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Abstract

A graph is Zm-well-covered if all maximal independent sets have the same
cardinality modulo m. Zm-well-covered graphs generalise well-covered
graphs, those in which all independent sets have the same cardinality. Z2-
well-covered graphs are also called parity graphs. A characterisation of
cubic well-covered graphs was given by Campbell, Ellingham and Royle.
Here we extend this to a characterisation of cubic Zm-well-covered graphs
for all integers m ≥ 2; the most interesting case is m = 2, cubic parity
graphs. Our main technique involves minimal non-well-covered graphs,
and allows us to build our characterisation as an extension of the existing
characterisation of cubic well-covered graphs.

1 Introduction

All graphs in this paper are simple and finite.
A graph is well-covered if all maximal independent sets have the same cardinality,

and Zm-well-covered , for some m ≥ 2, if all maximal independent sets have the
same cardinality modulo m. Well-covered graphs were introduced by Plummer [11],
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and Plummer has written a useful survey paper [12]. Z2-well-covered graphs were
introduced by Finbow and Hartnell [8, 9] under the name of parity graphs.

Both well-covered and Zm-well-covered graphs are special cases of a more general
concept [4]. Given a graph whose vertices are weighted by elements of an abelian
group A, we say the A-weighted graph is well-covered if all maximal independent
sets have the same total weight. If A is a ring with identity (regarded as an additive
group) then a graph is A-well-covered if it is well-covered when we give every vertex
the weight 1 from A. Since only the additive subgroup of A generated by 1 matters
here, we usually take A to be a cyclic group Z or Zm. ‘Z-well-covered’ just means
well-covered in Plummer’s original sense, and this definition of ‘Zm-well-covered’ is
equivalent to the previous one.

Cubic well-covered graphs were characterised by Campbell, Ellingham and Royle
[2], following earlier work by Campbell and Plummer [1, 3]. In this paper we build
on the characterisation of cubic well-covered graphs to obtain a characterisation of
cubic Zm-well-covered graphs for all m ≥ 2. Most of the work is for the case m = 2,
so our main result is a characterisation of cubic parity graphs. This research is of
interest from three different angles: the original question, the techniques used, and
the results obtained.

First, characterising Zm-well-covered cubic graphs is a natural question. Deter-
mining whether a graph is well-covered is a co-NP-complete problem [7, 14], even for
K1,4-free graphs [6]. The same proof shows that for each cyclic group A, determining
whether a graph is A-well-covered is co-NP-complete for K1,4-free graphs. Therefore,
it is unlikely that a general characterisation of A-well-covered graphs will be found, so
it is of interest to find special classes of graphs where the A-well-covered graphs can
be characterised. When A = Z, two simple restrictions that allow characterisations
involve the girth or the vertex degrees. When A = Zm, girth restrictions have been
investigated [5, 9], but degree restrictions have not. (It is known that for given d and
A there is a polynomial time algorithm to determine whether a graph of maximum
degree at most d is A-well-covered [4], but this does not give the overall structure of
the A-well-covered graphs.) Cubic graphs are the simplest interesting class of graphs
with a degree restriction, so they are a natural subject for investigation.

Second, the proofs in this paper demonstrate the usefulness of the technique of
‘minimal non-well-covered graphs.’ This idea, developed in [4, 13, 15], and equiv-
alent to the ‘critical nongreedy hypergraphs’ of [6], provides a ‘minimal forbidden
structure’ approach to well-covered graphs. Minimal forbidden structures are an im-
portant general concept in graph theory. The most famous example is Robertson and
Seymour’s theory of graph minors, where many classes of graphs are characterised
by forbidden minors. Another example is the characterisation of line graphs in terms
of forbidden induced subgraphs. We feel that minimal non-well-covered graphs are
an important tool that should be more widely used. In this paper they allow us to
characterise cubic Zm-well-covered graphs by building on the known characterisation
of cubic well-covered graphs, rather than developing this characterisation indepen-
dently.

Third, the results in this paper shed some light on the difference between well-
covered graphs and Zm-well-covered graphs. The interesting case for our results is
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m = 2. Connected cubic well-covered graphs, with six exceptions, are made by join-
ing together three basic building blocks (see Theorem 2.7). Since every well-covered
graph is also Z2-well-covered, one might expect that the cubic Z2-well-covered graphs
extend the cubic well-covered graphs by using a few more building blocks together
with the known ones. However, this turns out not to be so. Cubic Z2-well-covered
graphs seem to divide sharply into those that are well-covered and those that are
not, with different structures in each case.

In Section 2 we introduce minimal non-well-covered graphs, deduce some general
results using them, and apply these results to cubic graphs. This allows us to dispose
of the problem of characterising cubic Zm-well-covered graphs for m ≥ 3 in Theorem
2.8, and gives us some information for the case m = 2. In Section 3 we introduce
three families of graphs and one special graph, which will turn out to be exactly the
connected cubic graphs that are Z2-well-covered but not well-covered. In Section 4
we prove this, using a fairly lengthy case analysis. Our main results are stated as
Theorem 4.3 and Corollary 4.4. In Section 5 we give some concluding remarks.

2 Minimal non-well-covered graphs

We begin by summarising some ideas from Section 2 of [4], to which we refer the
reader for details and history. As in Section 1, A denotes a cyclic group Z or Zm,
m ≥ 2.

