Strong edge-magic labelling of a cycle with a chord

J. A. MacDougall
School of Mathematical and Physical Sciences
University of Newcastle, NSW 2308
Australia

W. D. Wallis

Department of Mathematics
Southern Illinois University
Carbondale, IL 62901-4428
U.S.A.

Abstract

Suppose G is a finite graph with vertex-set $V(G)$ and edge-set $E(G)$. An edge-magic total labelling on G is a one-to-one map λ from $V(G) \cup E(G)$ onto the integers $1,2, \ldots,|V(G) \cup E(G)|$ with the property that, given any edge (x, y), $$
\lambda(x)+\lambda(x, y)+\lambda(y)=k
$$ for some constant k. Such a labelling is called strong if the smallest labels appear on the vertices. In this paper, we investigate the existence of strong edge-magic total labellings of graphs derived from cycles by adding one chord.

1 Preliminaries

All graphs are finite, simple and undirected. The graph G has vertex-set $V(G)$ and edge-set $E(G)$. Unless otherwise noted, $V(G)=v$ and $E(G)=e$.

A labelling of a graph is any map that carries some set of graph elements to numbers (usually to the positive or non-negative integers). Magic labellings are one-to-one maps onto the appropriate set of consecutive integers starting from 1, with some kind of "constant-sum" property. An edge-magic total labelling on G is a one-to-one map λ from $V(G) \cup E(G)$ onto the integers $1,2, \ldots,|V(G) \cup E(G)|$ with the property that, given any edge (x, y),

$$
\lambda(x)+\lambda(x, y)+\lambda(y)=k
$$

for some constant k. Edge-magic total labellings were first discussed by Kotzig and Rosa [4]. A recent discussion of edge-magic total labellings can be found in [5].

2 Strong labellings

An edge-magic total labelling will be called strong if it has the property that the vertex-labels are the integers $1,2, \ldots, v$, the smallest possible labels. A graph with a strong edge-magic total labelling will be called strongly edge-magic. (Note: the phrase "super-edge-magic" has been used in the literature. The change in terminology is suggested because "super" has been used with other meanings in the study of magic labellings.)

If vertex x_{i} has degree d_{i} and is to receive label a_{i}, it is necessary to find an arrangement $\left\{a_{i}\right\}$ of the first v integers such that

$$
\begin{equation*}
e \text { divides } \sum_{i=1}^{v+e} i+\sum_{i=1}^{v}\left(d_{i}-1\right) a_{i} \tag{1}
\end{equation*}
$$

It follows that the even cycles are not strongly edge-magic. However, every odd cycle has a strong labelling [2]. The following labelling of the odd cycle with vertices $x_{1}, x_{2}, \ldots, x_{2 n+1}$ is strong:

$$
\begin{equation*}
\lambda\left(x_{i}\right) \equiv 1+n i(\bmod 2 n+1) \tag{2}
\end{equation*}
$$

(the members of $\mathbb{Z}_{2 n+1}$ being taken as $1,2, \ldots, 2 n+1$). This labelling has been rediscovered several times.

2.1 Some facts about strong labellings

Enomoto et al. proved the following useful result.
Lemma 1 [2] Any strongly edge-magic graph other than K_{1} satisfies $e \leq 2 v-3$.
It was noticed in [3] that a graph G is strongly edge-magic if and only if there is a map λ from $V(G)$ onto $\{1,2, \ldots, v\}$ such that

$$
\begin{equation*}
S=\{\lambda(x)+\lambda(y) \mid x y \in E(G)\} \tag{3}
\end{equation*}
$$

is a set of consecutive integers. (This fact is also implicit in [1].) The strong edgemagic total labelling is constructed from λ as follows: if s is the largest member of S, the constant k is $v+1+s$, and $\lambda(x y)=k-\lambda(x)-\lambda(y)$ for each edge $x y$. We call this the edge-magic total labelling induced by the vertex labelling λ; the use of the same symbol λ for both labellings should cause no confusion. The vertex labelling λ is in fact an edge-antimagic vertex labelling, so we could say that G is strongly edge-magic if and only if it has an edge-antimagic vertex labelling such that the edge
weights are consecutive. It is convenient to call $\lambda(x)+\lambda(y)$ the vertex-weight of the chord $x y$.

