have the same values under
g as under f , g′(N(u)) = f(N(u)) if u = w or if u is a descendant of w, other than
a child of w. Moreover, since the value of v was increased in Step 3, then, if w had
a parent, its value was either already 1 or otherwise it was increased to 1 in Step 2.
Thus, g′(N(u)) ≥ g(N(u)) for all vertices u different from w or a descendant of w,
other than a child of w. Thus, since f and g are TMDFs of T , so too is g′. Since
g′(V ) ≤ g(V ), g′ is a γ−

t (T )-function of T that differs from f in fewer values than
does g. �

We now consider the case where f(v) < g(v). We will need the following result.

Lemma 10 A TMDF on a graph G = (V, E) is minimal if and only if for every
vertex v ∈ V with f(v) ∈ {0, 1}, there exists a vertex u ∈ N(v) with f(N(u)) = 1.

Proof. Let f be a minimal TMDF of G. Suppose there is a vertex v ∈ V
with f(v) ∈ {0, 1} and f(N(u)) ≥ 2 for every vertex u ∈ N(v). Define a function
g : V → {−1, 0, 1} by g(v) = f(v) − 1 and g(w) = f(w) for all w �= v. Thus
g(N(w)) = f(N(w)) ≥ 1 for all w /∈ N(v) and g(N(w)) = f(N(w))− 1 ≥ 1 for all
w ∈ N(v). So g is a TMDF with g < f , contradicting the minimality of f .

Conversely, let f be a TMDF such that for every vertex v ∈ V with f(v) ∈ {0, 1},
there exists a vertex u ∈ N(v) with f(N(u)) = 1. Suppose f is not minimal. Then
there exists a TMDF g with g < f . Thus, g(w) ≤ f(w) for all w ∈ V and there exists
a vertex v ∈ V such that g(v) < f(v). Therefore f(v) ∈ {0, 1} and by the assumption
there is a vertex u ∈ N(v) with f(N(u)) = 1. So g(N(u)) ≤ f(N(u))− 1 = 0, which
contradicts the fact that g is a TMDF. �
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If the vertex v is the root then f(V ) < g(V ) = γ−
t (T ) which is a contradiction.

Thus, we may assume that v is not the root of T .
Since the labeling at each level is arbitrary, if any vertex x at the same level as

v has g(x) < f(x), we can proceed as before to find a TMDF g′ that agrees with f
in more values than g does. Thus we may assume that every vertex x at the same
level as v has f(x) ≤ g(x).

Since f(v) < g(v), we know that g(x) ∈ {0, 1}. By Lemma 10, there must
be a vertex x ∈ N(v) such that g(N(x)) = 1. Let w be the parent of v and u
be the parent of w. If f(u) ≤ g(u), then f(N(x)) = f(N(x) − {v}) + f(v) ≤
g(N(x)− {v}) + g(v)− 1 = g(N(x))− 1 = 0, which contradicts the fact that f is a
TMDF.

Thus f(u) > g(u). Suppose f(u) = g(u) + r and f(v) = g(v) − s where r, s ∈
{1, 2}. Define g′ : V → {−1, 0, 1} as follows: g′(y) = g(y) for all vertices y ∈
V − {u, v},

g′(u) =

{
f(u)− 1 if r = 2 and s = 1
f(u) otherwise

and

g′(v) =

{
f(v) + 1 if r = 1 and s = 2
f(v) otherwise

.

Then

g′(u) =

{
f(u)− 1 if r = 2 and s = 1
f(u) otherwise

=

{
g(u) + r − 1 if r = 2 and s = 1
g(u) + r otherwise

≥ g(u) + 1.

It follows that the only vertex with possibly a smaller value under g′ than under
g is v. For each child x of v, we have g′(N(x)) = g′(N(x)−{v}) + g′(v) ≥ f(N(x)−
{v}) + f(v) = f(N(x)) ≥ 1.