Let S be a set of vertices in a graph G. The subgraph of G induced by S is denoted
G[S]. The neighbourhood of S is the set NG(S) = {u : uv ∈ E(G) for some v ∈ S}.
The closed neighbourhood of S is the set NG[S] = S ∪ NG(S). We often abbreviate
NG(S) to N(S), NG[S] to N [S], N({v}) to N(v) and N [{v}] to N [v]. We say that
S dominates another set of vertices T if T ⊆ N [S]. Given a subgraph H of G, we
say G encloses H, and write H ≤ G, if there is an independent set I of vertices
of G so that H = G − NG[I ]. In practice we often use a different but equivalent
definition: H ≤ G if there is an independent set I ′ such that H is a component
of G − NG[I ′]. The relation ‘≤’ is a partial order on graphs. We sometimes abuse
notation by writing H ′ ≤ G when we mean that H ′ is isomorphic to some H with
H ≤ G; it should be clear when we are doing this.

The importance of this partial order is that if G is A-well-covered and H ≤ G,
then H is also A-well-covered. We use this as a tool to examine the structure of an
A-well-covered graph. If H is not A-well-covered, then an A-well-covered graph G
cannot contain any configuration that would imply that H ≤ G. In fact, we can
restrict the graphs H that we use here. H is a minimal non-A-well-covered graph
if H is not A-well-covered, but if J ≤ H and J �= H, then J is A-well-covered. If
A = Z, we just refer to H as minimal non-well-covered .

Observation 2.1 (special case of [4, Observation 2.2]). A graph G is not A-well-
covered if and only if there is a minimal non-A-well-covered graph H with H ≤ G.

This observation is more useful if we know something about the structure of
minimal non-A-well-covered graphs. The following theorem provides some important
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information. It generalises results for A = Z obtained independently by Caro, Sebő
and Tarsi [6] (who used a hypergraph formulation), Ramey [13], and Zverovich [15].
Here + denotes join, and α(G) denotes the cardinality of a maximum independent
set in G. Two integers p, q are equal in A if they have equal images under the
homomorphism Z → A that maps 1 ∈ Z to 1 ∈ A. Otherwise they are distinct in A.
‘Equal in Zm’ means equivalent modulo m, and ‘equal in Z’ just means equal.

Theorem 2.2 (special case of [4, Theorem 2.3]). A graph H is minimal non-A-
well-covered if and only if there exist A-well-covered graphs H1, H2, . . . , Hk such
that H = H1 +H2 + . . .+Hk and α(Hi) and α(Hj) are distinct in A for some i and j.

Now we apply Observation 2.1 and Theorem 2.2 to prove some results for graphs
of bounded degree. As usual, ∆(G) denotes the maximum degree of the graph G.

Lemma 2.3. Suppose ∆(H) ≤ m, where m ≥ 2. Then H is minimal non-Zm-well-
covered if and only if H is minimal non-well-covered.

Proof. If H cannot be expressed as a join, then by Theorem 2.2 H is neither min-
imal non-Zm-well-covered nor minimal non-well-covered, and the lemma holds. So,
suppose that H = H1 + . . . + Hk for some k ≥ 2. Since ∆(H) ≤ m, each graph Hi

must have at most m vertices. But then each Hi is Zm-well-covered if and only if
it is (Z-)well-covered, and moreover α(Hi) and α(Hj) are distinct in Zm if and only
if they are distinct in Z. Therefore, H has a join decomposition satisfying Theorem
2.2 with A = Zm if and only if it has one with A = Z, and the lemma follows.

Corollary 2.4. Suppose ∆(G) ≤ m, where m ≥ 2. Then G is Zm-well-covered if
and only if G is well-covered.

Proof. For any H ≤ G, ∆(H) ≤ m, and so by Lemma 2.3 H is minimal non-Zm-
well-covered if and only if it is minimal non-well-covered. The result then follows by
applying Observation 2.1 with A = Zm and A = Z.

Lemma 2.5. Suppose ∆(H) ≤ m + 1, and H is a minimal non-well-covered graph
that is Zm-well-covered. Then H ∼= K1,m+1.

Proof. By Theorem 2.2 we can write H = H1 + . . . + Hk where k ≥ 2, each Hi is
well-covered, and α(Hi) �= α(Hj) for some i, j. Since ∆(H) ≤ m + 1, each Hi has
at most m + 1 vertices. If each Hi has no more than m vertices then H is minimal
non-Zm-well-covered by the argument from the proof of Lemma 2.3, a contradiction.
Therefore we may assume that H1 has m + 1 vertices. Since ∆(H) ≤ m + 1, we
must have k = 2 and H2 must have no edges. Moreover, if H2 has m + 1 vertices
then ∆(H) ≤ m + 1 would mean that H1 has no edges and H ∼= Km+1,m+1, which
is well-covered. Therefore, H2 has at most m vertices. Now α(H1) and α(H2) must
be distinct in Z since H is minimal non-well-covered, but equal in Zm since H is not
minimal non-Zm-well-covered. Thus, one must be 1 and the other must be m + 1,
which implies that H ∼= K1,m+1.
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Figure 2.1

Corollary 2.6. Suppose ∆(G) = m + 1, where m ≥ 2. If G is Zm-well-covered but
not well-covered then K1,m+1 ≤ G.

