Helly-type problems for convex quadrilaterals in the plane*

Liping Yuan Ren Ding
College of Mathematics
Hebei Normal University
Shijiazhuang 050016
China
lpyuan@heinfo.net rending@heinfo.net

Abstract

A family of sets in the plane is said to have a 3-transversal if there exists a set of 3 points such that each member of the family contains at least one of them. A conjecture of Grünbaum's says that a planar family of translates of a convex compact set has a 3-transversal provided that any two of its members intersect. Recently the conjecture has been proved affirmatively (see [1]). We provide a straightforward proof for the conjecture for the family of translates of a closed convex quadrilateral without parallel sides in the plane. Moreover, in our proof we obtain exactly the 3-transversals, i.e. the concrete 3 -point sets the conjecture claims. The proof is valid for some other convex polygons and it is likely that we can prove the conjecture in the same straightforward way.

For brevity's sake, a family of sets is said to be Π^{3}, or to have a 3-transversal if there exists a set of 3 points such that each member of the family contains at least one of them. The family is said to be Π_{2}^{1} if every two sets of the family have a nonempty intersection. Grünbaum's conjecture says
Conjecture For a family of translates of a compact convex set in the plane, Π_{2}^{1} implies Π^{3}.

In a recent paper by M. Katchalski and D. Nastir (see [2]) the above conjecture of Grünbaum was mentioned again. Karasev [1] gives an affirmative answer to the conjecture. We provide a straightforward proof for the conjecture for the case of a quadrilateral instead of a general compact convex set. In the same way we can prove the conjecture for triangles, parallelograms and trapezoids, etc. Accordingly, it is

[^0]

Figure 1: Quadrilateral $A B C D$ and its related trapezoid $A B C D_{0}$
likely to prove the conjecture in a similar straightforward way. The proof is completely different from [1]. Moreover, in our proof we obtain exactly the 3 -transversals, i.e. the concrete 3 -point sets the conjecture claims.

First, we introduce some terminology.
Let x^{+}and x^{-}denote half-planes bounded by the line x with $x^{+} \cap x^{-}=x$.
Two half-planes are related if one of them is a translate of the other. Related half-planes are ordered by inclusion so that $x^{+}<y^{+}$implies that x^{+}is contained in y^{+}and $x^{+} \neq y^{+}$.

Let $l_{A B}$ denote the line determined by points A and B. Let relint $A B$ denote the relative interior of the line segement $A B$, that is, the line segement without its endpoints. Let int $A B C D$ denote the interior of the polygon $A B C D$.

Theorem 1. For a family \mathbb{K} of translates of a closed convex quadrilateral $A B C D$ with $A B \nVdash C D$ and $A D \nVdash B C, \Pi_{2}^{1}$ implies Π^{3}.

Proof. See Fig. 1. Note that convex quadrilateral $A B C D=\cap_{i=1}^{4} l_{i}^{+}$, where $l_{1} \cap l_{4}=A$, $l_{1} \cap l_{2}=B, l_{2} \cap l_{3}=C$ and $l_{3} \cap l_{4}=D$. Assume without loss of generality that both l_{3} and l_{4} intersect the two open rays $l_{1} \backslash l_{2}^{-}$and $l_{2} \backslash l_{1}^{-}$. Through A draw the line $l_{5} \| l_{2}$, intersecting l_{3} at D_{0}. Note that the trapezoid $A B C D_{0}=\cap_{i} l_{i}^{+}(i=1,2,3,5)$ and we define it as the related trapezoid of the convex quadrilateral $A B C D$. Let $\left|A D_{0}\right|=a,|B C|=b,\left|C D_{0}\right|=d$ and $|A B|=c$. Assume without loss of generality that $|C D|=\lambda d$ where $\frac{1}{2}<\lambda<1$.

