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Abstract

The noncrossing partitions with each of their blocks containing a given
element are introduced and studied. The enumeration of these partitions
is described through a polynomial of several variables which is proved to
satisfy a recursive formula. It is shown that each variable increased by
one is a factor of this polynomial.

1 Introduction

A partition π = B1/B2/ . . . /Bm of a totally ordered set X is called noncrossing
partition (n.c.p.) if and only if there do not exist four elements a < b < c < d
of X such that a, c ∈ Bi, b, d ∈ Bj and i �= j. We denote by NC(X) the set of
all n.c.p. of X and by NC(X, m) the set of all n.c.p. of X that contain exactly m
blocks B1, B2, . . . , Bm. If |X | = n, since there is an obvious order preserving bijection
between X and the set [n] = {1, 2, . . . , n}, we can equivalently deal with [n] instead
of X . In this case we will use the notations NCn and NCn(m) respectively.

Many authors have worked on n.c.p.; see for example Kreweras [4] and Poupard
[6], followed by Edelman [2], [3] and Prodinger [7] and more recently by Athanasiadis
[1] and Simion [9].

It is well known that |NCn| equals the Catalan number Cn = 1
n+1

(
2n
n

)
, whereas

|NCn(m)| equals the Narayana number N(n, m) = 1
n

(
n
m

)(
m

m−1

)
.

In this work we introduce a particular class of n.c.p. More precisely, we say that a
n.c.p. π ∈ NC(X) is a noncrossing partition with fixed points the elements of A ⊆ X ,
if and only if every block of π contains exactly one element of A. The set of all these
n.c.p. is denoted by NC(X, A). Again if we deal with [n] instead of X we use the
notation NCn(A).

For an application of n.c.p. with fixed points, consider a distribution network for
a product manufactured in various plants (the elements of A) of a firm. The product
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is distributed to particular destinations (the blocks of the partition) from each plant,
covering the whole country. Obviously, the noncrossing condition for the various
routes might be necessary in order to minimize the cost.

The n.c.p. with fixed points were used in [5] for the construction of the generalized
nested sets. In that paper, the set of all n.c.p. of X , with fixed points the elements
of A, had been determined by induction on the number k = |X\A|.

This paper deals with the evaluation of the cardinal number |NCn(A)|. We will
see that this number is determined by the relevant positions of the elements of A.
For this reason, we firstly consider the equivalence relation of the translation in the
set of all nonempty subsets of [n], defined as follows:

A1 � A2 if and only if there exists c ∈ [n] with A1 = (A2 + c) (mod n).

Furthermore, for A ⊆ [n] we define a finite sequence XA = (xi) of length m = |A|,
where xi, i ∈ [m − 1] is the number of elements of [n]\A lying between the ith and
the (i + 1)st element of A and xm is the number of elements of [n] that are either
smaller or greater than every element of A.

It is easy to prove the following:

Proposition 1.1: Let A1, A2 ⊆ [n]; then A1 � A2 if and only if each one of XA1
,XA2

is a cyclic permutation of the other.

Now let A1 � A2 and c ∈ [n] such that A1 = (A2 + c) (mod n). It is obvious
that the mapping τ : NCn(A1) → NCn(A2) with τ (π) = {(B +c) (mod n); B ∈ π}
is a bijection, so that we obtain the following result:

Proposition 1.2: If A1, A2 ⊆ [n] with A1 � A2 then |NCn(A1)| = |NCn(A2)|.

For every n ∈ �∗ and for every sequence X = (xi), i ∈ [m] in � with m ≤ n and

with
m∑

i=1

xi = n−m there exists at least one set A ⊆ [n] with XA =X . Indeed, for the

set A = {t1, t2, . . . , tm} with t1 = 1 and ti+1 = ti + xi + 1, i ∈ [m − 1] we have that
XA =X .