Proof. By Observation 2.1 there is a minimal non-well-covered H with H ≤ G.
Since H is Zm-well-covered and ∆(H) ≤ ∆(G) = m + 1, by Lemma 2.5 we have
H ∼= K1,m+1.

Now we apply the above results to cubic graphs. First we recall the characterisa-
tion of well-covered cubic graphs from [2]. Let A, B and C be the graphs depicted in
Figure 2.1. Define a terminal pair to be a pair of adjacent degree two vertices. Let W
denote the class of cubic graphs constructed as follows. Given a collection of copies
of A, B and C, join every terminal pair by two edges to a terminal pair in another
(possibly the same) graph, so that the result is cubic. Then we have the following
characterisation (which is stated incorrectly in the survey paper [12, p. 272]).

Theorem 2.7 ([2, Theorem 6.1]). Let G be a connected cubic graph. Then G is
well-covered if and only if one of the following is true.

(i) G ∈ W; or
(ii) G is one of six exceptional graphs: K4, K3,3, K∗

3,3, C5 × K2, Q∗∗ or P14 (see
[2] for details).

Corollary 2.4 yields the following.

Theorem 2.8. Suppose m ≥ 3. Then a cubic graph is Zm-well-covered if and only
if it is well-covered. Therefore, G is a connected Zm-well-covered cubic graph if and
only if (i) or (ii) of Theorem 2.7 holds.

For cubic Z2-well-covered graphs we will make use of the following two results.
The first is a special case of Corollary 2.6, and the second follows easily from Obser-
vation 2.1 and Theorem 2.2.

Lemma 2.9. If a cubic graph G is Z2-well-covered but not well-covered, then
K1,3 ≤ G.

Lemma 2.10. The minimal non-Z2-well-covered graphs with maximum degree at
most 3 are P3 = K1,2 = K1 +2K1, L = K1 +(K2 ∪K1), K1,1,2 = K1 +K1 +2K1, and
K2,3 = 2K1 + 3K1. Thus, a cubic graph is Z2-well-covered if and only if it encloses
none of these four graphs.
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Figure 3.1

3 Families of cubic parity graphs

Every well-covered graph is also Zm-well-covered for all m, and in particular is Z2-
well-covered. Therefore, the cubic Z2-well-covered graphs include all the cubic well-
covered graphs. In this section we introduce three families of cubic graphs that
(except for some small members) are Z2-well-covered but not well-covered. We also
introduce one special graph with this property.

The first family consists of the prisms Cm×K2, m ≥ 3. The second family consists
of the twisted prisms or Möbius ladders M2m, m ≥ 2. M2m can be defined as a cycle
v0v1v2 . . . v2m−1v0 plus chords vivi+m, 0 ≤ i ≤ m − 1. The third family consists of
graphs X4k, k ≥ 2, consisting of two cycles w0w1w2 . . . w2k−1w0 and x0x1x2 . . . x2k−1x0

together with the edges w2ix2i+1 and w2i+1x2i, 0 ≤ i ≤ k − 1. In Figure 3.1 we show
the 16-vertex members of all three families.

Theorem 3.1. (i) The following graphs are well-covered (where we use the notation
of [2] for graphs in W): C3 × K2

∼= −A− ∈ W, C5 × K2, M4
∼= K4, M6

∼= K3,3,
M8

∼= −B− ∈ W.

(ii) The following graphs are Z2-well-covered but not well-covered: C4 × K2
∼= X8,

Cm × K2 for m ≥ 6, M2m for m ≥ 5, and X4k for k ≥ 3.

Proof. (i) can be checked easily against Theorem 2.7.

(ii) It is easy to verify that the maximal independent sets have cardinalities 2 and 4
in C4 × K2

∼= X8, and 3 and 5 in M10, so these two graphs satisfy the theorem. We
may therefore restrict our attention to the graphs with at least 12 vertices.

To prove they are Z2-well-covered we need only show that these graphs enclose
none of the four graphs of Lemma 2.10: P3, L = K1 + (K2 ∪ K1), K1,1,2 and K2,3.
However, it is clear that none of the graphs in (ii) contain induced subgraphs iso-
morphic to L, K1,1,2 or K2,3, so it suffices to show that these graphs do not enclose
P3. To prove they are not well-covered it suffices to prove that they do enclose the
non-well-covered graph K1,3.

Let G be either Cm ×K2 or M2m where m ≥ 6. Then G has the subgraph shown
in Figure 3.2(a), which is induced except that G possibly has edges ak, bl or al, bk.
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Figure 3.2

Figure 3.3: R12

All P3’s in G are equivalent by an automorphism of G to either dfh or efh. Suppose
that dfh ≤ G, so that G − N [I ] has dfh as a component for some independent set
I . Now I cannot contain c, e or g, but must contain a vertex other than f adjacent
to e, which is impossible. Suppose that efh ≤ G, so that G − N [I ] has efh as a
component for some I . Then I cannot contain c or d, but must contain a neighbour
of c other than e and a neighbour of d other than f . Therefore I contains both a and
b, which is impossible. Thus, G does not enclose P3. On the other hand, by taking
I = {a, i} we see that G does enclose a K1,3 with edges df, ef, hf .