For any $K \in \mathbb{K}$, let K^{\prime} be the related trapezoid of K, and note that $K^{\prime}=\cap_{i} l_{i}^{+}\left(K^{\prime}\right)$ $(i=1,2,3,5)$ where $l_{i}^{+}\left(K^{\prime}\right)$ is related to l_{i}^{+}for $i=1,2,3,5$. Let $\mathbb{K}^{\prime}=\left\{K^{\prime}: K^{\prime}\right.$ is a related trapezoid of $K, K \in \mathbb{K}\}$. Then \mathbb{K}^{\prime} is Π_{2}^{1} since \mathbb{K} is Π_{2}^{1}. We denote $l_{i}^{+}\left(\mathbb{K}^{\prime}\right)=$ $\max \left\{l_{i}^{+}\left(K^{\prime}\right): K^{\prime} \in \mathbb{K}^{\prime}\right\}$ and suppose $l_{i}^{+}\left(K_{i}^{\prime}\right)=l_{i}^{+}\left(\mathbb{K}^{\prime}\right)(i=1,2,3,5)$, and that the trapezoid $A_{1} B_{1} C_{1} D_{1}=\cap_{i} l_{i}^{+}\left(\mathbb{K}^{\prime}\right)(i=1,2,3,5) ;$ we have $\cup_{K^{\prime} \in \mathbb{K}^{\prime}} K^{\prime} \subseteq A_{1} B_{1} C_{1} D_{1}$, and therefore $\cup_{K \in \mathbb{K}} \subseteq A_{1} B_{1} C_{1} D_{1}$. Let $\left|A_{1} D_{1}\right|=a_{1},\left|B_{1} C_{1}\right|=b_{1},\left|A_{1} B_{1}\right|=c_{1}$ and $\left|C_{1} D_{1}\right|=d_{1}$ and let $\frac{c_{1}}{c}=\frac{d_{1}}{d}=\beta$. Then $1 \leq \beta \leq 2$ since \mathbb{K}^{\prime} is Π_{2}^{1}.
Case 1 $\beta=1$
See Fig. 2. Note that $\beta=1$ implies $b_{1} \leq 2 b$ since \mathbb{K} is Π_{2}^{1}. Then $a_{1}=b_{1}-$ $(b-a) \leq a+b$. Let M_{1}, N_{1} be midpoints of $A_{1} B_{1}$ and $C_{1} D_{1}$ respectively and let

Figure 2: $\beta=1$

Figure 3: $1<\beta \leq 2, b<b_{1} \leq 2 b-a$
$\left|M_{1} P_{1}\right|=\left|P_{1} P_{2}\right|=\left|P_{2} N_{1}\right|$.
For any $K \in \mathbb{K}$, let $M N=K \cap M_{1} N_{1}$; then $|M N|=\frac{a+b}{2}$ since $l_{2}(K)=l_{B_{1} C_{1}}$ and $\lambda>\frac{1}{2}$. However, $\left|M_{1} P_{1}\right|=\left|P_{1} P_{2}\right|=\left|P_{2} N_{1}\right|=\frac{1}{3}\left|M_{1} N_{1}\right|=\frac{a_{1}+b_{1}}{6} \leq \frac{a+3 b}{6}$. Thus $|M N|>\left|M_{1} P_{1}\right|=\left|P_{1} P_{2}\right|=\left|P_{2} N_{1}\right|$. It follows that $M N \cap\left\{P_{1}, P_{2}\right\} \neq \emptyset$ and therefore $K \cap\left\{P_{1}, P_{2}\right\} \neq \emptyset$, which implies that \mathbb{K} is Π^{3}.

Case $21<\beta \leq 2$.

It is easy to see that $b_{1}>b$.
Subcase $2.1 \quad b<b_{1} \leq 2 b-a$.
See Fig. 3. $\left|B_{1} M_{1}\right|=c . M_{1} N_{1} \| B_{1} C_{1}$. So $\left|C_{1} N_{1}\right|=d$. Let P_{1} be the midpoint of $M_{1} N_{1}$ and let E_{1}, F_{1} be midpoints of $B_{1} M_{1}, C_{1} N_{1}$. On the line segment $E_{1} F_{1}$, set $\left|E_{1} P_{2}\right|=\left|P_{2} P_{3}\right|=\left|P_{3} F_{1}\right|$.

For any $K \in \mathbb{K}$, it is easy to see that $l_{2}(K)$ must lie between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$.
(a) $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{E_{1} F_{1}}$.

Let $E F=K \cap E_{1} F_{1}$. It is easy to see that $|E F| \geq \frac{a+b}{2}$ since $\lambda>\frac{1}{2}$. However, $\left|E_{1} F_{1}\right|=\frac{2 b_{1}-b+a}{2}$ implies that $\left|E_{1} P_{2}\right|=\left|P_{2} P_{3}\right|=\left|P_{0} F_{1}\right|=\frac{2 b_{1}-b+a}{6}$, so we have $|E F| \geq\left|P_{2} E_{1}\right|=\left|P_{2} P_{3}\right|=\left|P_{3} F_{1}\right|$. It follows that $E F \cap\left\{P_{2}, P_{3}\right\} \neq \emptyset$, and therefore $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
(b) $l_{2}(K)$ lies between $l_{E_{1} F_{1}}$ and $l_{M_{1} N_{1}}$.

