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Abstract

Recent years have seen a dramatic increase in existence results for ¢-
designs with large ¢, i.e. t > 5. Designs are now known to exist for several
thousand parameter sets, mostly constructed by the method of orbiting
under a group. This note is a contribution to the classification of these
designs by parameters. We take an abstract look at admissible parameter
sets in general. We introduce a partial order, reflecting relationships
between designs, and we analyse the structure of the resulting posets.
The parameter sets of known designs fall in no more than 100 categories,
which we call ancestor clans.

1 Introduction

Let ¢, v, k and X be natural numbers. A t-(v, k, A) design is a pair D = (V, B) where
V is a set of v elements called points and B = {B, ..., By} is a set of k-subsets of
V — called blocks — such that every t-element subset of V is contained in exactly A
blocks. The quadruple of integers t-(v, k, \) is called the parameter set of the design.
The integer t is the point reqularity, v is the size of the underlying point set, k is the
block size and ) is the index. The number of blocks, b, is determined by ¢, v, k and A
as b= )\(:)/('E) A design with A = 1 is called Steiner System. Certain designs are so
obvious that one considers them as trivial. One of these is the complete design which
consists of all k-subsets. It is a t-design for all ¢ < k. The parameters as a k-design
are k-(v,k, 1), with b = (}). Let us recall some more parameters of t-designs. For
nonnegative integers ¢ and j with ¢ + j < ¢, and for I and J fixed disjoint subsets
of points of size i and j, respectively, the number of blocks containing I and disjoint
from J is a constant, denoted as J; ;. Ray-Chaudhuri and Wilson [6] proved that

()
v—t

(=)

We consider the following relationships between designs: Let D = (V,B) be a
t-(v, k, \) design with 1 <t < k < v. Then D yields further designs:
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(i) The design D also is a (t — 1)-(v, k, \ea) design where A\oq = % We call it

the design with respect to smaller ¢, or simply the reduced design red D.

(i) If z is a point of V, the derived design (with respect to the point z) is der, D =
(V\{z}, B;) where B, = {B\{z} | B € B, € B}. Each derived design has
parameters (t —1)-(v—1,k—1,\) (regardless of the choice of the point = € V).
Put >\dcr = A.

(iii) If x is a point of V, the residual design (with respect to the point z) is res, D =
(V\{z},B%) where B* = {B | B € B, © ¢ B}. Each residual design has
parameters (t — 1)-(v — 1, k, Ares) Where Ajes = )\kﬁ;’fl (regardless of the choice
of the point * € V). For the purpose of forming the residual design, the

assumption k < v is required. Note that

)\red = >\der + /\res =+ >\res~ (2)

Since the parameter sets which we obtain are independent of the choice of z, we
define the operators red,der and res in a more abstract way, namely as maps be-
tween parameter quadruples: For t-(v, k, \), we let red ¢-(v, k, \), dert-(v, k, \) and
rest-(v, k, \) be the parameter set of the reduced, the derived and the residual design,
respectively (provides these designs exist). Note that for parameters of designs, the
operations derivation and forming the residual commute, since it makes no difference
in which order we delete the points. Also, the reduce operator commutes with these,
since considering a design as a lower t-design does not change the design itself. Hence
for nonnegative integers h, i and j with h +i+ j <t and j < v — k, we can speak
of the design parameter set

red” der’ res’ t-(v, k, \),

which is obtained from t-(v, k, A) by reducing h times, deriving ¢ times and forming
the residual j times. For the rest of this article, we are going to exploit the struc-
ture which is induced by the three operations red, der and res on the set of design
parameter sets.

2 The poset of admissible design parameter sets

Not every quadruple of nonnegative integers t-(v, k, \) is a valid parameter set of
a design. Certain necessary conditions on the parameters are so fundamental, that
parameter sets which satisfy these have a special name. Before we give the definition,
let us introduce

)= (1), ®)

which is the largest index A, which a ¢-(v, k, A) design may have (exactly the complete
designs attain this bound).



GENEALOGY OF T-DESIGNS 5

Definition 2.1 Let ¢, v, k and A be natural numbers. The parameter set t-(v, k, A)
is called admissible if (ADM1), (ADM2) and (ADM3-s) hold for 0 < s < ¢ where

(ADM1) t <k <w,
(ADM2) 1 < A < Aa(t,0, k) = (279,

() _ \w=—s)w—s-1) (u-t+1
G h—s)k—s— 1) (k—t+1)

t—s

(ADM3-5) A = A0 = Aeqt—s 18 integral.

The last condition comes from the fact that in every ¢-design, and for any nonnegative
integer s < ¢, the number Ao of (1) is integral. This is also the index of the (t—s)-fold
reduced design, A q¢-s-

A parameter set which is the parameter set of an existing design is called real-
1zable. Clearly every t-design has admissible parameters but not every admissible
parameter set is realizable. For example, Kohler in [5] shows that the admissible
parameter set 13-(32, 16, 3) is not realizable (other examples would include the pa-
rameter sets of projective planes of order 6 and 10 which are known not to exist).

For t < k, the parameters of the complete design as a ¢ design are
t-(v, ky Amax(t, v, k)). Hence for fixed ¢, v and k with ¢ < k& < v there always is
at least one admissible parameter set. The quotient

A A (£, 0, k) ( =t/ (Z)> ’

which is a rational number between zero and one, describes how complete a t-(v, k, \)
design is.

Lemma 2.2 Let D be one of the operators red, der, res, which is applicable to the
admissible parameter set t-(v, k, \). Let D(t-(v,k,\)) = t'-(v/, k', ). Then

A N

)\m&X(t7U> k) )\nlax(tlvv,7kl).

In particular, D(t—(v7 k, )\)) is complete if and only if ¢-(v, k, A) is complete.

Lemma 2.3 If t-(v,k,\) is admissible with t > 1, then redt-(v,k,\) and
dert-(v,k, ) are admissible, too. In addition, if k < v, then rest-(v,k,\) is ad-
missible as well.

Proof: Let D be one of red, der and res, and put D(t-(v7 k, )\)) =t-(v', k', N). By
Lemma 2.2, 1 <X < A\pax(t, v, k) implies 1 < N < Ao (¢, 0/, &), which is (ADM2).

(i) The parameters of redt-(v,k,\) = (¢t — 1)—(1},/67)\2:2;:3) are integral by

(ADMS—(t — 1)) Moreover, by induction the parameters of iterated reduced
designs are integral as well: red’red t-(v, k, \) = red"*! t-(v, k, \) is admissible
fori <t—1. Finally, t — 1 <k <w.
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(ii) dert-(v,k,A) = (¢t —1)-(v =1,k —1,A). For 0 <i <t —1, red’ dert-(v, k, \) =
derred’ ¢- (v, k,A) is integral. (ADM1) is valid sincet — 1 <k —1<wv—1.

(iii) If £ < v, the operator res is defined. We prove that rest-(v, k, )\) =(t—1)- (v -
Lk, A\t = 1)) is admissible. Using (2) we get A\es = A7 = 1) = Aed — A 18

integral. In addition, t — 1 < k < v —1. Since (Aes)der = (Ader)res 18 integral by
(ii), (ADM3) follows by induction.

We deduce:

Corollary 2.4 Let t-(v,k, \) be admissible. Then, for nonnegative integers h, i and
j satisfying h+i+j <t and j <v-—k,

red"der'res? t-(v,k,\) = (t —i — j — h)—(v —i—Jk—1, )\t_h_j,j)
s admissible

Hence the concept of a family makes sense:

Definition 2.5 (cf. Fig. 1) Let t-(v,k,\) be admissible. The family of design
parameters generated by t-(v, k, \) is

Family(t—(v,k:,)\)) = {redh der’res? t-(v, k,\) | hyi,j €N, h+i+j<t j<v— k}

t-(v,k, A)

red

res

der

Figure 1: The family of a ¢t-(v, k, \)
We give some more information about family members:

Theorem 2.6 The parameter sets t'-(v', k', X') in the family generated by t-(v, k, \)
are characterized by the following conditions:
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(i) 0< ¢ <t

(i) K < <w,

(iii) ¢ <K <k,

() k—F <v—v <t—-t,
(U) N = )\kfk’+t’,v—v’—k+k’~

Proof: Let ¢/-(v/, k', X') be a parameter set satisfying (i)-(v). Then i := k — k" and
ji=v—v—(k—FK)and h:=t—t' —i—j =t—t — (v—1') are nonnegative integers
withh+i+j=t—t <t,and j <v—Fk— (v —F) <v—k. By Lemma 2.4,

red"der'res’ t-(v,k, A) = (t i = j = h)-(v =i = j.k =i, Ainojg)
= t"-(V" K, M (k=) o/ — (k=)

and thus #-(v/, k', X') € Family (¢-(v, k, A)). A routine check using Lemma 2.4 shows
that all design parameter sets contained in the family of a ¢-(v, k, \) satisfy (i)-(v).
O

Consider the following question: given t, k and v, what are the possible values of
A in admissible t-(v, k, A)? Before we can answer this, let us introduce the number

ANt v, k) = lcm{gcd(&% ’ 0<s< t}. (4)
Then

ANt v, k) =AMt v, 0 — k),
ANk, v, k)=AN0, v, k) = AX(t,v,v) =1

for all t < k < v. The following result gives a characterization of admissible parameter
sets. In particular, it shows that given ¢, k and v, the smallest index A\ for an
admissible parameter set t-(v, k, A) is AX(t,v, k).