Now let G be X4k where k ≥ 3. Then G has the subgraph shown in Figure
3.2(b), which is induced except that G possibly has edges ak, bl. All P3’s in G are
equivalent by an automorphism of G to either dfh or gfh. Suppose that dfh ≤ G,
so that dfh is a component of G − N [I ] for some independent set I . Now I cannot
contain e, g or j. I must contain a neighbour of g other than f , so i ∈ I , but I must
also contain a neighbour of j other than h, so either k or l must be in I , which is
impossible. Suppose that gfh ≤ G, so that gfh is a component of G−N [I ] for some
independent set I . Now I cannot contain d or e. I must contain a neighbour of e
other than g or h, so c ∈ I , but I must also contain a neighbour of d other than f ,
so either a or b must be in I , which is impossible. Thus, G does not enclose P3. On
the other hand, by taking I = {c, k} we see that G does enclose a K1,3 with edges
df, gf, hf .

There is one other cubic graph that is Z2-well-covered but not well-covered that
we mention here. Let R12 be the graph of Figure 3.3. It is not difficult to show that
the maximal independent sets in R12 have cardinalities 4 and 6.
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4 Characterisation of cubic parity graphs

In this section we characterise the cubic Z2-well-covered graphs that are not well-
covered. The two main tools are Lemmas 2.9 and 2.10. Lemma 2.9 guarantees that
a Z2-well-covered graph that is not well-covered encloses a K1,3. Define a star vertex
of G to be the degree 3 vertex of some K1,3 enclosed in G. Our main argument is a
case-by-case analysis to determine the structure near a star vertex.

Theorem 4.1. Suppose G is a connected cubic graph that is Z2-well-covered but
not well-covered. Let v be a star vertex of G. Then either G is isomorphic to one of
C4 × K2

∼= X8, M10, or R12, or else v is one of two types:

(A) There is an induced subgraph as shown in Figure 4.1(a) containing v in the
specified position.

(B) There is an induced subgraph as shown in Figure 4.1(b) containing v in the
specified position.

Moreover, in both cases every neighbour of v is also a star vertex of the same type
as v.

Proof. First we introduce some notation. Ni denotes the set of vertices at distance
i from v, and ni = |Ni|. mi denotes the number of edges with both ends in Ni, and
mij denotes the number of edges with one end in Ni and the other in Nj . Since v
is a star vertex, G[N [v]] is isomorphic to K1,3, so that m1 = 0, i.e., the neighbours
of v are pairwise nonadjacent. Moreover, there is an independent set I such that
G[N [v]] is a component of G−N [I ]. We choose such an I with a minimum number
of elements. I ∩ N3 must dominate N2, and minimality implies that I ⊆ N3.

Write I = {u1, u2, . . . , up}. Since p is minimum, each ui ∈ I must have at least
one private neighbour in N2: a vertex of N2 adjacent to ui but to no other element
of I . Let P (ui) denote the set of private neighbours of ui in N2, i.e., P (ui) =
N2 − ⋃

j �=i N [uj]. P (ui) is nonempty and disjoint from P (uj), j �= i. Let P =
{P (u1), P (u2), . . . , P (up)}.
Lemma 4.2. We cannot have P (ui) = {t} where t has exactly one neighbour t′

in N1. We also cannot have P (ui) = {s, t} where s and t both have exactly one
neighbour in N1, which is the same vertex t′ in each case.

Proof. Suppose otherwise. Then, by definition of P (ui), I ′ = I − {ui} ∪ {t} is an
independent set that dominates all of N2, apart from possibly s in the second case.
It also dominates t′ ∈ N1, but no other elements of N1. Therefore, G − N [I ′] has
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G[N [v]]− t′ ∼= P3 as a component, i.e., G encloses P3, which cannot happen since P3

is not Z2-well-covered.

We use the following facts throughout the rest of the proof of Theorem 4.1, often
without explicit mention. Every vertex of N2 is adjacent to a vertex of I ⊆ N3,
and to a vertex of N1. Consequently, every vertex of N2 is adjacent to at most one
other vertex of N2. We have m23 ≥ n2, m12 = 6 ≥ n2, and m12 + 2m2 + m23 =
6 + 2m2 + m23 = 3n2. Consequently, 6 + 2m2 ≤ 2n2. It follows that 3 ≤ n2 ≤ 6.
Counting edges from I to N2 and using the fact that each ui ∈ I has at least one
private neigbour in N2, we obtain n2/3 ≤ p ≤ n2.

To first prove that v is of type (A) or (B), we divide the proof into cases identified
by the value of n2. So, our top level cases are labelled (3) to (6).

(3) Suppose that n2 = 3. Since 6 + 2m2 ≤ 2n2 = 6, m2 = 0. Consequently, m23 = 3
and every vertex of N2 is adjacent to one vertex of N3 and two vertices of N1. The
subgraph G[N1 ∪ N2] is bipartite and 2-regular, so it must be a 6-cycle. Thus, G
contains the induced subgraph of Figure 4.2(a).

If p = |I| = 1 then G is the graph of Figure 4.2(b), which is the cube C4×K2
∼= X8.

If p ≥ 2 then some vertex a of I has a neighbour b that does not belong to N2. Then G
encloses a P3 as shown in Figure 4.2(c) (where it does not matter if b has neighbours
in N2), so this cannot happen. (Note that we frequently obtain a contradiction by
showing that G encloses P3, L, K1,1,2 or K2,3. Usually we draw a figure in which
an independent set I ′ is indicated by open circles surrounded by squares, vertices
of N [I ′] − I ′ by open circles, vertices not in N [I ′] by solid circles, and edges of the
enclosed graph by heavy lines. Occasionally a vertex whose exact status is unknown
and does not matter will be indicated by a circle that is half solid and half open.)