So, we can define a function fm of m variables as follows:

fm(x1, x2, . . . , xm) = |NCn(A)|

where A is any subset of [x1 + x2 + . . . + xm + m], with XA = (x1, x2, . . . , xm).

From the previous propositions it is clear that fm is well defined and that
fm(x1, x2, . . . , xm) = fm(y1, y2, . . . , ym), whenever the sequence (y1, y2, . . . , ym) is a
cyclic permutation of (x1, x2, . . . , xm).
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For the evaluation of the formula of the function fm, which counts |NCn(A)|, it
is more convenient to express the problem in the following equivalent form:

Let X = [m]∪Y , where the elements of Y are distributed in the intervals (i, i+1),
i ∈ [m−1] and (m,+∞), so that |(i, i+1)∩X | = xi, ∀i ∈ [m−1] and |(m,+∞)∩X | = xm.
We want to determine the number fm(x1, x2, . . . , xm) = |NC(X, [m])|.

In Section 2 we give a recursive formula for fm, which is used to deduce the
explicit formulae of fm for certain values of m.

In Section 3 we show that fm(x1, x2, . . . , xm) is a polynomial which can be written

as a product of
m∏

r=1

(xr + 1) and of a polynomial Pm(x1, x2, . . . , xm) of degree m − 2.

Finally, we use the Stirling numbers of the first kind in order to determine the
coefficients of xi

k in the polynomial Pm(x1, x2, . . . , xm).

2 The recursive formula of fm

Proposition 2.1: For every x1, x2 ∈ �, we have

f2(x1, x2) = (x1 + 1)(x2 + 1).

Proof. Let π ∈ NC(X, [2]), with π = B1/B2. The block B1 is equal either to {1}, or
[1, p]∩X , or {1} ∪ ([q,+∞)∩X), or ([1, p]∪ [q,+∞))∩X , where p (resp. q) is the max
(resp. min) element of (1, 2) (resp. (2,+∞)) that belongs to B1. So, B1 (and hence
π) is uniquely determined by the number of elements µ, ν that it contains in (1, 2)
and (2,+∞) respectively. But since 0 ≤ µ ≤ x1, 0 ≤ ν ≤ x2 we have (x1 + 1)(x2 + 1)
choices for these numbers giving f2(x1, x2) = (x1 + 1)(x2 + 1). ❚

We now consider the general case m ≥ 3. Firstly, notice that obviously
fm(0, 0, . . . , 0) = 1 and fm(1, 0, . . . , 0) = m.

We give a recursive formula for fm, m ≥ 3.

Proposition 2.2: For every sequence (x1, x2, . . . , xm) of natural numbers, with m ≥
3 and x1 �= 0 the following relation holds:

fm(x1, x2, . . . , xm) =

(x1 + 1)fm(0, x2, . . . , xm) +
x1∑
t=1

m−1∑
k=2

fk(t − 1, x2, . . . , xk)fm−k+1(0, xk+1, . . . , xm).

Proof. Let r = min(1, 2) ∩ X . We partition the set NC(X, [m]) into the sets Ti,
i ∈ [m], so that each partition in Ti contains r and i in the same block. Obviously,

|T1| = fm(x1 − 1, x2, . . . , xm) and |T2| = fm(0, x2, . . . , xm).



266 A. SAPOUNAKIS AND P. TSIKOURAS

For k ≥ 3, to each π ∈ Tk correspond two uniquely determined partitions π1, π2

where π1 is a n.c.p. of (r, k] ∩ X with fixed points 2, 3, . . . , k and π2 is a n.c.p. of
{1} ∪ ([k,+∞)∩X) with fixed points 1, k, k + 1, . . . , m. Thus,

|Tk| = fk−1(x2, x3, . . . , xk−1, x1 − 1)fm−k+2(0, xk, xk+1, . . . , xm).