There is a natural duality for strong edge-magic total labellings. If λ is a vertex labelling for which (3) is consecutive, then the map λ^{*}, defined by

$$
\lambda^{*}(x)=v+1-\lambda(x),
$$

also has this property. We call λ^{*} the strong dual of λ. Strong duality will be useful in complete listings of small strong labellings. Sometimes the strong dual is identical to the original labelling (an example is the labelling in Figure 2); in this case the labelling is strongly self-dual.

3 Cycle plus a chord

The graph constructed by adding a chord to a cycle always satisfies Lemma 1. We wondered whether all such graphs are strongly edge-magic. The short answer is "no"; an exception is the graph formed from a 6 -cycle by joining two vertices of distance 2. But maybe this is the only exception. We shall provide solutions for all cases of an odd cycle with a chord, and the majority of cases of an even cycle with a chord.

It will be convenient to have a notation for a cycle with a chord added. We shall write C_{v}^{t} to mean the graph constructed from a C_{v} by joining two vertices whose distance in the cycle is t. In this notation, we have just remarked that C_{6}^{2} is not strongly edge-magic.

Suppose C_{v}^{t} has a strong edge-magic total labelling, and suppose the endpoints of the chord receive labels a and b. Then (1) is

$$
\begin{equation*}
(v+1) k=2(1+2+\ldots+v)+a+b+((v+1)+(v+2)+\ldots+(2 v+1)) \tag{4}
\end{equation*}
$$

so $v+1$ must divide $a+b+\delta(v+1)$, where δ is 0 when v is even and $\frac{1}{2}$ when v is odd.

When v is even, say $v=2 n$, we have $a+b \equiv 0(\bmod 2 n+1)$, so $a+b=0$ or $2 n+$ 1 or $4 n+2 \ldots$ and the condition $0 \leq a, b \leq 2 n$ implies $a+b=2 n+1$. From (4), $k=2 n+1$ and the set of sums (3) is

$$
\{n+1, n+2, \ldots, 2 n+1, \ldots, 3 n+1\}
$$

For odd $v=2 n+1$ we get $a+b=n+1$ or $3 n+3$ yielding sums

$$
\{n+1, n+2, \ldots, 3 n+2\} \text { or }\{n+2, n+2, \ldots, 3 n+3\}
$$

respectively. In this case the vertex labels that induce a strong edge-magic total labelling of any C_{v}^{t} will also induce such a labelling of C_{v}.

It may well happen that one vertex labelling of C_{v} provides strong edge-magic total labellings of C_{v}^{t} for all possible chord lengths t. A labelling with this desirable property will be called universal.

3.1 Odd cycles

A chord in C_{v} of length t is of course also a chord of length $v-t$. This means that we can restrict our attention to chords of length at most $\frac{1}{2} v$, or, in the case of odd cycles, to chords of odd length.

It is easy to see that the labelling (2) of $C_{2 n+1}$ provides chords of all lengths t where $t \equiv 3(\bmod 4)$, so C_{v}^{t} is strongly magic for every $t \equiv 3(\bmod 4)$, when v is odd. However, we have constructed better labellings.

Theorem 1 The following vertex labelling λ of $C_{4 m+3}$ is universal:

i values	$\lambda\left(x_{i}\right)$
i even, $2 \leq i \leq 2 m$	$2 m+3+\frac{1}{2} i$
i even, $2 m+2 \leq i \leq 4 m+2$	$\frac{1}{2}(i+2)$
i odd, $1 \leq i \leq 2 m+1$	$\frac{1}{2}(i+1)$
i odd, $2 m+3 \leq i \leq 4 m+1$	$2 m+\frac{1}{2}(i+5)$
$i=4 m+3$	$2 m+3$

Proof. It is easy to verify that λ yields edges with vertex-weights $\{2 m+3,2 m+$ $4, \ldots, 6 m+5\}$. So it induces a strongly edge-magic labelling of $C_{4 m+3}$. To prove that it is a strongly edge-magic labelling of $C_{4 m+3}^{t}$ it suffices to exhibit a chord of length t with vertex-weight $2 m+2$ or $6 m+6$.