Proposition 2.7 Let t,v, k and A be nonnegative rationals with k < v. The following
conditions are equivalent:

(i) The parameter set t-(v,k, \) is admissible.

(ii) red t-(v, k, \) is integral for 0 < i <t, where t <k and 1 < X\ < Apax(t, v, k).
(i11) t,v,k, A € Ny ANt v, k) | At <k and 1 < X < Apax(t, v, k).

() dert-(v,k,\) and rest-(v,k, \) are admissible.

(v) redt-(v, k,\) and dert-(v, k, \) are admissible.
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(vi) redt-(v, k, \) and rest-(v, k, \) are admissible and t' < k" where rest-(v,k, \) =
t-(v' K N).

Proof:

(i) & (i1) : Asrest-(v,k,\) = s- (v, k, /\ggg) with s := ¢ — 14, (i) and (i7) are equiv-

alent.

(i)  (ig) : If t-(v,k, A) is admissible, then for 0 < s < ¢, the number Ag}fzg is
k—s ’
t—s

k—s
divides A(;"7) which implies that % divides X for
) (=) eed ((£2).(;0))

all these s. Therefore AX divides A. The other implication is clear.

integral. Thus (

(i) © (iv) : By Lemma 2.3, (i) implies (év). On the other hand, assume that

dert-(v, k, A) and rest-(v, k, \) are admissible. In particular, Ayes = )\#fl) is inte-
gral. Then (2) implies A\jeqg = Ager + Ares 1S integral, so red t-(v, k, \) is integral. It
remains to show that A4 is integral for 1 <4 <t¢.If t = 1, there is nothing to show.
So assume ¢ > 2. We apply (2) to get Aeqz = (Ared)der + (Ared )res = (Ader)red + (Ares )red
parameters which are integral by our assumption. So A, is integral. We can pro-
ceed by induction.

(i) © (v) : By Lemma 2.3, () implies (v). Now assume that red ¢-(v, k, \) and der ¢-
(v, k, ) are admissible. In particular, Agey = A is integral. Moreover, ¢t < k since
t —1 < k — 1 holds for the derived parameter set. Also, A < Anax(v,t, k) by
Lemma 2.2. The conditions (ADM3-s) for 0 < s < ¢ — 1 are satisfied, and hence
t-(v, k, A) is admissible.

(1) < (vi) : Again by Lemma 2.3, (¢) implies (vi). Now assume that redt-(v, k, \)
and rest-(v, k, A) are admissible. By (2), A = Mer = Aed — Ares 18 integral which is
(ADM3-t). The assumption ¢ < k' implies t — 1 < k, hence t < k < v. (ADM2)
follows by Lemma 2.2. The conditions (ADM3-s) for 0 < s < t — 1 correspond to
the conditions for the parameter set red t-(v, k, ) for s > 0.

O

Since the parameters of the complete design are admissible, the previous result im-
plies that

ANt v, k) | Amax(t, 0, k). (5)

It is useful to introduce the poset of admissible design parameters, denoted as P,
as the transitive closure of the relationships induced by the operators der, red and
res on admissible parameter sets. This means that we have

t-(v, K N < t-(v, kN
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if and only if there is a sequence Dy, ..., D, of operators chosen from der, red and

res such that
Dy (Dy(t-(v, k, V) -+ ) = t=(0 K/ X).

Note that the families of Definition 2.5 are just the order theoretic ideal in the poset
P.

The question arises whether there exists a largest family containing a given pa-
rameter set. In terms of the poset P, this questions amounts to whether or not there
always is a maximal element above any given element. The purpose of this section is
to settle this question. We note that the complete design is the derived design of an
infinite number of complete designs with larger block size. This means we will have
to exclude complete designs from our consideration.

We introduce the inverse operators red™ !, der * and res™! (cf. Fig. 2). These are

(t+ 1)-(v, k, AE=L) E+1-w+1,k+1,0)  (t+1)-(v+ 1,k A2

A
red™! der! res™!
t-(v, k, A)
red der res
v

(t= D0,k ANEEED) =D =L Ek=12)  (t=1-(v =1,k A5ty)

Figure 2: The operators red®™!, der! and res*!
only partially defined functions as we require the image to be admissible:
Definition 2.8 Let ¢t-(v, k, A) be an admissible parameter set. Put

(i) red't=(v, k, A) == (t + 1)-(v, k, \E=L) if admissible

(ii) der 't-(v,k, \) := (t + 1)-(v + 1,k + 1, \) if admissible and

(ifii) res™'t-(v,k, A) := (t+ 1)-(v + 1, k, A\-EL7) if admissible.
If one of these functions is defined, we say that the given parameter set extends under
that operator.

Let us return to the study of maximal elements in the poset P. A related —
but much harder — problem is to determine whether a design can be extended,
i.e. whether there exists another design whose derived design is the given one (for
example, Cameron in [3] determines which square designs are extendible). Of course,
for a design to be extended, the parameter set of the extension must be admissible,

ie. the operator red™ must be defined. Hence admissibility of parameter sets
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give necessary conditions for extensions of designs. Let us quote two results in this
context, which were mentioned by Dembowski [4, p. 76, 77]. We should recall that
the parameters \; ; of (1) are integral for admissible parameter sets.

Lemma 2.9 Let t-(v,k,\) be an admissible t-design parameter set. Recall that
b = Moo denotes the number of blocks of a design, and r = Ay is the number of
blocks on a point.

(i) A necessary condition for der™" to be defined is that b(v + 1) is divisible by
k+1

(ii) Assume t > 2. A necessary condition for res™! to be defined is that Ago(k — 2)
is divisible by v + 1 — k.

Note that Alltop [1] describes further conditions under which ¢-designs can be ex-
tended.
The following analogue of Lemma 2.2 is easily proved:

Lemma 2.10 Let t-(v,k,\) be an admissible parameter set.  Assume that
D(t—(v, k, /\)) =t'-(v', k', ') is admissible for some D € {red™" der ' res™'}. Then

A N
)\max(t7 v, k) B )\max(t/7 U/7 k/) .

From this we deduce that

b=t if D = red™*

N )\max t/, U/, % v—t 1 ]

T ﬁ = fiop where fle=q 1 ifD=de™ - (6)
max\l; U, k_jk if D= I'GS_l.

Note that ft?v’k is just the factor by which the index changes under the operator D.

The next result follows from commutativity of the six operators
{red*! der®! res*'} :

Lemma 2.11 Let ¢- ( k,\) be an admissible design parameter set, and assume that
red "der 'res j( k,A) ) is admissible for some nonnegative integers h, i and j.
Then red™ der " res™J (t (v,k,N)) is admissible for all nonnegative integers b’ < h,
i <iandj <j.

Lemma 2.12 Let t-(v,k,A) be admissible, and assume that Dl(t—(u/@)\)) and
D, (t—(v, k, )\)) are defined for Dy, Dy € {red™*,der !, res™'}, Dy # Ds. In addition,
if {Dy, Dy} = {red™',res™'} we assume that X\ # Apax. Then Dng(t—(v,k,/\)) =
DyD, (t—(v,k,/\)) s admissible, too.



GENEALOGY OF T-DESIGNS 11

Proof: We distinguish 3 cases according to Dy, Dy. Up to a reordering of Dy and D,
these are all possible cases.