Hence, we have fm(x1, x2, . . . , xm) =
m∑

k=1

|Tk| = fm(x1 − 1, x2, . . . , xm)+

fm(0, x2, . . . , xm) +
m∑

k=3

fk−1(x1 − 1, x2, x3, . . . , xk−1)fm−k+2(0, xk, xk+1, . . . , xm),

giving the relation fm(x1, x2, . . . , xm) − fm(x1 − 1, x2, . . . , xm) =

fm(0, x2, . . . , xm) +
m−1∑
k=2

fk(x1 − 1, x2, . . . , xk)fm−k+1(0, xk+1, . . . , xm).

If we apply the above relation for every t ∈ [x1] and then add, we get
x1∑
t=1

(fm(t, x2, . . . , xm) − fm(t − 1, x2, . . . , xm)) =

x1fm(0, x2, . . . , xm) +
x1∑
t=1

m−1∑
k=2

fk(t − 1, x2, . . . , xk)fm−k+1(0, xk+1, . . . , xm),

which gives the required result. ❚

In the next proposition, we will give a recursive relation for fm, using the values
of fk with k < m. For this, we firstly introduce a new function gm on m variables
(which uses fk with k < m only). Namely, for m ≥ 3 let

gm(x1, x2, . . . , xm) =
x1∑
t=0

m−1∑
k=2

fk(t − 1, x2, . . . , xk)fm−k+1(0, xk+1, . . . , xm),

where we assume that fm(−1, x2, x3, . . . , xk) = 0, ∀k ≥ 2.

Notice that gm(0, x2, . . . , xm) = 0.

Proposition 2.3: For every sequence (x1, x2, . . . , xm) of natural numbers, with
m ≥ 3, we have

fm(x1, x2, . . . , xm) =
m∏

ν=1

(xν + 1) +
m∑

λ=1

(
λ−1∏
ν=0

(xν + 1))gm(xλ, xλ+1, . . . , xλ+m−1)

where x0 = 0 and xk = 0, ∀k > m.

Proof. We use induction on the number s of nonzero elements of the sequence (xi).

Obviously, for s = 0 the result holds. Suppose that the result holds for every se-
quence with s nonzero elements and suppose that (xi) has got s+1 nonzero elements.
Without loss of generality suppose that x1 �= 0.

The sequence (yi), i ∈ [m], with yi = xi+1, has got s nonzero elements; so, by
induction hypothesis, we have:
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fm(y1, y2, . . . , ym) =
m∏

ν=1

(yν + 1) +
m∑

λ=1

(
λ−1∏
ν=0

(yν + 1))gm(yλ, yλ+1, . . . , yλ+m−1)

with y0 = 0 and yk = 0, ∀k > m.

Thus, fm(x2, x3, . . . , xm, 0) =
m∏

ν=1

(xν+1 + 1) + gm(x2, x3, . . . , xm+1) +
m∑

λ=2

(
λ−1∏
ν=1

(xν+1 + 1))gm(xλ+1, xλ+2, . . . , xλ+m) =

m∏
ν=2

(xν + 1) + gm(x2, x3, . . . , xm+1) +
m∑

λ=2

(
λ∏

ν=2

(xν + 1))gm(xλ+1, xλ+2, . . . , xλ+m). (1)

But, from Proposition 2.2 and the definition of gm we have :

fm(x1, x2, . . . , xm) = (x1 + 1)fm(x2, x3, . . . , xm, 0) + gm(x1, x2, . . . , xm)

and so, substituting fm(x2, x3, . . . , xm, 0) from (1), we finally get the required result.

❚

We use Proposition 2.3 in order to find the formulae for f3, f4 and f5. We present
the proof for f3 only. The proofs of the other two propositions are quite more
complicated, but since they follow a similar line of argument, they are omitted.

Proposition 2.4: For every x1, x2, x3 ∈ � we have

f3(x1, x2, x3) =
3∏

ν=1

(xν + 1)(x1+x2+x3

2
+ 1).