(4) Suppose that n2 = 4. Then we can write N2 = {a1, a2, b1, b2} where a1 and a2

have one neighbour in N1 and b1 and b2 have two neighbours in N1. Since b1 and b2

are adjacent to a vertex of I ⊆ N3, the only possible edge with both ends in N2 is
a1a2. There are two subcases.

(4.1) Suppose that a1 and a2 have a common neighbour in N1, which we call w. Then
b1 and b2 are both adjacent to the other neighbours of N1, which we call x1 and x2.
See Figure 4.3(a).

Let ci be the neighbour of bi in I for i = 1, 2; possibly c1 = c2. If some aj , j = 1, 2,
is adjacent to neither c1 nor c2, then G encloses P3 as shown in Figure 4.3(b). This
must be the case if c1 = c2, so now we may assume that c1 �= c2, and both a1 and a2

are adjacent to at least one of c1 and c2. Without loss of generality we may assume
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Figure 4.4

that a1c1 ∈ E(G).
If c1c2 ∈ E(G), then G encloses P3 as shown in Figure 4.4(a), so we may assume

that c1c2 /∈ E(G). Since c2 is not adjacent to w or c1, c2 has at least one neighbour
d �= b2 that is not adjacent to a1 (possibly d = a1 or a2). Then G encloses K2,3 as
shown in Figure 4.4(b). This concludes case (4.1).

(4.2) Suppose that a1 and a2 do not have a common neighbour in N1. Let wi be the
neighbour of ai in N1 for i = 1, 2, and let x be the third vertex of N1. Without loss
of generality, we may assume that bi is adjacent to wi and x for i = 1, 2. See Figure
4.5.

Now n2/3 = 4/3 ≤ p ≤ n2 = 4, so 2 ≤ p ≤ 4. If p = |I| = 4 then we must have
P = {{a1}, {a2}, {b1}, {b2}}, but P (ui) = {a1} violates Lemma 4.2, so p �= 4.

(4.2.1) Suppose that p = 2. Suppose b1 and b2 are adjacent to the same vertex d = u1

of I . Then d cannot also be adjacent to a1 or a2, or we would have P (u2) = {a1}
or {a2}, violating Lemma 4.2. Therefore a1 and a2 are both adjacent to the other
vertex c = u2 of I , and G encloses P3 as shown in Figure 4.6(a). Thus, b1 and b2

have distinct neighbours in I : suppose di ∈ I is adjacent to bi, i = 1, 2, so that
I = {d1, d2}. If both d1 and d2 are adjacent to both a1 and a2, then G is the graph
of Figure 4.6(b), which is isomorphic to M10. If one di, say d1, is adjacent to both
a1 and a2 while the other, d2, is not, then d2 has a neighbour f2 /∈ {a1, a2, b2}, and

�� � ��

�� �� � �� ��

Figure 4.5
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G encloses P3 as shown in Figure 4.7(a). So, we may assume that neither d1 nor d2

is adjacent to both a1 and a2, and thus each of d1 and d2 is adjacent to one of a1 or
a2.

Suppose first that a1d2, a2d1 ∈ E(G). If a1 and a2 do not have a common neigh-
bour, let e1 �= w1, d2 be a neighbour of a1. Then G encloses P3 as shown in Figure
4.7(b). Therefore a1 and a2 have a common neighbour e, and by a symmetric argu-
ment d1 and d2 have a common neighbour f . If ef /∈ E(G) then G encloses P3 as
shown in Figure 4.8(a). If ef ∈ E(G) then G is the graph of Figure 4.8(b), which is
isomorphic to R12.

Thus, we may suppose that a1d1, a2d2 ∈ E(G). Since d1, d2 ∈ I , we know that
d1d2 /∈ E(G). Let f1 �= a1, b1 be a neighbour of d1. If a1a2 ∈ E(G) then G encloses
P3 as shown in Figure 4.9(a). Therefore, a1a2 /∈ E(G), we have the induced subgraph
shown in Figure 4.9(b), and v is a star vertex of type (A) as in the statement of this
theorem. This concludes case (4.2.1).
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(4.2.2) Suppose that p = 3. By Lemma 4.2, no P (ui) can be {a1} or {a2}, so the
only possibility for P is {{a1, a2}, {b1}, {b2}}. Then I contains a vertex c adjacent
to both a1 and a2, and a vertex di adjacent to bi for i = 1, 2; there are no other
adjacencies between I and N2. Now d1 has two neighbours other than b1, and since
neither is a1 or a2, at most one is adjacent to c. Thus, d1 has a neighbour f �= b1

not adjacent to c. But then G encloses P3 as shown in Figure 4.10. This concludes
cases (4.2.2), (4.2) and (4).

(5) Suppose that n2 = 5. Then one vertex c of N2 must be adjacent to two vertices of
N1, and the remaining four vertices of N2 must each be adjacent to one vertex of N1.
Thus, G contains the subgraph shown in Figure 4.11(a), where d = u1 is the vertex
of I adjacent to c, so that c ∈ P (d). Here we may have edges between a1, a2, b1, b2.