Dy =der !, Dy =res™! : We do not yet know if derflres_l(t-(v, k,\)) is admissible,
but the commutativity of the operators allows to deduce

res(der'res't-(v, k, \)) = der™'t-(v, k, )
and
der(der 'res 't-(v, k, \)) = res™'t-(v, k, \)

are admissible by assumption. Hence by Proposition 2.7, (iv) < (i),
der'res™'t-(v, k, A) is admissible, i. e. DyDs(t-(v, k, \)) is defined.

Dy =red™!, Dy = der™" : We can proceed in a similar way using Proposition 2.7, (v)
< (i), respectively, to get the result in that case.

Dy =red™", Dy = res™! : In this case we have the additional assumption A # Amax
which we need to show that red 'res™!(¢-(v, k,\)) satisfies (ADM1): Deny this.
Then t+1 = k and red "t-(v,t+1,\) = (t+1)-(v,t+1, A=) and res™'t-(v,t+1,\) =
(t + 1)—(v + 1,t + I,Aﬁ). But the last two parameter sets are complete, hence
t-(v,k, A) is complete by Lemma 2.10, contradicting the assumption A # Apa,. We
conclude that t < k — 2, so red 'res ™ (t-(v, k, \)) satisfies (ADM1). We proceed as
usual:

res(red'res't-(v, k, \)) = red”'t-(v, k, \)
and
red(red 'res™'t-(v, k, \)) = res”'t-(v, k, \)

are admissible by assumption. Moreover, t+1 < k, which means that the two param-
eter sets on the right hand side satisfy the additional assumption of Proposition 2.7,
(vi). Hence red™'res™'t-(v, k, A) is admissible, i. e. DDy (t-(v,k,\)) is defined. O

Lemma 2.13 Let t-(v, k, \) be an admissible design parameter set with A # (Z:i)
Assume that for nonnegative integers hy, ha, i1, 12, j1, j2 the parameter sets

red ™" der " res ™9 t-(v, k,\) are admissible for (= 1,2. (7)
Then, red ™ mx(hh) qep=max(iviz) pog—max(iiga) ¢_(y, k. ) is admissible as well.

Proof: First note that red™ ™" ("h2) qep=minii2) peg—min(ni2) t_(y, k \) is admissible
by Lemma 2.11. Hence it suffices to prove the claim for the case that one of the corre-
sponding integers is zero, i. e. hihy = 0, 4179 = 0 and j1jo = 0. The assumption is still
given by (7). Assume that hy # 0, hence hy = 0. In this case we pick red™' and use
Lemma 2.12 to show that red 'der "res¥ t-(v, k, A) is admissible. By Lemma 2.11,
der "'res 7! (red't-(v, k, \)) is admissible, as well as der "?res™32(red”'t-(v, k, A)),
i. e. the assumption (7) holds for red '¢-(v, k, \) instead of t-(v, k, \) and hy reduced
by one. We proceed by induction. Similarly, we proceed with the other operators.

The assumption \ # (Z:;) is needed for applying Lemma 2.12. O
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Theorem 2.14 Let t-(v,k, \) be an admissible parameter set with \ # (Z:i) Then
there exists a unique largest admissible parameter set, called Ancestor(t—(v,k,)\)),
such that t-(v, k, \) is contained in its family. More precisely, there exist nonnegative
integers hmax, tmax and Jmax mazimal with respect to the property that

Ancestor (t-(v, k, \)) = red"mex der e reg TImax t_(y, k)

is defined. The given parameter set is the hyax-fold reduction, iynax-fold derived and

Jmax-fold residual of its ancestor. A design parameter set which equals its own an-

cestor is called ancestor parameter set. If Ancestor (t—(v, k, A)) =t'-(v', k', ) then
N A

Ao (50K Amax (£, 0, k)

Hence the ancestor is again incomplete.

Proof: Fix an admissible parameter set t-(v, k, \) with A < (Z:i) = Amax. We first
have to show that Ancestor (t-(v, k, )\)) is defined, i. e. that the integers Apax, imax and
Jmax €xist. Therefore, we look at the parameters arising as results of the operations
der™, red™" and res™! (cf. Fig. 2). In case of red™" and res™!, the difference k — ¢
strictly decreases, SO imax and jmax are both bounded above by k& —¢t. What can be
said about the number of times that der™ can be applied? Assume this is the case
infinitely often and put

(i)

b, = # of blocks of der " t-(v, k, \) = A (k+n)
t+n

By (ADM3-0), b, is an integer. Note that

b, 1
141 7U+n+ (8)

b, k4+n+1

holds, even for the complete design with A = A (¢, v, k). For simplicity, we write
Amax instead of A\yax(t, v, k). Put

¢, = # of blocks of der ™" t-(v, k, Anax) = Ame @: <v+n>'
() \k+n

By (8), the sequences of numbers (b,) and (c,) are proportional. Hence there exists
a rational number v with 0 <y < 1 and v = z;_: for all n > 0. In particular,

T O S 1 LS
7 v v v—t .
o () DG Ama
Moreover,
\ v+n
b’n = ’ycn = M = N

A]'I'IB,X
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for all integers n > 0. Let p be a prime dividing ﬁ (such a prime exists since

0 < A < Amax by assumption). We deduce that p divides (212) for all n. But this is
impossible as for example (pmjfl) = i:l ”mh_h Z0 mod pforall0 <j <p"—1and

arbitrary m : If the numerator is divisible by p°, say, then the denominator is divisible
by that number, too. Hence all factors p cancel in the product. We conclude that
the number of times that red™" can be applied is finite, and we let Ay be maximal
with respect to the property that res™"max is defined.

Lemma 2.13 implies the uniqueness of the ancestor parameter set. The final two
statements follow by repeated application of Lemma 2.10. |

Example 2.15 There exist 5-(23,6,6) designs invariant under Hol(Cy;). We find
that
der—25-(23,6,6) = 7-(25, 8, 6)

is ancestor. (Note that it is not known whether or not a 7-(25,8, 6) design exists.)
Figure 3 displays the family of this parameter set. On the left, the pyramid of
parameter sets with ¢ > 5 is shown Note that in the bottom layer, there are three
more design parameter sets. A more concise way of displaying the family is indicated
to the right, which shows the layers one after another. The underlined parameter
sets are known to be realizable. <&

7-(25,8,6)

6-(25,8,57

. 6-(25,8,57) 6-(24,8,51)

oy e N\ ssen | 6-(24.7.6)

5-(25,8,380) 5-(24,8,323) 5-(23,8,272)
5-(24,7,57)  5-(23,7,51)

5-(23,6,6)

Figure 3: The family of 7-(25, 8, 6)

As an application, we evaluate the ancestor for Steiner systems S(¢,t+ 1,v) with
v —t prime:

Proposition 2.16 Lett and v be integers with v —t a prime. Then
Ancestor(t-(v,t + 1,1)) = der " ¢-(v,t + 1,1) = (t +n) — (v +n,t+n+1, 1)

with n = v — 2(t + 1). In particular, if Ancestor(t-(v,t 4+ 1,1)) = ¢/-(v', k', 1) then
Eo_ 1

o 20

Proof:
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(i) We first show that (¢t + n)-(v + n,t + n + 1,1) is admissible if and only if
n < v —2(t + 1). We have the following equivalences:

(t+n)-(v+n,t+n+1,1) is admissible
<= (ADM3-s) holds for 0 < s <t+n

<= (ADM3-(t +n —s)) holds for 0 < s <t +n
Al

(v—(t—=1)--(v—=(t—=s) 1 (v—l—t—l-f;)

2. (s+1) v—t\ s+1
is integral for 0 < s < t+n.

U+t+s)

If s+1 < v—t then v—t prime implies ged ((s+1)!,v—t) = 1. Since ( 41

is an integer for all s,
(s+D! | 0= (t=1) (0 (t=s)

fors+1 <v—t< s<v—t—2 Hence (t+n)-(v+nt+n+11)is
admissible for all n satisfying t +n <v—t—2 < n < v —2(t+1). On the
other hand, if n = v — 2t — 1 then the parameter set in question would be
(v—t—1)-(2v—2t —1,0—t1), so (ADM3-0) would require that

Qu—2t—1—(v—t—2)---2u—2t—1) (v—t+1)---(2v—1t)—1)

(v—t—(v—=t—=2))-(v—t—0) 2. (v—1t)

were integral. But the prime v — ¢ divides none of the factors in the numerator,
a contradiction.