Proof. Suppose x1x2x3 �= 0. We first determine the function g3. We have (using

Proposition 2.1) that g3(x1, x2, x3) =
x1∑
t=1

f2(t−1, x2)f2(x3, 0) = (x2+1)(x3+1)
x1∑
t=1

t =

(x1 + 1)(x2 + 1)(x3 + 1)x1

2
.

Thus we get f3(x1, x2, x3) =
3∏

ν=1

(xν + 1) + g3(x1, x2, x3) + (x1 + 1)g3(x2, x3, 0) + (x1 + 1)(x2 + 1)g3(x3, 0, 0) =

3∏
ν=1

(xν + 1)(x1+x2+x3

2
+ 1).

It is easy to check that the formula holds for x1x2x3 = 0, too. ❚

In the following two propositions the variables x4, x1 and x5, x1 respectively are
considered as consecutive variables.

Proposition 2.5: For every x1, x2, x3, x4 ∈ � we have

f4(x1, x2, x3, x4) =
4∏

ν=1

(xν + 1)(1
6

4∑
i=1

xi
2 + 1

4

∑
1≤i,j≤4

i �=j

aijxixj + 5
6

4∑
i=1

xi + 1),
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where

aij =

{
1, if xi, xj are consecutive variables
2, otherwise.

Proposition 2.6: For every x1, x2, x3, x4, x5 ∈ N we have f5(x1, x2, x3, x4, x5) =
5∏

ν=1

(xν+1)[ 1
24

5∑
i=1

xi
3+ 1

12

∑
1≤i,j≤5

i �=j

aij(xi
2xj+xixj

2)+ 1
8

∑
1≤i,j,k≤5
i �=j �=k �=i

bijkxixjxk+
1
12

∑
1≤i,j≤5

i �=j

cijxixj

+ 3
8

5∑
i=1

xi
2 + 13

12

5∑
i=1

xi + 1], where

aij =

{
1, if xi, xj are consecutive variables
2, otherwise

bijk =

{
1, if xi, xj, xk are consecutive variables
3, otherwise

cij =

{
7, if xi, xj are consecutive variables
11, otherwise.

3 Properties of fm

In the previous section we have seen that the functions fm for 2 ≤ m ≤ 5 are

polynomials, with positive rational coefficients and with the product
m∏

ν=1

(xν + 1) as

a factor. We will now prove that this is true for every m ∈ �, m ≥ 2.

Proposition 3.1: For every m ≥ 2, there exists a polynomial Pm(x1, x2, . . . , xm) of
degree m − 2, with positive rational coefficients, such that

fm(x1, x2, . . . , xm) =
m∏

ν=1

(xν + 1)Pm(x1, x2, . . . , xm)

for every sequence (xi), i ∈ [m], in �.

Proof. We will use induction on m.

For m = 2 the result holds with P2(x1, x2) = 1, because of Proposition 2.1.
Suppose now that m ≥ 3 and that the result is correct for every k ∈ N ∗, with
2 ≤ k ≤ m − 1, so that there exist polynomials Pk of degree k − 2 with positive
rational coefficients such that:
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fk(x1, x2, . . . , xk) =
k∏

ν=1

(xν + 1)Pk(x1, x2, . . . , xk)

for every sequence (xi), i ∈ [k], in �.

In order to prove the result for m, we firstly show that

x1∑
t=1

tPk(t − 1, x2, . . . , xk) = (x1 + 1)qk(x1, x2, . . . , xk)

where qk is a polynomial of degree k − 1 with positive rational coefficients.

Indeed, since the function xPk(x−1, x2, . . . , xk) is a polynomial of x with rational
coefficients and degree k − 1, it can be written in the form

xPk(x − 1, x2, . . . , xk) =
k−1∑
i=1

aik(x2, x3, . . . , xk)Fi(x)

where aik(x2, x3, . . . , xk), i ∈ [k − 1] are polynomials of degree k − 2 with rational
coefficients and Fi(x) = x(x − 1) · · · (x − i + 1) is the factorial polynomial.