For $1 \leq i \leq m, \lambda\left(x_{2 i-1}\right)=i$ and $\lambda\left(x_{4 m+2-2 i}\right)=2 m+2-i$. So the chord $x_{2 i-1} x_{4 m+2-2 i}$ of length $4(m-i)+3$ has vertex-weight $2 m+2$. This covers chords of lengths $\{3,7, \ldots, 4 m-1\}$.

For $1 \leq i \leq m-1, \lambda\left(x_{2 i}\right)=2 m+3+i$ and $\lambda\left(x_{4 m+1-2 i}\right)=4 m+3-i$. So the chord $x_{2 i} x_{4 m+1-2 i}$ of length $4(m-i)+1$ has vertex-weight $6 m+6$. This covers chords of lengths $\{5,9, \ldots, 4 m-3\}$.

Finally, $x_{4 m+1} x_{4 m+3}$ is a chord of length $4 m+1$ whose vertex-weight is $\lambda\left(x_{4 m+1}\right)+$ $\lambda\left(x_{4 m+3}\right)=(4 m+3)+(2 m+3)=6 m+6$. So the construction covers all lengths.

We have not found a universal labelling for all cycles $C_{4 m+1}$. We present two theorems, one of which has chords with the appropriate weight of all odd lengths except 5 and 9 (and, consequently, all even lengths except $4 m-4$ and $4 m-8$), and another for chords of all lengths congruent to 1 (or 0) modulo 4 other than $4 m-3$ (or 4). So all odd cycles with chords are strongly edge-magic.

It should be noted that the constructions fail when $m<3$. However, universal labellings of C_{5} and C_{9} exist; see Figure 1.

Theorem 2 The following vertex labelling λ induces a strongly edge-magic labelling of $C_{4 m+1}^{t}$ for every t other than $t=5,9,4 m-4,4 m-8$, provided $m \geq 3$:

Figure 1: Universal labellings of C_{5} and C_{9}.

i values	$\lambda\left(x_{i}\right)$
i even, $2 \leq i \leq 2 m-2$	$2 m+4+\frac{1}{2} i$
i even, $2 m \leq i \leq 4 m$	$\frac{1}{2} i+2$
i odd, $1 \leq i \leq 2 m+1$	$\frac{1}{2}(i+1)$
i odd, $2 m+3 \leq i \leq 4 m-3$	$2 m+\frac{1}{2}(i+5)$
$i=4 m \pm 1$	$\frac{1}{2}(i+7)$

Proof. Again it is easy to verify that λ induces a strongly edge-magic labelling of $C_{4 m+1}$. To prove that it is a strongly edge-magic labelling of $C_{4 m+1}^{t}$ it suffices to exhibit a chord of length t with vertex-weight $2 m+1$ or $6 m+3$.

For $1 \leq i \leq m-1, \lambda\left(x_{2 i-1}\right)=i$ and $\lambda\left(x_{4 m-2-2 i}\right)=2 m+2-i$. So the chord $x_{2 i-1} x_{4 m-2-2 i}$ of length $4(m-i)-1$ has vertex-weight $2 m+1$. This covers chords of lengths $\{3,7, \ldots, 4 m-5\}$.

For $1 \leq i \leq m-5, \lambda\left(x_{2 m+2 i+1}\right)=3 m+3+i$ and $\lambda\left(x_{2 m-8-2 i}\right)=3 m-i$. So the chord $x_{2 m+2 i+1} x_{2 m-8-2 i}$ of length $4 i+9$ has vertex-weight $6 m+3$. This covers chords of lengths $\{13,17, \ldots, 4 m-11\}$.

Finally, we have the following chords: $x_{2 m-1} x_{2 m+1}$, length $4 m-1$, vertex-weight $m+(m+1)=2 m+1 ; x_{4 m-7} x_{4 m+1}$, length $4 m-7$, vertex-weight $(2 m+4)+(4 m-1)=$ $6 m+3$; and $x_{4 m-1} x_{4 m-5}$, length $4 m-3$, vertex-weight $(2 m+3)+4 m=6 m+3$.

So the construction covers all required lengths.
Notice that the construction fails when $m<3$. When $m=1$ two values are assigned to $\lambda\left(x_{3}\right)$ and $\lambda\left(x_{5}\right)>5$; when $m=2$ the value assigned to $\lambda\left(x_{4 m-5}\right)$ comes from the third line of the table, not the fourth line, so chord length $4 m-3$ does not arise.