(ii) Part (i) implies that der™¢ — (v,t + 1,1) = (t + n)-(v + n,t + n+ 1,1) is
defined for n = v — 2(t + 1) and no larger n. We claim that it is not possible
to apply red™ or res™" to this parameter set: If red™' were applicable, then
(v+n)—(t+n—-1)=v—t+1lhadtodivide1-(t+n+1—(t+n)) =1
which it does not (since v — t # 0). If res™! were applicable, then v +mn + 1 —
(t+n+1) =v—t had to divide 1 which it does not (since v — ¢ # 1). Hence,
Ancestor (t — (v,t + 1,1)) = der "¢ — (v,t + 1,1) with n = v — 2(t + 1). In
particular, if Ancestor(tf(v, t+1, 1)) =t'—(v, K1) = (t+n)- (v+n7 t+n+1, 1)7
then

K o t+n+1  wv—t-1 1
o v+n 20-—2t—-2 2

For example, Ancestor(5-(244,6,1)) = der™*** (5-(244,6,1)) = 237-(476, 238, 1).

3 Which design parameter sets extend?

The ancestors of parameter sets differing only in the index can look quite different:
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Example 3.1 Consider the collection of parameter sets of the form 5-(24, 8, \) where
1 <A< Amax(5,24,8) =969 = 3 - 17 - 19 (note that AX(5,24,8) =1). We get

Ancestor( (24,8, \) )

17-(36,18,m - 1) = red der '’res™25-(24,8,m - 51) if A\ =m - 51
15-(32,16,m - 1) = red *der” 8 *05 (24,8, m -57) if A\=m-57
13-(32,16,m - 3) = red °der” 8 5-(24,8,m-3) if A=m-3, 51{\, 571\
6-(25,8,m-3) = redfodef‘)r 15 (24,8,m-17) if A=m-17,19t X
6-(24,8,m -3) = red 'der "res 05-(24,8,m-19) if A =m- 19,174\
7- (25 8,m-6) = red 'der” 0 15 (24,8, m - 323) if A =m-323
5-(24,8,\) = red ’der” °r ~05-(24,8,\) otherwise

Note that the “otherwise” case is equivalent to

Amax (5, 24, 8)

d(x
&¢ ( " "AN(, 24, 8)

) = ged(),969/1) = ged(A,3-17-19) = 1.

&
In order to determine the ancestor, we have to find out which parameter sets extend
under the operators red™*, der™ or res™'. For this, we examine properties of the

function AN.

Proposition 3.2 Let v and k be integers with k < v. Then

(i)
ANt+ 1,0, k) = k-t . AMt v, k) — for all t <k,
ged(v —t,k — 1) ged (AN, v, k), W>
9)
(i)
(i)
ANt + 1,04 1,k +1) =lem | AX(t, v, k), ———trrr | (10)
d((t)- (50)
G
Note that ﬁ is the smallest natural number a such that
ged ((z+1) (t+1))

(v+1)--(v—t41)

D) (o=t D) is integral.

Proof:
(i) By definition, AA(t, v, k) is the smallest natural number such that (ADM3-0)

A (ADM3-t) hold for the parameter set ¢- (v, k, AX(t, v, k)) Consider the
corresponding admissibility condition for the parameters (¢ + 1)- (v, k, ANt +
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1,v,k)), which we denote by (ADM3™-0) A---A (ADM3-(t + 1)). (ADM3*-
(t +1)) just implies that AA(t + 1, v, k) is an integer. Write

v—t
v—1 _ ged(v—t,k—t)
¢ k=t
k—t ged(v—t,k—t)

with coprime numerator and denominator. Since (ADM3’-t) states that AA(t+

1,v, k)$=L is integral, AX(t 4+ 1,v, k) must be a multiple of m Put
LD A)\(t-]i- },v,k) cN
ged(v—t,k—t)

and consider the two sets of conditions in parallel. For 0 < s <t — 1, we have
(v—s)--(v—(t=1))
(k=) h—(t-1) <
; (v=s)--(=(t=-1)(v-1)
(ADM3’-5) <— A)\(tJer’k)(k—s)---(k— =)k —1) eN
(v=s)(v=({t—1)sanms
(k—s)---(k=(t—1))

Note that the additional factor ¥~ in (ADM3"-s) does not depend on s. The

last integrality condition shows that

(ADM3-s) <= AM(t, v, k)

— [t eN.

AN, v, k)
ged (A/\(t v, k), W)
is the smallest solution for L+, Hence by definition of Lt+D),
AN+ 10 k) = — k;tk P |
ged(v —t,k—1) ged (A)\(t v, k), gcd;ittkt))

For 0 < s <'t, let (ADM3-s) be the admissibility condition for the t-(v, k, AX)
design and for 0 < s <t + 1, let (ADM3’-s) be the admissibility condition for
the (t+1)-(v+1,k+1,\) design. Note that (ADM3-s) <= (ADM3-(s+1))
for 0 < s < ¢ while (ADM3’-0) requires that

(v+1
t+1

)

~—

ANt+Lo+1,k+1)

—~~

is integral. This last condition can be reworded as
E+1
(1)
k+1 v+1
ged ((t:l)’ (til))
Hence AX(t + 1,v+ 1,k + 1) is the least common multiple of AA(¢,v, k) and
that number. O

‘ ANE+1,0+ 1,k +1).
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Example 3.3 (cf. Example 3.1) Consider the parameter set 5-(24,8, 1) again. We
have:

i) AX(6,24,8) = —2-— - ! =3;
(1) )\(6’ 78) ged(19,3) ged (1’Wﬁ3#5)> 3’
(i) AX(6,25,9) = lem(1,3) = 3 as 2212822220 _ 231l hence 3 is the smallest

natural number making this fraction integral;

(iii) AN(6,25,8) = 3 since a = 3 is the smallest natural number such that all

20 21 22 23 24 25
prefixing partial products in a - 5 - 3 - £ - 2 - = - 2 evaluate to integers.

&

The question of whether an admissible design parameter set ¢-(v, k, \) extends
under one of the operators red™", der™ or res™! turns out to be equivalent to certain
divisibility conditions for A in terms of ¢, v and k. Our results are strongest in the case
of the operators red ' and der™' since we have the recursion formulae (9) and (10)
of Proposition 3.2 in that cases.

Proposition 3.4 Let t-(v, k, \) be an admissible design parameter set (hence m
is an integer by (4)). Then

(i) red ™ t-(v, k, \) is defined if and only if

(a) t <k and

red !
(b) ook —AA“ = where
v—t

red™' ged(v—t,k—t) ) (11)
ged (A)\(t, 0, k), ;’f)

Ct vk T
ged(v—t,k—t)

(ii) der™*t-(v,k, \) is defined if and only if c?ﬁf?!W where
(1)
g BN Lo L) =G
vk AN(t, v, k) i '
T ng A)\(t,l},k),ﬁ
( gcd((';m,(t:l)))

(iii) res™' t-(v, k, \) is defined if and only if
(a) t <k and
(b) Cgif,;”ﬁx(?,v,k) where

gt ANt+ 1o+ 1,k)- (v+1—k)
PR ged (ANt + Lu+ LK) - (v + 1 — k), ANt v, k) - (k=)

(13)
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Proof:

(i) The operator D = red™" is not defined for parameter sets with ¢ = k. Hence
assume t < k. By (4), der™" ¢t — (v, k,\) = (t +1) — (v, k, \E=L) is admissible if

and only if
k—t
ANt + 1,0,k ‘ A
(t+1,0.k) v—t
(9) k—t AX(t, v, k)
== (v—t)- : = ‘)\'(’f*t)
ng(’U - t7 k— t) ng (A)\(t, v, k), m)
v—t )\
ged(v—t,k—t)
A d .
ged (A)\(t, v, k), W—;k_t)) AX(t, v, k)
—.cred—1
Ttk

(ii) Using (4) again, we find that der *¢-(v,k,\) = (t + 1)-(v + 1,k + 1,)) is
admissible if and only if

ANE+ Lo+ 1,k +1) ( A

) Mt+Lotlktl) ged ((51).(21) A
k1 '
ANt v, k) ged (A)\(t, v, k), % AL )
ged ((t+l)’(t+]))
=wefer !

(iii) If t = k, the operator res™! is not defined for ¢-(v, k, \). Hence assume t < k.