(5.1) Suppose that p = 2. Write e = u2. By Lemma 4.2, |P (e)| �= 1, and P (e) �=
{a1, a2}. So, up to symmetry there are four possibilities for P (e): {a1, b1}, {b1, b2},
{a1, a2, b1} and {a1, b1, b2}.
(5.1.1) Suppose that P (e) = {a1, b1}. Then d must be adjacent to a2 and b2 as well
as c; e may possibly be adjacent to one of a2 or b2 also. Thus, G has the subgraph
shown in Figure 4.11(b). Let g1 be the neighbour of b1 other than e or x1; possibly
g1 = a1, a2 or b2. If g1 = a2 or b2 then a2b2 /∈ E(G) and G encloses P3 as shown
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in Figure 4.12(a). So, we may assume g1 �= a2, b2. If a1g1 /∈ E(G) (including the
case g1 = a1) then G encloses P3 as shown in Figure 4.12(b). Therefore, g1 is a
vertex other than a2, b2 adjacent to a1. If one of e or g1 is adjacent to neither a2 nor
b2, then G encloses P3 as shown in Figure 4.13(a). Finally, if a2g1, b2e ∈ E(G) or
a2e, b2g1 ∈ E(G), then G is the graph of Figure 4.13(b), which is isomorphic to R12.
This concludes case (5.1.1).

(5.1.2) Suppose that P (e) = {b1, b2}. Then d must be adjacent to a1 and a2 as well
as c; e may possibly be adjacent to one of a1 or a2 also. Thus, G has the subgraph
shown in Figure 4.14(a). To show that v is a star vertex of type (B), we must show
that G does not contain the edges a1a2, b1b2, or aibj where i, j = 1, 2. If a1a2 ∈ E(G)
then G encloses K1,1,2 as shown in Figure 4.14(b). If b1b2 ∈ E(G) then G encloses
P3 as shown in Figure 4.15(a). If an edge aibj ∈ E(G), then by symmetry we may
assume it is a1b1. Then a1b2 /∈ E(G), and G encloses P3 as shown in Figure 4.15(b).
Therefore, v is a type (B) vertex as in the statement of this theorem. This concludes
case (5.1.2).

(5.1.3) Suppose that P (e) = {a1, a2, b1}. Then P (d) = N(d) ∩N2 = {b2, c} and G is
as shown in Figure 4.16(a). Let g1 be the neighbour of b1 other than e or x1; possibly
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g1 = a1, a2 or b2. If dg1 ∈ E(G) (including the case g1 = b2) then G encloses a P3 as
shown in Figure 4.16(b), so g1 �= b2 and dg1 /∈ E(G). If g1 is not adjacent to some
ai (including g1 = ai), say ai = a1, then G encloses P3 as shown in Figure 4.17(a).
Finally, if a1g1, a2g1 ∈ E(G), then G encloses K2,3 as shown in Figure 4.17(b). This
concludes case (5.1.3).

(5.1.4) Suppose that P (e) = {a1, b1, b2}. Then P (d) = N(d) ∩ N2 = {a2, c}. Let f
be the third neighbour of d. Then G encloses P3, as shown in Figure 4.18(a). This
concludes cases (5.1.4) and (5.1).

(5.2) Suppose that p = 3. By Lemma 4.2 neither P (u2) nor P (u3) has cardinality 1,
and neither is equal to {a1, a2}. Therefore, without loss of generality we may write
u2 = e1 and u3 = e2 where P (ei) = {ai, bi} for i = 1, 2. The only vertices of N2

adjacent to each ui ∈ {d, e1, e2} are those in P (ui). Let f1, f2 be the neighbours
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of d other than c. Thus, G has the subgraph of Figure 4.18(b). If some fi, say
f1, is adjacent to neither e1 nor e2, then G encloses P3 as shown in Figure 4.19(a).
Therefore, without loss of generality we may suppose that e1f1, e2f2 ∈ E(G).

Let g1 be the neighbour of b1 other than e1 or x1. Possibly g1 is one of a1, a2, b2, f1, f2.
If g1 is none of these five vertices and a1g1 /∈ E(G), or if g1 = a1, then G encloses
P3 as shown in Figure 4.19(b). If g1 is none of the five vertices, but a1g1 ∈ E(G),
then G encloses P3 as shown in Figure 4.20(a). If g1 is one of a2, b2, f1, f2, then G
encloses P3 as shown in Figure 4.20(b): whatever the exact location of g1, it belongs
to N [I ′] − I ′. This concludes cases (5.2) and (5).

(6) Suppose that n2 = 6. Then every vertex of N2 has exactly one neighbour in N1.
It follows from Lemma 4.2 that no ui ∈ I has |P (ui)| = 1. Therefore |P (ui)| = 2 or
3 for each ui ∈ I , and p = |I| = 2 or 3. If p = 2 there are (up to symmetry) two
cases, shown in Figure 4.21(a) and (b). If p = 3 there is (up to symmetry) only one
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case, shown in Figure 4.21(c). A lengthy case analysis, roughly as long as cases (4)
and (5) together, reveals that no star vertex can have n2 = 6. The analysis focuses
on the possible neighbours of vertices in N2. We omit the details for the sake of
brevity. (An expanded version of this paper with the complete argument for n2 = 6
is available from the second author.)

We have now shown that every star vertex is of type (A), when n2 = 4, or type
(B), when n2 = 5. We must now prove that every neighbour of a star vertex is also
a star vertex of the same type.