Theorem 3 The following vertex labelling λ induces a strongly edge-magic labelling of $C_{4 m+1}^{t}$ for every $t \equiv 1(\bmod 4)$ except $4 m-3$:

i values	$\lambda\left(x_{i}\right)$
i even, $2 \leq i \leq 2 m-2$	$2 m+3+\frac{1}{2} i$
$i=2 m$	$m+2$
i even, $2 m+2 \leq i \leq 4 m-2$	$2 m+2+\frac{1}{2} i$
$i=4 m$	$2 m+2$
i odd, $1 \leq i \leq 2 m+1$	$\frac{1}{2}(i+1)$
i odd, $2 m+3 \leq i \leq 4 m-1$	$\frac{1}{2}(i+3)$
$i=4 m+1$	$\frac{1}{2}(i+5)$

Proof. It is easy to check that λ is an edge-magic labelling with vertex labels $\{1,2, \ldots, 4 m+1\}$ whose vertex-weights are $\{2 m+2,2 m+3, \ldots, 6 m+2\}$. For odd i, $1 \leq i \leq 2 m-3$, the chord $x_{i} x_{4 m-2-i}$ has vertex-weight $2 m+1$ and length $4 m-4-2 i$, so the labelling induces a strongly magic labelling of $C_{4 m+1}^{4 m-4-2 i}$. As i ranges from 1 to $2 m-3$, this produces labellings for chords of lengths $5,9, \ldots, 4 m-7$.

3.2 Even cycles

Suppose there is a strongly magic labelling of $C_{2 n}^{t}$. Suppose the sums of adjacent labels are $k, k+1, \ldots, k+2 n$, where the sum of the labels on the chord is $k+i$. If we add the sums for all edges of the cycle, we add the label on each vertex twice, so

$$
\sum_{j=0}^{2 n}(k+j)=2 \sum_{j=1}^{2 n} j+(k+i)
$$

or

$$
\begin{aligned}
(2 n+1) k+\frac{2 n(2 n+1)}{2} & =2 n(2 n+1)+k+i \\
i & =2 n\left(k-\frac{2 n+1}{2}\right)
\end{aligned}
$$

As $1 \leq i \leq 2 n$, and as k is an integer, the only possibility is for $k-\frac{2 n+1}{2}$ to equal $\frac{1}{2}$, so that $i=n$ and $k=n+1$. If a suitable labelling of the vertices is found, we may take the chord to be any pair of vertices whose labels add to $2 n+1$.

For example, consider the C_{8} whose vertices are labeled (sequentially) $1,4,3,8,2$, $6,7,5$. A chord could be added joining the vertices labeled 1,8 , giving a strongly magic labelling of C_{8}^{3}, or 2,7 , giving a strongly magic labelling of C_{8}^{2}. This example does not provide a strongly magic labelling of C_{8}^{4}, but such labellings are available (an example is $1,5,3,2,8,4,7,6$).

A complete search shows that the only examples for C_{4} and C_{6} are 1,3,4,2 and $1,3,2,6,4,5$. These give strongly magic labellings of C_{4}^{2} and C_{6}^{3}. There is no such labelling of C_{6}^{2}.

3.3 Some general constructions

Theorem 4 The following vertex labelling λ induces a strongly edge-magic labelling of $C_{4 m}^{t}$ for all $t \equiv 2(\bmod 4)$:

i values	$\lambda\left(x_{i}\right)$
i even, $2 \leq i \leq 2 m-2$	$2 m+\frac{1}{2}(i+2)$
i even, $2 m \leq i \leq 4 m$	$\frac{1}{2}(i+2)$
i odd, $1 \leq i \leq 2 m-1$	$\frac{1}{2}(i+1)$
i odd, $2 m+1 \leq i \leq 4 m-1$	$2 m+\frac{1}{2}(i+1)$

Proof. There is no problem in seeing that the vertex labels run from 1 to $4 m$ and the vertex-weights run from $2 m+1$ to $6 m+1$, omitting $4 m+1$.

When i is odd and $1 \leq i \leq 2 m-1$, the chord $x_{i} x_{4 m-i}$, of length $4 m-2$, has vertex-weight $4 m+1$. So the construction induces strong edge-magic labellings of $C_{4 m}^{t}$ in all the required cases.

This construction gives no other cases: the other chords with the appropriate vertex-weight duplicate these lengths.