If we cancel x in the above equality, we deduce that

Pk(x − 1, x2, . . . , xk) =
k−2∑
j=0

aj+1,k(x2, x3, . . . , xk)Fj(x − 1)

where F0(x) = 1.

Since the coefficients of Pk in terms of x− 1, x2, . . . , xk are positive, we conclude
that aik(x2, x3, . . . , xk) have positive coefficients for every i ∈ [k − 1].

Thus, using the difference operator ∆, we have :

x1∑
t=1

tPk(t − 1, x2, . . . , xk) =
x1∑
t=1

k−1∑
i=1

aik(x2, x3, . . . , xk)
∆Fi+1(t)

i+1
=

k−1∑
i=1

aik(x2,x3,...,xk)
i+1

(Fi+1(x1 + 1) − Fi+i(1)) =
k−1∑
i=1

aik(x2,x3,...,xk)
i+1

(x1 + 1)Fi(x1) =

(x1 + 1)qk(x1, x2, . . . , xk),

where qk =
k−1∑
i=1

aik(x2,x3,...,xk)
i+1

Fi(x1) is a polynomial of degree k − 1 with positive

rational coefficients.

Now, using the induction hypothesis, we have :

gm(x1, x2, . . . , xm) =
x1∑
t=0

m−1∑
k=2

fk(t − 1, x2, . . . , xk)fm−k+1(xk+1, . . . , xm, 0) =

x1∑
t=0

m−1∑
k=2

(t−1+1)
k∏

ν=2

(xν+1)Pk(t−1, x2, . . . , xk)
m∏

ν=k+1

(xν+1)Pm−k+1(xk+1, . . . , xm, 0) =
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m∏
ν=2

(xν + 1)
m−1∑
k=2

Pm−k+1(xk+1, . . . , xm, 0)
x1∑
t=1

tPk(t − 1, x2, . . . , xk) =

m∏
ν=2

(xν + 1)
m−1∑
k=2

Pm−k+1(xk+1, . . . , xm, 0)(x1 + 1)qk(x1, x2, . . . , xk) =

m∏
ν=1

(xν + 1)
m−1∑
k=2

Pm−k+1(xk+1, . . . , xm, 0)qk(x1, x2, . . . , xk).

But, for every k ∈ � with 2 ≤ k ≤ m − 1, the polynomial Pm−k+1 has degree
(m − k + 1) − 2, whereas qn has degree k − 1; hence, the polynomial

rm(x1, x2, . . . , xm) =
m−1∑
k=2

Pm−k+1(xk+1, . . . , xm, 0)qk(x1, x2, . . . , xk)

has degree m − 2, as well as positive rational coefficients.

Finally, applying the recursive formula of Proposition 2.3 we obtain that

fm(x1, x2, . . . , xm) =
m∏

ν=1

(xν+1)+
m∑

λ=1

(
λ−1∏
ν=1

(xν+1))
m∏

ν=λ

(xν+1)rm(xλ, xλ+1, . . . , xλ+m−1)

=
m∏

ν=1

(xν+1)[1+
m∑

λ=1

rm(xλ, xλ+1, . . . , xλ+m−1)] =
m∏

ν=1

(xν+1)Pm(x1, x2, . . . , xm), where

the polynomial Pm(x1, x2, . . . , xm) = 1+
m∑

λ=1

rm(xλ, xλ+1, . . . , xλ+m−1) has degree m−
2 and positive rational coefficients. ❚

The final part of this work deals with the evaluation of the coefficient of xi
k, for

i ∈ [m], k = 0, 1, . . . , m − 2 in the polynomial Pm.

Notice that, by Proposition 3.1, if (y1, y2, . . . , ym) is a cyclic permutation of
(x1, x2, . . . , xm), then Pm(x1, x2, . . . , xm) = Pm(y1, y2, . . . , ym). Hence, since the
coefficient of xi

k in Pm(x1, x2, . . . , xm) is equal to its coefficient in Pm(0, . . . , 0, xi,
0, . . . , 0), for every i ∈ [m] and k = 0, 1, . . . , m − 2, it is enough to determine the
coefficient of xi

k in Pm(xi, 0, . . . , 0).