Furthermore,

g′(u) + g′(v) =

⎧⎨
⎩

f(u) + f(v) + 1 if r = 1 and s = 2
f(u)− 1 + f(v) if r = 2 and s = 1
f(u) + f(v) otherwise

=

⎧⎨
⎩

(g(u) + 1) + (g(v)− 2) + 1 if r = 1 and s = 2
(g(u) + 2)− 1 + (g(v)− 1) if r = 2 and s = 1
g(u) + g(v) otherwise

= g(u) + g(v).

Thus, g′(N(w)) = g′(N(w)−{u, v}) + g′(u) + g′(v) = g(N(w)−{u, v}) + g(u) +
g(v) = g(N(w)) ≥ 1 and g′(V ) = g′(V − {u, v}) + g′(u) + g′(v) = g(V − {u, v}) +
g(u) + g(v) = g(V ). This shows that g′ is a γ−

t (T )-function which differs from f in
fewer values than does g. �



152 LAURA HARRIS AND JOHANNES H. HATTINGH

4 A Linear Algorithm for Trees for Computing the Total
Signed Domination Number

In our final section, we present a linear algorithm for finding a minimum total signed
dominating function in a nontrivial tree T . The algorithm roots the tree T and
associates various variables with the vertices of T as it proceeds. For any vertex
v, the variable MinSum denotes the miminum possible sum of values that may be
assigned to the open neighborhood of v. So MinSum = 1 or 2 depending on whether
v has odd or even degree, respectively. The variable OpenSum denotes the sum of
the values assigned to the open neighborhood of v.

Algorithm: Total Signed Domination (TSD). Given a nontrivial tree T on n
vertices, root the tree T and relabel the vertices of T from 1 to n so that label(w) >
label(y) if the level of vertex w is less than the level of vertex y. Note the root of T
will be labeled n.

for i := 1 to n do
f(i)← −1;

for i := 1 to n do
begin

1. deg i← degree of the vertex i in T;

2. if deg i is odd
then MinSum← 1
else MinSum← 2;

3. if vertex i is a leaf and i < n
then begin

OpenSum← 1;
3.1. f(parent(i))← 1;

end
else OpenSum← f(N(i));

4. if OpenSum < MinSum
then begin

if i < n and f(parent(i)) = −1
then begin

4.1. f(parent(i) = 1;
OpenSum← OpenSum + 2;

end;

while OpenSum < MinSum do
begin

4.2. increase the value of one of the children of i;
OpenSum← OpenSum + 2;

end;
end;

end;
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We now verify the validity of Algorithm TSD.

Theorem 11 Algorithm TSD produces a γs
t (T )-function in a nontrivial tree T .

Proof. Let T = (V, E) be a nontrivial tree of order n, and let f be the function
produced by Algorithm TSD. Then f : V → {−1, 1}. For convenience, the variables
MinSum and OpenSum, which were used by Algorithm TSD when it considered
the vertex v, will be denoted by MinSum(v) and OpenSum(v), respectively.

Lemma 12 The function f produced by Algorithm TSD is a TSDF for T .

Proof. First consider the case when v is a leaf. The algorithm assigns, in Step 3,
the value 1 to the parent of v, and since values are never decreased by the algorithm,
the open neighborhood sum of v is at least one.

Next consider the case when v is not a leaf. If OpenSum(v) ≥MinSum(v) ≥ 1,
we are done. If not, then Step 4 of the algorithm increases the value of vertices in
the open neighborhood of v such that OpenSum(v) ≥MinSum(v) ≥ 1, as required.
�

To show that the TSDF f obtained by Algorithm TSD is minimum, let g be
any γs

t (T )-function for the rooted tree T . If f �= g, then we will show that g can
be transformed into a new γs

t (T )-function g′ that will differ from f in fewer values
than g did. This process will continue until f = g′. Suppose, then, that f �= g. Let
v be the lowest labeled vertex for which f(v) �= g(v). Then all descendants of v are
assigned the same value under g as under f .

Lemma 13 If g(v) < f(v), then the initial value assigned to the vertex v was in-
creased in Step 4.2 of Algorithm TSD.

Proof. Suppose the value of v was increased in Step 3.1. Then v is the parent of
some leaf, say u. But then g(N(u)) = g(v) = −1, contradicting the fact that g is a
TSDF of T .