Let $M N=K \cap M_{1} N_{1}$. It is easy to see that $|M N| \geq \frac{a+b}{2}$ and $\left|M_{1} N_{1}\right|=b_{1}-b+a$. Then we have $\left|M_{1} P_{1}\right|=\left|P_{1} N_{1}\right|=\frac{b_{1}-b+a}{2}$, which implies that $|M N|>\left|M_{1} P_{1}\right|=$ $\left|P_{1} N_{1}\right|$. As a result, $P_{1} \in M N$ and therefore $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.

Figure 4: $1<\beta \leq 2,2 b-a<b_{1} \leq 2 b$

Figure 5: Quadrilateral $A B C D$ and its related trapezoid $A B C D_{0}$

Subcase 2.2 $2 b-a<b_{1} \leq 2 b$.
See Fig. 4. Here $\left|B_{1} B_{2}\right|=\left|C_{1} C_{2}\right|=b, B_{2} B_{3}\left\|A_{1} B_{1}, C_{2} C_{3}\right\| C_{1} D_{1},\left|B_{1} M_{1}\right|=c$, $M_{1} N_{1} \| B_{1} C_{1}$. Let E_{1}, F_{1} be midpoints of $B_{1} M_{1}$ and $C_{1} N_{1}$. Draw $E_{1} F_{1}$, meeting $C_{2} C_{3}$ at P_{2} and meeting $B_{2} B_{3}$ at P_{3}. Then $\left\{P_{2}, P_{3}\right\} \subseteq$ relint $E_{1} F_{1}$ since $\left|E_{1} F_{1}\right|=$ $\frac{2 b_{1}-b+a}{2}>b, P_{2} \in$ relint $E_{1} P_{3}$ since $\left|E_{1} F_{1}\right|<2 b$. Let P_{1} be the midpoint of $M_{1} N_{1}$.

For any $K \in \mathbb{K}$, it is easy to see that $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$ since $K \cap K_{2} \neq \varnothing$.
(a) $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{E_{1} F_{1}}$.

Let $E F=K \cap E_{1} F_{1}$, then $|E F| \geq \frac{a+b}{2}$ since $\lambda>\frac{1}{2}$. Notice that $\left|P_{2} P_{3}\right|=$ $\frac{5 b-2 b_{1}-a}{2}>0$ and $|E F|>\left|P_{2} P_{3}\right|$. Moreover, $l_{C_{2} C_{3}} \subseteq l_{3}^{+}(K) \quad$ and $\quad l_{B_{2} B_{3}} \subseteq l_{1}^{+}(K)$ since \mathbb{K} is Π_{2}^{1}, and it is clear to see that $P_{2} \in E F$ when $l_{3}(K)=l_{C_{2} C_{3}}$ and $P_{3} \in E F$ when $l_{1}(K)=l_{B_{2} B_{3}}$. Then we conclude that $E F \cap\left\{P_{2}, P_{3}\right\} \neq \varnothing$ which implies $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
(b) $l_{2}(K)$ lies between $l_{E_{1} F_{1}}$ and $l_{M_{1} N_{1}}$.

Let $M N=K \cap M_{1} N_{1}$, then $|M N| \geq \frac{a+b}{2}$ since $\lambda>\frac{1}{2}$. However, $\left|M_{1} P_{1}\right|=$ $\left|P_{1} N_{1}\right|=\frac{b_{1}-b+a}{2}$ implies that $|M N| \geq\left|M_{1} P_{1}\right|=\left|P_{1} N_{1}\right|$, then we have $P_{1} \in M N$ and therefore $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
Subcase $2.32 b<b_{1}<\frac{5 b-a}{2}$.
See Fig. 5. In the trapezoid $A B C D_{0}$, let H be the midpoint of side $C D_{0}$. Then $H \in$ relint $C D$ since $\lambda>\frac{1}{2}$. Draw $A H$, then $A H \subseteq$ int $A B C D$.