By (4), res™ t-(v, k, A) = (t+ 1)-(v + 1, k, A\-25) is admissible if and only if

k—t
ANE+ 1,0+ 1K) - (v+1—Fk) A
—

ged(ANE+ Lo+ 1,Ek) - (v+1—k), ANt v, k) - (k—1)) | ANt v, k)

-1
_.res
vk

O

As the complete design extends under each of the operators (assuming ¢ < k for
D =red ™ or D =res™!) we get:
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Corollary 3.5

D )\max(t7v7 k)

14
ok | TAN(E 0, k) (14)

forall0 <t <k<wand D € {red™*, der ' res™'}. If D = red™! or D =res™!, we
require t < k.

Example 3.6 (cf. Examples 3.1, 3.3) For which A does the parameter set 5-(24, 8, \)
extend under D € {red™, der™ ', res™'}? As t < k, we get a result in all three cases.
Using Proposition 3.4, we compute

19 .
(i) s = ﬁ = 19, hence red ™' 5-(24,8,19) = 6-(24,8,19 - ) =
CA\ b ged(19,3)
6-(24, 8, 3) is admissible. This is in accordance with AX(6,24,8) = 3 (cf. Ex-
ample 3.3).

(ii) cgfrj;; = m =3, hence der™'5-(24,8,3) = 6-(25,9, 3) is admissible. This is
in accordance with AX(6,25,9) = 3 (cf. Example 3.3).

(i) &5, = m = 17, hence res™!5-(24,8,17) = 6-(25,8,3) is admissible.

This is in accordance with AX(6,25,8) = 3 (cf. Example 3.3).

&

4 Clans of design parameter sets

In the previous section, we encountered collections of design parameter sets with
equal ¢, v and k and whose set of indices form multiples of a certain number. We
call that a clan (recall from (5) that AX(¢,v, k) divides Apax(t, v, k)):

Definition 4.1 The clan of the parameter quadruple (¢, v, k, s) with AX(t, v, k) | s |
Amax(t, v, k) is

Amax (£, 0, k) }

Clan(t,v,k‘,s):{t—(uk,m-s) ‘mGN, 1<m< .

i. e. the set of admissible design parameters for ¢, v and k whose index is a multiple

of s. The full clan is Clan(t,v,k) = Clan(t,uk7 A)\(t,v,k)). A clan is trivial if it
Amax (t,0,k)

s I

consists of just one element. For a natural number ¢ | put
c¢- Clan(t, v, k, s) := Clan(t,v, k, cs). (15)
For s; and sg with AN | 8; | Amax(t, v, k) for i = 1,2 we have

Clan(t,v,kz,sl) - Clan(t,v,k,SQ) < 59| 81, (16)
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in which case we call Clan (t, v, k, sl) a subclan of Clan (t, v, k, 52). For fixed t, v and
k, the ordered set of clans Clan(t, v, k,s) where AXN(t,v,k) | s | Amax(t, v, k) is anti-

isomorphic to the lattice of divisors of % A short notation for Clan(t v, k, s)
is

t-(v, kM 8)  Amaxton) - (17)
Let us get back to the situation of Proposition 3.4:

Proposition 4.2 Consider Clan(t, v, k), i. e. the set of admissible design parameter
sets of the form t-(v,k,m - AX(t,v, k)) with 1 <m < %.

(i) For any D € {red™! der™" res™'}, the set of elements ofClan(t v k) for which
D is defined is either empty or forms a subclan ctvk Clan(t v k) (recall the
notation of (15)) where cf, . is as in (11), (12) or (18). The set is empty if
and only if t =k and D =red™ or D = res™ .

(i) For D € {red™' der ' res™'}, assume there evists a natural number ¢ such
that D(t—(v%gcAA(t,v,k))) 1s defined. Take ¢ to be minimal, i. e. ¢ = ctvk
as in (i). Then D(t-(v, k,cAA(t,v,k)) = -(v', k', N) with N = ANt v/, k').
Therefore the mapping

D :c-Clan(t,v, k) — Clan(t',v', k'), (18)
D(t-(v,k,m-c- ANt v, k) = t'-(v', k' ,m - AN, V', K))
for all natural numbers m with 1 < m < % is surjective, hence bijec-
tive. In other words, the operator D induces a bijection between the subclan
¢ Clan(t,v, k) and the full clan Clan(¢',v',k"). On the other hand, if ¢ is an
integer such that

D(t-(v,k,c- AX(t, v, k) = t'-(v', K, ANt ' K'))
then c is minimal, 1. e. D(t—(v,k,d . A/\(t,v,k))) is defined for no integer d
less than c. Moreover

Anlax(t7 U? k) A)\(tl7 vl? k,) A)\(tl’ UI? k,) (19)
c—= . =
Amax (B, V', k) ANt v, k) AMt, v, k) - ft%k

with ff, . as in (6).

Proof:

(i) Follows from Proposition 3.4. Note that Corollary 3.5 implies ¢ | %’:’k’;),

hence ¢ - Clan(t, v, k) is defined.
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(i) In order to avoid confusion, write D~! for the chosen operator of the set
{red™ der* res™'}. We abbreviate AN = AN(t, v, k), AN = AN, V', k),
Amax = Amax(t,0, k) and N . = Apac(#, 0, K). Let D7V t-(v,k,c- AX) = t-
(v', k', N) with ¢ minimal, i. e. ¢ = cf_’v’k. We are going to prove that A = AN :
If there exists '

t-(v' k', i) € Clan(t',v', K, A/\') \D_l(Clan(t—(v, k,c- A/\)))

then Dt'-(v', k', u') = t-(v, k, ) € Clan(t,v, k, AX) implies AX | p. Moreover,
the operator D' is defined for t-(v, k, i) and therefore by (i), ¢ | £ which
implies

t'-(v' K ') € D_l(Clan(t-(v, k,c- A)\))),
a contradiction. Hence D! induces a bijection of the subclan ¢ - Clan(t, v, k)

onto the full clan Clan(t’;v’7 k’), namely the map described in (18). We con-
clude using (6)

A:‘ﬂd}( )‘max
|Clan (', v/, K')| = |c- Clan(t, v, k)| <= o=
Amax AN AN
< Cc = =

AN N AX- o

O

More informally, the previous result tells us that immediate relations in the poset
of admissible design parameter sets always come as bijections between a subclan
¢ - Clan(t,v, k) and a full clan Clan(#,v', k"). Consider our standard example once
again:

Example 4.3 (cf. Examples 3.3, 3.6) Having the corresponding values of A\ at
hand, the computations of Example 3.6 can be simplified using Proposition 4.2:
5\ red ! AN
(i) c5g48—M52§67;4§%81:1 = 19. Hence red ™" 5-(24, 8, m-19) = 6-(24, 8, m-3)
for all m with 1 < m < 51 induces a bijection between 19 - Clan(5, 24, 8) and
Clan(6, 24, 8).

m‘“’

. or AN ¢
(ii) cg%g:ﬁ%:ll_:s Hence der™'5-(24,8,m - 3) = 6-(25,9,m - 3)

for all m with 1 < m < 323 induces a bijection between 3 - Clan(5, 24, 8) and
Clan(6, 25, 9).

0)'J5,24,8 17
for all m with 1 < m < 57 induces a bijection between 17 - Clan(5, 24, 8) and
Clan(6, 25, 8).

res—1 AN(6,25, R —
(iil) c5548 = ﬁ = 1% = 17. Hence res™! 5-(24,8, m-17) = 6-(25,8,m-3)

In Figure 4, we show the parameters sets which extend once again. Note that the m
in that figure is not the m in the previous calculations. O
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6-(24,8, 15 -3)m<s1  6-(25,9,% - 3)m<sos 6-(25,8, 1% - 3) m<s7

5'(247 87 m- 1)m§969

Figure 4: The immediate relations above 5-(24,8, \)

Our aim is to describe the relations between admissible parameter sets in terms
of the parameters ¢, v and k only. So far, we have seen that this works for immediate
relations. It will turn out shortly that this is true in general. We introduce another
relation defined on the set of clans as follows:

Definition 4.4 For integers t < k <wv and ¢ < k' </, put

Clan(t,v,k) = Clan(t',v',k') < INN (v, k) < -V KN, (20)
where A = aAX < A\pax, N = /AN < N/, for some positive integers a and a’ and
for AN = AX(t, v, k), AN = AXNH, V', k'), Amax = Amax(t, 0, k)5 Max = Amax(t, 0, k).

Note that the numbers A and A’ in the previous definition mutually determine each
other. Hence we can speak about the minimal A satisfying (20). The corresponding
A will then also be minimal.