Suppose v is a star vertex of type (A). We may assume that v is part of an
induced subgraph labelled as in Figure 4.9(b). From I ′ = {a1, a2} we see that x is
also a star vertex with n2 = 4, so x is a star vertex of type (A). Now consider w1.
Let e1 �= d1, w1 be the third neighbour of a1, and f1 �= a1, b1 be the third neighbour
of d1. Both of these are (possibly equal) new vertices that do not appear in Figure
4.9(b). If e1f1 /∈ E(G) (including the case e1 = f1) then G encloses a P3 as in Figure
4.22(a). Therefore, e1 and f1 are distinct and adjacent. Now Figure 4.22(b) shows
that w1 is a star vertex with n2 = 4, so w1 is a star vertex of type (A). The argument
for w2 is symmetric.

Now suppose v is a star vertex of type (B). We may assume that v is part of
a subgraph labelled as in Figure 4.14(a), which is induced except that e may be
adjacent to one of a1 or a2. Let gi �= d, w be the third neighbour of ai, i = 1, 2.
Suppose first that e is adjacent to some ai; by symmetry, we may assume a1e ∈ E(G).
Then g2 is a new vertex, not shown in Figure 4.14(a). If g2 is not adjacent to some
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bi, say i = 2 by symmetry, then G encloses P3 as shown in Figure 4.23(a). Therefore,
b1g2, b2g2 ∈ E(G), and G is the graph of Figure 4.23(b), which is isomorphic to X12,
in which every vertex is a star vertex of type (B).

Suppose now that a1e, a2e /∈ E(G). We first show that w is a star vertex of type
(B). Now g1, g2 are (possibly equal) new vertices, which do not appear in Figure
4.14(a). Let h denote a neighbour of g1 distinct from a1 and (if g1 = g2) also from
a2; possibly h ∈ {b1, b2, e, g2}. Suppose that g1 = g2. Let j be any neighbour of h
distinct from g1 = g2; possibly j ∈ {b1, b2, e, x1, x2}. Since there is no vertex adjacent
to both x1 and x2 other than v and j �= v, jxi /∈ E(G) for some xi (including the
possibility that j = xi); by symmetry we may assume that xi = x1. Then G encloses
K2,3 as shown in Figure 4.24(a). Therefore, g1 �= g2. Since h �= v, hxi /∈ E(G) for
some xi; by symmetry we may take xi = x1. If g2h /∈ E(G) (including the case
h = g2) then G encloses P3 as shown in Figure 4.24(b). Therefore, g2h ∈ E(G).
Then Figure 4.25 shows that w is a star vertex with n2 = 5, i.e., a star vertex of type
(B).

Now we must show that x1 and x2 are star vertices of type (B). Let fi �= e, xi

denote the third neighbour of bi for i = 1, 2. Then f1, f2 are (possibly equal) new
vertices, that do not appear in Figure 4.14(a). If f1 �= f2, then a1 cannot be adjacent
to both f1, f2, so a1fi /∈ E(G) for some fi; by symmetry we may take fi = f1. Then
G encloses P3 as shown in Figure 4.26(a). Thus, f1 = f2. Then Figure 4.26(b) shows
that x1 is a star vertex with n2 = 5, i.e., a star vertex of type (B). The argument for
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x2 follows by symmetry.

This concludes the proof of Theorem 4.1.

Theorem 4.3. Let G be a connected cubic graph. Then G is Z2-well-covered but
not well-covered if and only if G is one of

(i) R12 (shown in Figure 3.3),
(ii) C4 × K2

∼= X8,
(iii) Cm × K2 for m ≥ 6,
(iv) M2m for m ≥ 5 (described in Section 3), or
(v) X4k for k ≥ 3 (described in Section 3).

Proof. From Section 3, the graphs in (i) to (v) are all Z2-well-covered but not
well-covered.

Conversely, suppose that G is Z2-well-covered but not well-covered. Assume that
G is not isomorphic to C4×K2

∼= X8, M10, or R12. Since G is connected, by Theorem
4.1 all vertices of G are star vertices of the same type, (A) or (B). Define an edge e
of G to be of type i (i a nonnegative integer) if e belongs to i 4-cycles of G.

Suppose all vertices of G are star vertices of type (A). Looking at Figure 4.9(b),
we see that the edges of G are all type 1 or type 2. The edges of type 2 form a perfect
matching. If we form a graph H whose vertices are the type 2 edges of G, with two
type 2 edges adjacent if they belong to a common 4-cycle of G, then H is 2-regular,
and hence is a cycle. It follows that G is isomorphic to Cm ×K2 or M2m for m ≥ 6.

Now suppose that all vertices of G are star vertices of type (B). Looking at Figure
4.14(a), we see that the edges of G are all type 0 or type 1. The spanning subgraph
formed by the edges of type 1 is a 2-factor whose components are all the 4-cycles
of G. Each pair of opposite vertices of a 4-cycle is joined in G by a pair of type 0
edges to a pair of opposite vertices in another 4-cycle. Therefore, if we form a graph
J whose vertices are the 4-cycles of G, with two 4-cycles adjacent if they are joined
by a pair of edges, then J is 2-regular, and hence is a cycle. It follows that G is
isomorphic to X4k for k ≥ 3.

Combining this with Theorem 2.7, we obtain the following characterisation of
cubic parity (Z2-well-covered) graphs. Note that a graph is a parity graph if and
only if each of its components is a parity graph, so we may restrict our attention to
connected graphs.
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Corollary 4.4. Suppose G is a connected cubic graph. Then G is Z2-well-covered,
i.e., a parity graph, if and only if it is one of the graphs of either Theorem 2.7 or
Theorem 4.3.