Suppose the value of v was increased in Step 4.1. This occurred when the
algorithm was processing a vertex, say u, whose parent is v. Then f(N(u)) =
MinSum(u) ≤ 2 and g(N(u)) = g(N(u) − {v}) + g(v) = f(N(u) − {v}) − 1 =
f(N(u))− f(v)− 1 = f(N(u))− 2 ≤ 0, which is a contradiction.

Thus, the value of v was increased in Step 4.2. of Algorithm TSD. �

Lemma 14 If g(v) < f(v), then the function g′ defined by g′(u) = f(u) if u ∈
N(parent(v)) and g′(u) = g(u) if u /∈ N(parent(v)) is a γs

t (T )-function of T that
differs from f in fewer values than does g.

Proof. By Lemma 13, the initial value assigned to the vertex v was increased
in Step 4.2 of Algorithm TSD and this occurs when the parent of v was being
processed. Let w be the parent of v. Thus g′ is defined by g′(u) = f(u) if u ∈ N(w)
and g′(u) = g(u) for all remaining vertices u in V .
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Then f(N(w)) = MinSum(w). If deg w is even, then MinSum(w) = 2, so
g(N(w)) ≥ 2 = MinSum(w) = f(N(w)). If deg w is odd, then g(N(w)) ≥ 1 =
MinSum(w) = f(N(w)). Hence, f(N(w)) ≤ g(N(w)). Furthermore, g′(V ) =
g′(V−N(w))+g′(N(w)) = g(V−N(w))+f(N(w)) ≤ g(V−N(w))+g(N(w)) = g(V ).
Since all the descendants of w, other than its children, have the same values under g
as under f , g′(N(u)) = f(N(u)) if u = w or if u is a descendant of w, other than a
child of w. Moreover, since the value of v was increased in Step 4.2, then, if w had a
parent, its value was either already 1 or otherwise it was increased to 1 in Step 4.1.
Thus, f(parent(w)) = 1, so that g′(N(u)) ≥ g(N(u)) for all vertices u different from
w or a descendant of w, other than a child of w. Thus, since f and g are TSDFs of
T , so too is g′. Since g′(V ) ≤ g(V ), g′ is a γs

t (T )-function of T that differs from f in
fewer values than does g. �

It remains for us to consider the case where f(v) < g(v). We will need the
following result from [23].

Lemma 15 A TSDF f on a graph G = (V, E) is minimal if and only if for every
vertex v ∈ V with f(v) = 1, there exists a vertex u ∈ N(v) with f(N(u)) ∈ {1, 2}.

Here the vertex v is not the root of T , for otherwise f(V ) < g(V ) = γs
t (T ), which

is impossible. Since the labeling of the vertices was arbitrary at each level, if any
vertex x at the same level as v has g(x) < f(x), we can proceed as before to find
a TSDF g′ that agrees with f in more values than under g. So we may assume in
what follows that every vertex x at the same level as v has f(x) ≤ g(x).

Since f(v) < g(v), it follows that f(v) = −1 and g(v) = 1. By the minimality
of g (cf. Lemma 15), there exists a vertex x ∈ N(v) such that g(N(x)) ∈ {1, 2}.
Let w be the parent of v and let u be the parent of w. If f(u) ≤ g(u), then
f(N(x)) = f(N(x) − {v}) + f(v) ≤ g(N(x) − {v}) + g(v) − 2 = g(N(x)) − 2 ≤ 0,
which is a contradiction.

Hence f(u) > g(u), i.e., f(u) = 1 and g(u) = −1. Define a function g′ : V →
{−1, 1} by g′(y) = g(y) if y ∈ V −{v, u}, g′(v) = −1 and g′(u) = 1. Note that f(v) =
g′(v) = −1 and f(u) = g′(u) = 1. The only vertices whose neighborhood sums are
decremented under g′ are the children of v. However, these open neighborhood sums
under g′ are at least as large as under f . Thus, since g are f are TSDFs, so too is
g′. Furthermore, g′(V ) = g(V ), so that g′ is a γs

t (T )-function which differs from f in
fewer values than does g. �
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