In case of immediate relations, Proposition 4.2 gives us the number ct v.k» Which
determines the smallest solution and at the same time the subclan of all solutions
of (20). We call that number the associated subclan generator. We may put it as a
subscript to the relation symbol as in the following example:

Example 4.5 (cf. Examples 3.1, 4.3) Proposition 4.2 yields the following inclusions
for the clan of 5-(24,8, \) designs: Clan(5, 24, 8) <19 Clan(6, 24,8), Clan(5, 24,8) <
Clan(6,25,9) and Clan(5, 24, 8) <17 Clan(6, 25, 8). O

The general case of relations between admissible parameter sets is dealt with in
the following proposition:

Proposition 4.6 Assume Clan(t, v, k) < Clan(t',v', k'), i. e. there exist nonnegative
integers h, i, 7 and X\, ' such that

red " der "res™ (t-(v,k, \)) = '-(v/, K/, \') (21)

for admissible parameter sets. Abbreviate AN = AX(t, v, k), Amax = Amax(t, v, k) and
similarly AN = AN, V' K), A = Amax(t, V', k'), Write X = ¢ A

max
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(i)

(iii)
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If X and X' are minimal with respect to (21) then ¢ | 22 and N = AXN. Hence

red " der " res™ induces a bijection between the subclan c- Clan(¢t,v, k) and the
full clan Clan(t', ', k')

red " der~"res™ : ¢ Clan(t,v, k) — Clan(t', v, k'), (22)
red " der " res ™ (t-(v, k,m - - AN)) = ¢'-(v k', m - AX)
for all natural numbers m with 1 < m < ACZE‘;. Moreover,
>\max AN
T N AN @)

max

On the other hand, if ¢ is an integer such that
red " der"res™ (t-(v, k,c- AN)) =t'-(v/, k', AN)

then ¢ is minimal, i. e. red™"der ‘res™ (t—(v,k,d . A)\)) is defined for no

integer d less than c. We write Clan(t, v, k) (<Cj) Clan(t',v', k') and call (h,1, j)

the path information of the relation.

The set of clans is ordered with respect to the relation “<”. The path in-
formation is additive and the subclan generator multiplicative with respect to
transitivity of that relation.

For Clan(t, v, k) (hi;]) Clan(t',v', k") where Clan(t,v,k) is considered fized,
the associated subclan gemerator together with the path information and
Clan(¢',v', k") mutually determine each other:

(a) (1) ' =t+h+i+]
(2) V' =v+i+],
(3) kK =k+1,
(1) AN =c-AX

(b) (Z)i:klflﬁ
(2) j=v —v—1,
(3) h=t —t—i—j
(4) ¢ = 24X (”;f) (v+k

k—t\ (k—t—h
(7/’1L> ij—k) =cC- A)\@
h J

Amax *

|
N
~—

N
>
>
>
]

5

%

>
>
—
T
N
—
|
|
T
L
Z
I
>
>
S

Proof:

(i)

Let us apply the operators red "der "res™ one by one in succession, thereby
reducing to the case of immediate relations and using Proposition 4.2 for each
of the individual steps. Moreover, we assume that minimality forces A’ = AN
(this will be justified later). Consider the operators

1 1 1

-1 1 — — — —
redto---ored™ o derto---oder! ores to---ores

h times itimes j times
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which we are applying one after another from right to left to the parameter set
t-(v, k, ¢ - AX). For convenience, put

res™t if 0< /<7,
Dy=1{ der™t if j<l<i4],
red™ if i+j<l<h4i+]

Applying Dy, D1, ..., Dpyirj—1 to t-(v, k,c - AX) we obtain a sequence of ad-
missible parameter sets

hetitj
(te (v e - 80)) (24)
with
to-(vo, ko, co - AXg) = t-(v, k, c- AN)
and

to-(vs, ks, s - AXg) = -(V', K/, 1 AN, V' K))

for s = h+ i+ j and A\, = AX(tg, ve, k¢). The parameter sets are connected
by

Dy (te-(ve, ke, ceANg)) = tesr-(ver, ks, o1 Det1) (25)

for £ =0,1,...,h+i+4 j — 1. We solve these equations for the unknowns ¢,
backwards, i. e. by solving

Dy (te1-(ve1, kemy, ooy - A1) = t-(ve, ke, co - AXg)

for = h+i4j,...,2,1. Our initial choice is cp4;4; = 1. Using Proposition 4.2
(i), we get

ey = Pt -c
=1 = Sy g ke T 0
hence
hetitj—1
[ Dy
=0t = H Crovpske
=0

We have proved that
red "der "res ™ (t-(v, k, - AN)) = t'-(v/, k', AX)

holds for that ¢. As A) is the smallest solution for X we can have, this justifies
the assumption made initially. The bijection (22) results from this. Therefore,
using (6),

/ )\inax >\max
|Clan(t',v',K')| = |- Clan(t,v,k)| <= A = T AX
Amax AN AN

— c= AN N = A)\.Hhﬂ'ﬂ'ﬂfm

=0 to,veke



(if)

(iii)
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(h1,i1,51)
We only verify transitivity of “<”:  Assume Clan(¢y, vy, k) ]—<lll

(h2,i2,52)

Clan(tg, va, ke) <., Clan(ts,vs, k3). Put AN := AX(t;, v;, k) for i = 1,2, 3.
We then have two bijections of the form (22), induced by

red ™™ der " res™ (t1-(vr, kyymy - eo - AN)) = to-(vg, kg, my - Ay),

red™"2 der™" res 72 (tg-(vg, ko, mo - Cy - A/\Q)) = t3-(vs, k3, ma - Adg),
where 1 < my < % for ¢ = 1,2. Putting m; = ¢ and ms = 1, we can
combine the equations and arrive at

red=("11h2) qep—(1+i2) pag=(i+i2) (tl-(vl, ki, cico - A)\l)) = t3-(v3, k3, A)3).

By (i), ci¢o is minimal in establishing a relation between Clan(¢y, vy, k1) and
(h1tha,i1+iz,j1452)

Clan(ts, v3, k3). Hence Clan(t1, v, k1) <o Clan(ts, vs, k3), thereby

also proving additivity of the path information and multiplicativity of the sub-

clan generator.

This follows from (26) in the proof of (i). The middle term with the binomial
coefficients comes from evaluating the product of the ftlz eke:

O

Example 4.7 (cf. Example 3.1) Proposition 4.6 yields the following inclusion for
parameter sets of the form 5-(24,8, X) with 323 | A :

5-(24,8,m - 323) < 7-(25,8,m - 6) = red ' res ™' 5-(24, 8, m - 323)

for 1 < m < 3. We express this as

(1,0,1)
CL‘:LII(57 24, 8) <323 Clan(?, 25, 8)

(1,00) 0,0,1)

Note that we have Clan(5,24,8) <39 Clan(6,24,8) <37 Clan(7,25,8) and
©,0,1) (1,0,0)

Clan(5,24,8) <i7 Clan(6,25,8) <9 Clan(7,25,8) (cf. Fig. 5). <&

7-(25,8, 355 - 6) gz <3

323 =

red ™! res™!
323|m 323|m

6-(25,8, 1% - 3) m <57 6-(24,8, 75 - 3) m <51

res™! red !
17|m 19|m

5-(24,8,m - 1)m<ae9

Figure 5: Some clans above 5-(24,8, \)
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Example 4.8 The numbers cf’)vyk need not be prime:

Clan(5, 32 8) Clan(6 32,8) (i e s =9),
Clan(8, 41, 10) %; Clan(9,42,10) (i e. %50 = 4).
They even need not be relatively prime:
Clan(5,32,8) <5 Clan(6,32,8) (i. e. ci%ya = 9),

Clan(5, 32, 8) ’43 Clan(6,33,9) (i. e. 8%, = 3).

Another result about the clans above a given clan is the following:

Proposition 4.9 If

(ha,i1,51) (ha,i2,j2)

Clan(t,v,k) <. Clan(t;,v1, k1) and Clan(t,v,k) <. Clan(ts, ve, ks)

and lem(cy, c2) # W then there is a clan Clan(ts, vs, k3) such that

(max(h1,h2),max(i1,iz),max(j1,j2))

Clan(t,v, k) =lem(ey e2) Clan(ts, vs, k3).
The parameters of the clan Clan(ts, vs, k3) are determined by Proposition 4.6 (iv)(a).