5 Concluding remarks

An important point of this paper is that minimal non-well-covered graphs are a
highly useful tool. Here, they enabled us to characterise cubic parity graphs by
extending the characterisation of cubic well-covered graphs, rather than by starting
from scratch. The original case analysis for cubic well-covered graphs took roughly 26
pages (single-spaced, with diagrams) if given in full. The case analysis in this paper
takes roughly 14 pages if given in full. One would guess that a characterisation of
the cubic parity graphs from scratch, which would have the well-covered and non-
well-covered cases tangled together, would probably cover essentially the same cases
and so take about 40 pages. Minimal non-well-covered graphs allow us to separate
the well-covered and non-well-covered cases, using Lemma 2.9, and so we only had to
do the 14 extra pages of the non-well-covered case, rather than the whole 40 pages.

As mentioned in Section 1, it is interesting that cubic parity graphs divide sharply
into two classes, those that are well-covered and those that are not. The structures
of these two classes, as described in Theorems 2.7 and 4.3, respectively, are quite
different. This is surprising, because for graphs of girth 6 or more, as investigated in
[5, 9], the structure of Zm-well-covered graphs seems to be a natural generalisation
of the structure of the well-covered graphs.

In Theorem 2.7, the connected cubic well-covered graphs are, with six exceptions,
constructed from the three basic well-covered building blocks A, B and C. The
decomposition into building blocks is usually unique. One might reasonably have
imagined that cubic Z2-well-covered graphs would include a few more building blocks
that could be used together with A, B and C. However, the connected cubic Z2-
well-covered non-well-covered graphs, as described in Theorem 2.7, do not seem to
be made up of simple building blocks in the same way. One can decompose graphs in
the families Cm × K2, M2m, and X4k into vertex-disjoint Z2-well-covered subgraphs
isomorphic to K1,3, sometimes also using one copy of P2 or K2, but the decomposition
is far from unique. The building blocks A, B and C do not appear in these graphs
at all.

For well-covered graphs of bounded degree, it seems reasonable to conjecture
that there will always be a decomposition into a finite family of building blocks.
This is supported by the characterisation of cubic well-covered graphs, by Ramey’s
characterisation of well-covered graphs of maximum degree 3 in his Ph.D. thesis
[13], and also by Hartnell and Plummer’s characterisation of 4-connected 4-regular
claw-free well-covered graphs [10].

Conjecture 5.1. Fix d ≥ 3. Then there is a collection G = {G1, G2, . . . , Gk} of
well-covered graphs of maximum degree at most d, and a list of rules for connecting
the elements of G together via edges, such that with finitely many exceptions every
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well-covered graph of maximum degree at most d is obtained by joining together
elements of G according to these rules.

One might also conjecture that the decomposition of a graph into elements of G is,
with finitely many exceptions, unique. For Zm-well-covered graphs, it is less clear
whether something similar to Conjecture 5.1 is likely to hold. We expect that graphs
that are minimal non-well-covered but Zm-well-covered, such as Kp,km+p for p, k ≥ 1,
will play an important role in the structure of graphs that are Zm-well-covered but
not well-covered, and this is shown by Corollary 2.6 and Theorem 4.1, and by the
results for girth at least 6 by Finbow and Hartnell [9] and Caro and Hartnell [5].

It would be useful to have more evidence as to the structure of Zm-well-covered
graphs with degree restrictions. Using the techniques of this paper, it would probably
be possible to extend Ramey’s characterisation of well-covered graphs of maximum
degree at most 3 to Z2-well-covered graphs of maximum degree at most 3. However,
this would be a long and tedious exercise. One alternative approach is to use a
computer to determine the possible structures close to a vertex, From [4] we know
that A-well-coveredness is a local property, determined by the structure of the graph
out to distance 4 around each vertex. Once the possible local structures are found,
a computer could also be used to determine which pairs of structures could belong
to adjacent vertices. In this way, we might obtain enough information to give a
structural characterisation without a tedious manual case analysis. Such an approach
might also allow us to extend what is known about 4-regular graphs, or even graphs
of maximum degree 4, both for well-covered graphs and for Zm-well-covered graphs.
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[7] V. Chvátal and P. J. Slater, A note on well-covered graphs, Quo Vadis, Graph
Theory?, Ann. Discrete Math. 55, North Holland, Amsterdam, 1993, 179–182.

[8] A. Finbow and B. L. Hartnell, A game related to covering by stars, Ars Combin.
16-A (1983), 189–198.

[9] A. Finbow and B. Hartnell, A characterization of parity graphs containing no
cycle of order five or less, Ars Combin. 40 (1995), 227–234.

[10] Bert Hartnell and Michael D. Plummer, On 4-connected claw-free well-covered
graphs, Discrete Appl. Math. 64 (1996), 57–65.

[11] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970),
91–98.

[12] M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993),
253–287.

[13] J. E. Ramey, Well-Covered Graphs with Maximum Degree Three and Minimal
Non-Well-Covered Graphs, Ph. D. thesis, Vanderbilt University, 1994.

[14] R. S. Sankaranarayana and L.K. Stewart, Complexity results for well-covered
graphs, Networks 22 (1992), 247–262.
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