Theorem 5 The following vertex labelling λ induces a strongly edge-magic labelling of $C_{4 m+2}^{t}, m>1$, for all odd t other than 5 , and for $t=2,6$:

i values	$\lambda\left(x_{i}\right)$
$i=2$	$2 m+4$
$i=4$	$4 m+2$
$i=2 m$	$m+2$
$i=2 m+2$	$m+3$
i even, $6 \leq i \leq 2 m-2$	$2 m+2+\frac{1}{2} i$
i even, $2 m+4 \leq i \leq 4 m+2$	$2 m+\frac{1}{2} i$
i odd, $1 \leq i \leq 2 m+1$	$\frac{1}{2}(i+1)$
i odd, $2 m+3 \leq i \leq 4 m+1$	$\frac{1}{2}(i+5)$

Proof. Again, the vertex labels have the required values, and the vertex-weights cover all possibilities once each, with $4 m+3$ missing. We see that the chords with vertex-weight $4 m+3$ are:
$x_{2 j+1} x_{4 m+4-2 j}$, for $j=1,2, \ldots, m$, producing chords of all lengths $\equiv 3(\bmod 4)$;
$x_{2 m+2 j+1} x_{4 m+2 j}$, for $j=1,2, \ldots, m-5$, giving chords of all lengths $\equiv 1(\bmod 4)$ other than 5;
$x_{2 m-2} x_{2 m}$ and $x_{2 m-4} x_{2 m+2}$, giving chords of lengths 2 and 6.

Figure 2: A strong labelling of C_{6}^{3}.

3.4 Small examples

Complete searches have been made for some small cases. A solution is denoted by the sequence of vertex labels around the cycle, followed by the labels on the endpoints of the chord. In the odd order cases, these vertex labels yield a strong labelling of the cycle.

Up to C_{6}, all the solutions of a given size have the same vertex labels, but there is more than one choice for the chord. Each is strongly self-dual.

C_{4}

The self-dual labelling $1,2,4,3$ provides two solutions for C_{4}^{2}, using chords 1,4 and 2,3 .

C_{5}

The self-dual labelling of C_{5} shown in Figure 1 has chords 1,2 and 4,5 of length 2. There are no other examples.

C_{6}

The self-dual labelling $1,3,2,6,4,5$ of C_{6} can be interpreted as a strong labelling of C_{6}^{3} in three ways, using chord namely 1,6 or 2,5 or 3,4 . There is no solution for C_{6}^{2}.

The pattern in these small orders does not continue. In particular, strongly self-dual examples seem to be relatively rare. In the examples of orders 4 and 6, all longest chords have endpoints whose labels sum to the required total, but this promising pattern does not continue - there is no such example at order 8.

In the higher cases, it is common for several chord lengths to be provided by the same vertex-labelling. We represent these in an obvious notation.

C_{7}

There are five vertex labellings for C_{7}, up to duality, all but one of which provide solutions for both C_{7}^{2} and C_{7}^{3} :

Vertex labels	Chord	
	length 2	length 3
$1,4,7,3,6,2,5$		1,$3 ; 5,7$
$1,4,2,7,3,5,6$	5,7	1,3
$1,4,2,5,6,3,7$	1,3	5,7
$1,5,6,4,3,2,7$	5,7	1,3
$1,4,3,7,2,6,5$	1,3	5,7

The first solution is self-dual.
C_{8}
The labellings for C_{8} form four dual pairs and provide all chords:

Vertex labels	Chords		
	length 2	length 3	length 4
$1,4,3,8,2,6,7,5$	2,$7 ; 4,5$	1,$8 ; 3,6$	
$1,4,8,3,7,6,2,5$	1,$8 ; 2,7 ;$		
	3,$6 ; 4,5$		
$1,4,2,8,3,5,7,6$		1,$8 ; 3,6$	2,$7 ; 4,5$
$1,5,3,2,8,4,7,6$		2,$7 ; 3,6$	1,$8 ; 4,5$

However, observe that none is universal.

C_{9}

We have constructed all labellings of C_{9} that induce strongly edge-magic labellings of C_{9}^{t}. There are thirteen dual pairs and five self-dual labellings. We have tabulated one member of each dual pair (the first column and the first four rows of the second column) followed by the self-dual labellings, showing the number of chords of various lengths. It will be seen that many are universal.