Proof: Put AX = AX(t,v, k) and Amax = Amax(t, v, k). Then ¢-(v, k, lem(c1, c2) AN) €
¢¢ - Clan(t, v, k) since ¢; | lem(cy, ¢2) for £ =1, 2. Hence

red " der~"res~9¢t-(v, k,lem(cy, ¢;) AN) is admissible for ¢ =1,2.
By assumption, t-(v, k, lem(cy, ¢2)AX) is not complete, hence by Lemma 2.13,

red ™ Pax(hh2) qop— max(iniz) pag— max(ji It (v, k,lem(cy, ¢2) AN) is admissible.

It remains to prove that lem(cy, ¢o) is the smallest integer d < AX;" with respect to
the property that

red M (ha) qep max(iniz)peg mmax(inizg (y & dAN)

is defined. Consider such a number d and fix ¢ € {1,2}. Then h, < max(hy, ha),
i¢ < max(i1,i2), jo < max(ji1,j2) imply that 1red_heder_i"'res*jft—(v7 k,dAN) is defined
(using Lemma 2.11). By minimality of ¢, this implies ¢, | d. Thus lem(cy, ¢2) | d and
the statement is proved. |
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5 The families of a clan

A clan gives rise to a set of families, generated by the elements of the clan:

Definition 5.1 The parameterized set of families of Clan(t, v, k) is the set

Amax (0, k) }

= < < —
F(t,v, k) {f,,,,(t,v,k:) ‘ 1<m< ANE 0 )

(27)
where F,,,(¢,v, k) = Family(¢-(v, k, m-AM). For (h,1, j) € N? satisfying the conditions
h+i4+j<tandj <wv-—k, the elements

Amax (£, v, k)}

" der' res? ¢- -A ‘1< <
{red der' res’ t-(v, k,m - AN) <m< ANt oK)

(28)

are corresponding members of F(t,v, k). The family

fw(tvlh k)

AX(,v,k)

is called complete. Tt consists only of complete parameter sets.
Corresponding members of a parameterized set of families form subclans:

Theorem 5.2 The corresponding members of the set of families F(t,v, k) form
subclans ¢ - Clan(t',v', k'), characterized by the following conditions:

(i) 0 <t <t,
(i) K <o <w,
(iii) <K <k,

(v) k—kK <v—v <t—-+,

— AAE0K) Npax
(v) c= AXE W K) Amax ”

The parameter sets of c-Clan(¢',v', k") correspond bijectively to the families F(t,v, k) :

Amax(t v, k)

Mok @

t-(v K m e ANE VLK) € Fout,v, k) for 1<m <
Proof: We proceed as in the proof of Theorem 2.6. Let ¢/, v/, k¥’ and ¢ be integers
satisfying (i)-(v). Then i := k —k and j .= v —v ' — (k— k) and h ==t — ¢/ —
i—j=t—t — (v—1) are nonnegative integers with h +1i+j =t —t <t and
j=v—k—( —F)<v—k Hence red"der' res’ is defined for t-(v, k, AX(t, v, k)).
The equation

red" der’ res? t-(v, k, mA(t, v, k)) = t'-(v/, k', m)) (30)
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Biod
A = cAX{, v, k) for the ¢ given in (v). Hence we have a pairing between Clan(t, v, k)
and members of the subclan ¢-Clan(t', v/, £'). By (30), those members are correspond-
ing members in the parameterized set of families F (¢, v, k), with inclusion as in (29).

Conversely, a pairing between ¢ - Clan(#,v', k') and Clan(¢,v, k) is equivalent to

holds for all positive integers m < and some (fixed) A\. By Proposition 4.6,

(hst,5)
Clan(t',v', k') iy Clan(t, v, k) for some nonnegative integers (h, 1, 7). By Proposi-

tion 4.6 (with reversed roles of variables), i =k — K, j=v—v —i, h=t—t'—i—j
ANt k) N,

and ¢ = P CTad b Hencet =t'+h+i+j >t andv =v"+i+5 > v'. Moreover,
k=K+i>kK. Finallyk— K =i<v—v =i+j<t—t'=h+i+]. O

Example 5.3 Consider the family of 7-(25,8,6), a member of F(7,25,8). The
other families are Family(7-(25, 8, 12)) and Family(7-(25,8,18)). We draw the set of
families as in Table 1, restricting to the layers of ¢t-design parameter sets with ¢ > 5.
The index is written as a product m - c¢- A\ where c is as in Theorem 5.2. If ¢ is one,
the middle factor is omitted. The upper bound for m, i. e. the number Amax (£,0,k)

AN k) is
indicated as a subscript of the topmost clan.

‘7—(25, 8, m - 6)m§3
6-(25,8,m - 19 - 3) 6-(24,8,m - 17 - 3)
6-(24,7,m - 6)
5-(25,8,m - 19-20)5-(24,8,m - 323 - 1) 5-(23,8, m - 34 - 8)
5-(24,7,m-19-3) 5-(23,7,m-17-3)
5-(23,6,m - 6)

Table 1: The parameterized set of families F (7,25, 8)

6 Ancestor clans

It may happen that a relation between clans is trivial is the sense that the associated
subclan generator is one, for instance

(h,i,)
Clan(t,v,k) =< Clan(t',v/, ¥')

and h + i+ 7 > 0. Hence the parameter sets of the two clans correspond bijectively
under the operation der "res~'red™. It turns out that trivial relations are quite
frequent, for example all but the first of the chain

(0,1,0) (0,1,0) (0,1,0)
Clan(5,24,8) <3 Clan(6,25,9) <; Clan(7,26,10) =<; Clan(8,27,11)

(0,1,0) (0,1,0) (0,1,0)
<) Clan(9,28,12) <; Clan(10,29,13) <3 Clan(11,30, 14)

(0,1,0) (0,1,0)
=<; Clan(12,31,15) =<; Clan(13,32,16).
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Why does this happen? Of course, the first parameter set of Clan(t,v, k), i. e.
the parameter set ¢-(v, k, AA(¢, v, k)) must extend for this to be possible. The other
way round, if t-(v, k, AX(t,v, k)) is ancestor then no trivial relation can exist above
Clan(t, v, k). Hence we define:

Definition 6.1 A clan Clan(t,v, k) is called ancestor clan if neither red ™" nor der™

nor res™! can be applied to the parameter set t-(v, k, AA(¢, v, k)).

In particular, ancestor clans are always full and never trivial. Ancestor clans are
easy to obtain:

Proposition 6.2 If Ancestor(t—(v, k, /\)) =t-(v', k', N) for some admissible incom-
plete parameter set t-(v, k, X) then Clan(t', v, k') is ancestor clan.

Proof: Assume the contrary. Then there are nonnegative integers h, 7 and j, not all
zero, such that red ™" der ™ res ™ #-(v/, k', AX) is defined, where AN := A\, v/, k').
Hence with N =m - AN,

red " der " res ™ t'-(v', k', mAN) = m - red " der " res I t'-(v', k', AN)

is admissible contrary to the assumption that #'-(v', &', \') is ancestor parameter set.
0O

We already have proved most of the following Lemma:
Lemma 6.3 Let t < k < v be integers. The following are equivalent:
(i) Clan(t, v, k) is ancestor clan.
(i) The parameter set t-(v, k, AX(t, v, k)) is ancestor parameter set.

(111) Clan(t,v, k) contains an ancestor parameter set.

(hyi,5)
(iv) For every relation Clan(t, v, k) —<Z Clan(¢', v, k") with h+i4j > 0, or equiv-
alently Clan(t',v', k') # Clan(t,v, k), the number ¢ is different from 1.

Putting A := AX(t,v, k) in Proposition 6.2 we obtain:

Corollary 6.4 Every non trivial clan is contained in an unique ancestor clan with
associated subclan generator 1.

As the set of ancestor clans is a subset of the set of all clans, it still forms a poset
with respect to the ordering of Definition 4.4. The next property could be called
“factorization property”:

Proposition 6.5 Assume Clan(t,v, k) <. Clan(ti,vi, k1) and Clan(t,v,k) <.,
Clan(ta, va, ko) where Clan(tg, va, ko) is ancestor clan. If ¢ divides co then
Clan(tl, V1, kl) _<(«'2/(«'1 Clal’l(tg, V2, kg)



30 ANTON BETTEN

Proof: Write c¢o = ¢ ¢;. The assumptions imply
t-(v, k, e - ANt v, k) < t1-(v1, k1, AX(t1, v1, k1)), (31)
Ancestor (t-(v, k, c2 - AXN(t,0,k))) = ta-(va, ka, AX(t2, v2, k2)). (32)
“Multiplying” (31) by ¢, we get t-(v, k, ca - AX(t, v, k)) < t1-(v1, k1, ¢ - AX(t1, 01, kr)).