See Fig. 6. In the trapezoid $A_{1} B_{1} C_{1} D_{1},\left|B_{1} M_{1}\right|=c, M_{1} N_{1} \| B_{1} C_{1},\left|B_{1} B_{2}\right|=$ $\left|C_{1} C_{2}\right|=b$. So, $B_{2} \in$ relint $B_{1} C_{2}$ since $b_{1}>2 b$. $B_{2} B_{3}\left\|A_{1} B_{1}, C_{2} C_{3}\right\| C_{1} D_{1}$. Then

Figure 6: $1<\beta \leq 2,2 b<b_{1} \leq \frac{5 b-a}{2}$
$\left\{B_{3}, C_{3}\right\} \subseteq$ relint $M_{1} N_{1}$ since $\left|M_{1} N_{1}\right|=b_{1}-b+a>b+a>b$. Let $O=B_{2} B_{3} \cap C_{2} C_{3}$, it is easy to see that $O \in$ int $A_{1} B_{1} C_{1} D_{1}$ since $B_{2} \in$ relint $B_{1} C_{2}$. Let P_{2} be the midpoint of $O B_{3}$. Through P_{2} draw $E_{1} F_{1} \| B_{1} C_{1}$, meeting $C_{2} C_{3}$ at Q. On the line segment $B_{1} C_{2}$ set $\left|B_{0} C_{2}\right|=b$, then $B_{0} \in$ relint $B_{1} C_{2}$ since $\left|B_{1} C_{2}\right|>b$. Through B_{0} construct $B_{0} A_{0} \| A_{1} B_{1}$ meeting $E_{1} F_{1}$ at J. Then the trapezoid $A_{0} B_{0} C_{2} C_{3} \simeq$ the trapezoid $A B C D_{0}$. Let H_{0} be the midpoint of $C_{2} C_{3}$. Since $\left|B_{2} C_{2}\right|=b_{1}-2 b$, we have $\left|O C_{2}\right|=\frac{b_{1}-2 b}{b-a} d<\frac{\frac{5 b-a}{2}-2 b}{b-a} d=\frac{d}{2}$, and therefore $O \in$ relint $C_{2} H_{0}$. However, $\left|O C_{3}\right|=\frac{3 b-a-b_{1}}{b-a} d$, so $\left|C_{2} Q\right|=\left|O C_{2}\right|+\frac{1}{2}\left|O C_{3}\right|=\frac{b_{1}-b-a}{2(b-a)} d>\frac{d}{2}$. It follows that $H_{0} \in$ relint $C_{2} Q$. Let $P_{1}=A_{0} H_{0} \cap E_{1} F_{1}$, then $P_{1} \in$ relint $J Q$. Let P_{3} be the midpoint of $M_{1} N_{1}$.

For any $K \in \mathbb{K}$, it is easy to see that $l_{2}(K)$ must lie between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$ since \mathbb{K} is Π_{2}^{1}.
(a) $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{E_{1} F_{1}}$.

Let $E F=K \cap E_{1} F_{1}$; then $|E F| \geq\left|J P_{1}\right|$. Since $\left|E_{1} F_{1}\right|=\frac{b_{1}+b+a}{2}$, we have $|J Q|=\frac{3 b-b_{1}+a}{2}$. Since $\left|H_{0} Q\right|=\frac{b_{1}-2 b}{2(b-a)} d$, it follows that $\left|P_{1} Q\right|=\frac{a\left(b_{1}-2 b\right)}{b-a}$. So we have $\left|J P_{1}\right|=|J Q|-\left|P_{1} Q\right|=\frac{(b-a)\left(3 b-b_{1}+a\right)-2\left(b_{1}-2 b\right) a}{2(b-a)}$ and $\left|P_{1} P_{2}\right|=\left|J P_{2}\right|-\left|J P_{1}\right|=$ $3 b-b_{1}-\left|J P_{1}\right|$. Then $|E F|-\left|P_{1} P_{2}\right| \geq\left|J P_{1}\right|-\left|P_{1} P_{2}\right|=2\left|J P_{1}\right|-\left(3 b-b_{1}\right)>0$. It follows that $|E F|>\left|P_{1} P_{2}\right|$. Moreover, $l_{C_{2} C_{3}} \subseteq l_{3}^{+}(K)$ and $l_{B_{2} B_{3}} \subseteq l_{1}^{+}(K)$ since \mathbb{K} is $\Pi_{2}^{1}, P_{1} \in E F$ when $l_{3}(K)=l_{C_{2} C_{3}}$ and $P_{2} \in E F$ when $l_{1}(K)=l_{B_{2} B_{3}}$, so we conclude that $E F \cap\left\{P_{1}, P_{2}\right\} \neq \varnothing$ which implies $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
(b) $l_{2}(K)$ lies between $l_{E_{1} F_{1}}$ and $l_{M_{1} N_{1}}$.