Vertex labels	Chord length		
	2	3	4
$1,5,3,7,2,9,4,8,6$	1	2	1
$1,5,3,9,4,7,2,8,6$	1		3
$1,5,2,8,6,3,9,4,7$	2	1	1
$1,5,2,9,4,8,6,3,7$		2	2
$1,5,4,3,9,2,8,6,7$	3	1	
$1,5,8,6,4,3,9,2,7$	1	2	1
$1,5,9,2,8,4,3,6,7$		1	3
$1,5,7,3,4,9,2,6,8$	1	2	1
$1,5,3,4,8,6,7,2,9$	1	2	1

Vertex labels	Chord length		
	2	3	4
$1,5,7,2,6,8,3,4,9$	1	2	1
$1,5,8,6,2,7,4,3,9$		3	1
$1,6,8,5,4,2,9,3,7$	1	1	2
$1,7,5,8,6,3,4,2,9$	2	1	1
$1,5,9,4,8,3,7,2,6$	2	2	
$1,5,9,2,6,7,3,4,8$	2	2	
$1,6,8,3,5,7,2,4,9$	2	2	
$1,7,4,2,5,8,6,3,9$	2		2
$1,8,6,7,5,3,4,2,9$	2	2	

C_{10}

The labellings for C_{10} come in 17 dual pairs. There are no self-dual labellings. We tabulate the number of chords of various lengths for one member of each pair:

Vertex labels	Chord length			
	2	3	4	5
$1,5,2,6,4,10,3,9,7,8$	1	1	1	2
$1,5,3,10,4,8,2,7,9,6$	2	3		
$1,5,4,10,3,9,7,8,2,6$	1	3	1	
$1,5,2,8,4,10,3,6,9,7$		1	2	2
$1,5,4,3,10,2,8,6,9,7$		3	2	
$1,5,8,2,10,4,3,6,9,7$			4	1
$1,5,9,4,3,6,10,2,8,7$			4	1
$1,5,9,6,10,3,4,8,2,7$	2	1	2	
$1,5,10,2,8,6,3,4,9,7$	3		1	1

Vertex labels	Chord length			
	2	3	4	5
$1,5,10,4,3,9,7,6,2,8$	1	2	1	1
$1,5,2,6,9,7,3,10,4,8$	2	3		
$1,5,2,6,3,10,4,8,7,9$	2	2		1
$1,5,4,3,10,2,6,8,7,9$			4	1
$1,5,10,3,4,8,6,2,7,9$	3		1	1
$1,6,8,2,4,5,10,3,9,7$			2	3
$1,6,4,2,10,3,5,9,7,8$			4	1
$1,6,9,7,5,3,10,4,2,8$		1	4	

In this case there are two universal labellings, the first two listed.

C_{11}

There are 308 suitable labellings of C_{11}. Several are self-dual: one example is (1, 7, 4, 10, 3, 6, 9, 8, 2, 5, 11).
C_{12}
Altogether there are 503 suitable labellings of C_{11}. Several are self-dual: one example is $(1,6,10,4,11,7,12,5,3,9,2,8)$. One universal labelling is $(1,6,2,12,3,8,4$, $5,11,7,10,9)$.

4 Two unsolved problems

1. For which values of t does $C_{2 n}^{t}$ have a strongly magic labelling?
2. For which n is there a universal vertex labelling of $C_{2 n}$?

Acknowledgement

Research for this paper was carried out while the second author was a visitor at the University of Newcastle, where he holds a conjoint appointment.

References

[1] B. D. Acharya and S. M. Hegde, Strongly indexable graphs. Discrete Math. 93 (1991), 123-129.
[2] H. Enomoto, A. S. Llado, T. Nakamigawa and G. Ringel, Super edge-magic graphs. SUT J. Math. 2 (1998), 105-109.
[3] R. M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge magic labellings among other classes of labellings. Discrete Math. 231 (2001), 153-168.
[4] A. Kotzig and A. Rosa, Magic valuations of finite graphs. Canad. Math. Bull. 13 (1970), 451-461.
[5] W. D. Wallis, E. T. Baskoro, M. Miller and Slamin, Edge-magic total labellings. Australas. J. Combin. 22 (2000), 177-190.