For this we need the following result:

Proposition 3.2: For every m ∈ � with m ≥ 2 and for every x ∈ � we have

fm(x, 0, . . . , 0) =
(

x+m−1
m−1

)
.

Proof. Here, we deal with the set NC(X, [m]) with X = [m] ∪ Y , Y ⊆ (1, 2),
|Y | = x.

For every n.c.p. π = B1/B2/ . . . /Bm of X , with i ∈ Bi for every i ∈ [m], let
ni = |Bi| − 1. Then, the sequence (ni), i ∈ [m] is a nonnegative integer solution of
the equation t1 + t2 + · · · + tm = x.

Conversely, if (ni), i ∈ [m] is a nonnegative integer solution of t1+t2+· · ·+tm = x
we define recursively the blocks of a n.c.p. π = B1/B2/ . . . /Bm of X , with i ∈ Bi for
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every i ∈ [m] as follows: B1 contains 1 as well as the first n1 elements of X\[m]; for

i = 2, 3, . . . , m, Bi contains i as well as the last ni elements of X\([m]
⋃

(
i−1⋃
j=1

Bj)).

We thus define a bijection between the set NC(X, [m]) and the set of all non-
negative integer solutions of the equation t1+t2+· · ·+tm = x. Since the cardinality of
the second set is equal to

(
x+m−1

m−1

)
, (see [10]) we obtain that fm(x, 0, . . . , 0) =

(
x+m−1

m−1

)
indeed. ❚

We now prove the following result:

Proposition 3.3: For any i ∈ [m], the coefficient of xi
k, 0 ≤ k ≤ m − 2, in the

polynomial Pm(x1, x2, . . . , xm) is equal to

am,k = (−1)m−k

(m−1)!

m∑
p=k+2

s(m, p)

where s(m, p) are the Stirling numbers of the first kind.

Proof. Since am,k is equal to the coefficient of xk in the polynomial Pm(x, 0, . . . , 0)
using Propositions 3.1 and 3.2 we get

(x + 1)Pm(x, 0, . . . , 0) = fm(x, 0, . . . , 0), i.e. (x + 1)
m−2∑
k=0

am,kx
k =

(
x+m−1

m−1

)
and hence

m−2∑
k=0

am,kx
k = (x+2)(x+3)···(x+m−1)

(m−1)!
. (1)

Furthermore, using the relation

x(x + 1)(x + 2) · · · (x + m − 1) =
m∑

k=1

(−1)m−ks(m, k)xk

which is an immediate consequence of the definition of s(m, k), we get that

(x + 2)(x + 3) · · · (x + m − 1) =

m∑
k=1

(−1)m−ks(m,k)xk−1

x+1
. (2)

It is easy to check that in the polynomial obtained from the division in (2), the

coefficient of xk, for 0 ≤ k ≤ m − 2, is equal to (−1)m−k
m∑

p=k+2

s(m, p).

Hence, (2) gives

(x + 2)(x + 3) . . . (x + m − 1) =
m−2∑
k=0

((−1)m−k
m∑

p=k+2

s(m, p))xk. (3)

From (1), (3) we finally obtain:
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am,k = (−1)m−k

(m−1)!

m∑
p=k+2

s(m, p). ❚

Notice that from the last result we easily obtain that am,0 = 1 and am,m−2 =
1

(m−1)!
.

Up to now, we do not know the value of every coefficient of Pm(x1, x2, . . . , xm).
Even the evaluation of the coefficient of xi

kxj
l, where 0 ≤ k, l and k + l ≤ m − 2,

seems to be very complicated. For this, the basic step is to evaluate the formula of
fm(x1, x2, . . . , xm) in the case where exactly two variables are nonzero, [8].
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