But the ancestor is the largest admissible parameter set above a given one, containing
all other with that property, hence together with (32) this implies

ti-(v1, ki, e ANty v, k1)) < to-(va, ko, AN(E2, 02, ko).
Thus Clan(ty, vy, k1) <cy/e, Clan(ty, va, kg). O
The assumption that Clan(te, v, ko) is ancestor clan is necessary as the follow-
ing counterexample shows: Clan(5,24,8) <3 Clan(13,32,16) and Clan(5, 24,8) <57
Clan(7,24,8), but Clan(13,32,16) £ Clan(7, 24, 8).
For ancestor clans, the associated subclan generator determines the successor.
The point is that we do not need the path information as in Proposition 4.6 (iii).

Proposition 6.6 If Clan(t,v, k) <. Cy for ¢ # % and some ancestor clan Cy,
then Cy is uniquely determined by c.

Proof: Assume

(ha,i1,41) (ha2yi2,j2)

Clan(t,v,k) <. € and Clan(t,v,k) <. Ca.
for another ancestor clan Cy. Then by Proposition 4.9,

(max(h1,h2),max(i1,iz),max(j1,j2))

Clan(t,v, k) e Cs
for some clan C3. Hence
(h1,i1,51) (max(h1,h2)—h1,max(iq,i2)—i1,max(j1,j2)—j1)
Clan(t, v, k) l<lc ' Cy e %112 ' pR Cs.

But C; is ancestor clan. Thus Lemma 6.3, (iii), implies C3 = C;. Starting with
exchanged roles of C; and Cy, we get Co = C3 = C;. In other words, the clan C; is
uniquely determined by c. |

We conclude
Proposition 6.7 The poset of ancestor clans above a given clan is finite.

Proof: Consider an arbitrary clan Clan(¢, v, k). If Clan(¢, v, k) is trivial, no ancestor
clan lies above. Hence assume Clan(t,v, k) is non-trivial. By Corollary 6.4, there
is an ancestor clan Clan(tq,v1, k1) with Clan(¢,v, k) <1 Clan(¢1, v1, k1). By the fac-
torization property (Proposition 6.5), all ancestor clans above Clan(t,v, k) also lie
above Clan(t, vy, k1). Every ancestor clan Clan(t;,v;, k;) above Clan(1,v1, k1) sat-

. Ama (t1,01,k Amax (t0,k
isfies Clan(ty, vy, k1) <., Clan(t;, v;, k;) for some ¢; | Z‘;’zilfﬁkli) — X;)Eia;,)k')
Amax (t1,01,k1

A)\(tl,vl,lm)) for all <. By Proposition 6.6, the
subclan generator ¢; determines the ancestor clan Clan(t;, v;, k;) uniquely. As there
are only finitely many possibilities for ¢;, the statement is proved. ]

). Since

ancestor clans are never trivial, ¢; <
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We are able to state the main result about ancestor parameter sets:

Theorem 6.8 (Klassifikationssatz) The ancestors of incomplete parameter sets of
Clan(t, v, k) lie in ancestor clans above that clan. Hence we can classify the set of
admissible incomplete t-design parameter sets by the clans containing their ancestors.
More precisely, that classification establishes a surjective mapping from the set of
admissible incomplete t-design parameter sets to the set of ancestor clans:

Given an admissible incomplete t-(v,k, X), there is a largest natural number c
dividing AA(t such that Clan(t,v,k) <. Clan(¢',v', k") for some ancestor clan
Clan(t',v', k). Then

Ancestor (¢-(v, k, A)) € Clan(t',v', k),

hence t-(v, k, \) is mapped onto Clan(t',v', k).

Conversely, a given ancestor clan Clan(t',v', k") is the clan of the ancestors of
exactly the incomplete design parameter sets contained in families F,(t',v', k") where
m is not divisible by any ¢ > 1 such that Clan(t’,v', k') <. Clan(t",v", k").

Proof: 'We first check that the mapping described in the theorem is well defined and
really maps onto the clan of the ancestor. Firstly, by Corollary 6.4, the divisor ¢ =1
of m is always possible, as there always is an ancestor clan Clan(t',v’, k) with
Clan(t, v, k) <; Clan(#',v', k") (for this, note that Clan(¢, v, k) is non trivial as it con-
tains an incomplete parameter set). In addition, by Proposition 6.6 that ancestor clan
is uniquely determined. Last but not least, Proposition 4.9 implies that the largest
¢ (in the sense of divisibility) really is unique. If Clan(¢, v, k) <., Clan(ty, vy, k1) and
Clan(t,v, k) <., Clan(ta, ve, ko) for different divisors ¢; and ¢ and ancestor clans
Clan(t;, vi, k;), i € {1, 2} then there is another ancestor clan Clan(ts, vs, k3) with
Clan(t,v, k) <iem(c,eo) Clan(ts, vs, k). (For this, note that lem(cy, ¢2) # %ﬁf}f))
A < Amax(t, v, k) by assumption.)

In the other direction, we describe the set of parameter sets which are mapped
onto a given ancestor clan Clan(#',v’, k¥"). Note that Clan(t',v', k') <. Clan(¢",v", k")
implies that

as

tl_(v/7 k’,m . A)\(t/,vl,k,>) S t//_(,UlI7 kl!7 T . A/\( II I/ k”))
C

for all m < % divisible by c¢. Hence the parameter sets in F,,(t', v, k") for

such m have larger ancestors. a

A few remarks are in order. The importance of Section 4 is that it gives a
systematic way to compute all clans including ancestor clans above a given clan.
For a given t, v and k, one computes via Proposition 4.2 the subclan generators
cf’)vyk for each of the operations D € {red ™", der !, res™'}, if defined. As long as that
number is not /\Z%, one repeats the process after replacing ¢, v and k by ¢/, v and
k' where D(t—(v,k,cA)\)) = t/-(v/, k', AX'). The ancestor clans resulting from that

computation are stored. Theorem 6.8 allows to classify admissible parameter sets by
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mapping them to the appropriate ancestor clan. In practice, it turns out that the
number of ancestor clans is reasonably small.

Let us get back to the ancestors of the parameter sets 5-(24, 8, \) discussed pre-
viously in Example 3.1:

Example 6.9 The relationships between ancestor clans above Clan(5, 24, 8) are the
following. Note that Clan(5, 24, 8) itself is ancestor clan.

(0,8,0) (0,2,2)

Clan(5,24,8) =<3 Clan(13,32,16) <;7 Clan(17,36, 18),
(0,0,1) (1,0,0)

Clan(5, 24, 8) <17 Clan(6,25,8) <19 Clan(7,25,8),

0,0) (1,8,0)
Clan(5, 24, 8) -<1g Clan(6,24,8) <3 Clan(15, 32, 16).

It is time to draw a picture, thereby discovering more relations between these ancestor
clans (cf. Fig. 6). <&

17-(36, 18, 577 - 1) m_<

15- (32 16, 3" 319 19 . 1)—<17 7- (25 8, 17 19 6)ﬁ§3

3-19

der™?res™? res
17|m 17135
m m m
13-(32,16, - 3)m <17.19 6-(25,8, 72 - 3) ;<319 6-(24,8, 1 - 3)m <317
der™ res™! red ™!
3|m 17|m 19|m

5-(24,8,m - 1)m<s.17.19

Figure 6: The ancestor clans above Clan(5, 24, 8)

7 Ancestor clans of t-designs with large ¢

Let us get back to the main goal of this paper, which is the classification of known
t-designs with ¢ > 5. We are referring to a list of around 7000 parameter sets of
such designs, each of which has been constructed explicitly (at the time of writing
this article, which is Spring 2001). Most of these designs have been constructed by
researchers in Bayreuth, Germany (we refer to [2]), but the list includes also designs
constructed elsewhere. In Table 2, we present the ancestor clans of these t-designs.
The ancestor clans are denoted in the form ¢-(v, k,m - AX(t, v, k)) where m varies
between 1 and Apax(t, v, k) /AN, v, k), as indicated in the subscript. We cannot
show detailed information about the families, except that we indicate the number of
realizable families and the number of realizable parameter sets for each clan (a family
is realizable if it contains is at least one realizable parameter set). Interestingly, we
can classify the parameter sets by 80 ancestor clans.
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