Let $M N=K \cap M_{1} N_{1}$; then $|M N| \geq \frac{b_{1}-b+a}{2}$ since $\left|F_{1} N_{1}\right|=\frac{3 b-a-b_{1}}{2(b-a)} d<\frac{d}{2}<\lambda d$. However, $\left|M_{1} P_{3}\right|=\left|P_{3} N_{1}\right|=\frac{b_{1}-b+a}{2}$ implies that $|M N| \geq\left|M_{1} P_{3}\right|=\left|P_{3} N_{1}\right|$, so it follows that $P_{3} \in M N$ and therefore $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
Subcase 2.4 $\frac{5 b-a}{2} \leq b_{1}<3 b-a$.
See Fig. 7. Here $\left|B_{1} M_{1}\right|=c, M_{1} N_{1}\left\|B_{1} C_{1},\left|B_{1} B_{2}\right|=\left|C_{1} C_{2}\right|=b, B_{2} P_{2}\right\|$ $A_{1} B_{1}, C_{2} P_{1} \| C_{1} D_{1}$. Let E_{1}, F_{1} be the midpoints of $B_{1} M_{1}$ and $C_{1} N_{1}$. Draw $E_{1} F_{1}$ intersecting $B_{2} P_{2}$ at Q and $C_{2} P_{1}$ at P_{3}. Let $O=l_{P_{1} C_{2}} \cap l_{P_{2} B_{2}}$. Then $O \in$ relint $P_{1} C_{2}$ since $\left|O C_{2}\right|=\frac{b_{1}-2 b}{b-a} d<d$ and $P_{1} \in$ relint $M_{1} P_{2}$ since $\left|M_{1} N_{1}\right|=b_{1}-b+a<2 b$. We also have $\left|P_{3} C_{2}\right|=\frac{d}{2}$ and $\left|O C_{2}\right| \geq\left|P_{3} C_{2}\right|$, it follows that $P_{3} \in$ relint $O C_{2} \cup\{O\}$ and

Figure 7: $1<\beta \leq 2, \frac{5 b-a}{2} \leq b_{1}<3 b-a$
$Q \in$ relint $E_{1} P_{3} \cup\left\{P_{3}\right\}$.
For any $K \in \mathbb{K}, l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$ since \mathbb{K} is Π_{2}^{1}.
(a) $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{E_{1} F_{1}}$.

Let $E F=K \cap E_{1} F_{1}$; then $|E F| \geq \frac{a+b}{2}$ since $\lambda>\frac{1}{2}$. At the same time, we have $|E F|>\left|Q P_{3}\right|$ since $\left|Q P_{3}\right|=\frac{2 b_{1}-5 b+a}{2}$. Noticing that $l_{P_{1} C_{2}} \subseteq l_{3}^{+}(K)$ and $l_{B_{2} P_{2}} \subseteq l_{1}^{+}(K)$ since \mathbb{K} is Π_{2}^{1}, and $P_{3} \in E F$ when $l_{3}(K)=l_{P_{1} C_{2}}$ since $\left|P_{3} C_{2}\right|<\lambda d$, we conclude that $P_{3} \in E F$, which implies that $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \varnothing$.
(b) $l_{2}(K)$ lies between $l_{E_{1} F_{1}}$ and $l_{M_{1} N_{1}}$.

Let $M N=K \cap M_{1} N_{1}$; then $|M N| \geq \frac{a+b}{2}$. Combining $\left|P_{1} P_{2}\right|=3 b-a-b_{1}>0$, we find that $|M N| \geq\left|P_{1} P_{2}\right|$. It is easy to see that $l_{P_{1} C_{2}} \subseteq l_{3}^{+}(K)$ and $l_{P_{2} B_{2}} \subseteq l_{1}^{+}(K)$. Moreover, we have $P_{1} \in M N$ if $l_{3}(K)=l_{P_{1} C_{2}}$ and $P_{2} \in M N$ if $l_{2}(K)=l_{P_{2} B_{2}}$. It follows that $M N \cap\left\{P_{1}, P_{2}\right\} \neq \emptyset$, and therefore $K \cap\left\{P_{1}, P_{2}, P_{3}\right\} \neq \emptyset$.
Subcase 2.5 $b_{1}=3 b-a$.
See Fig. 8. Now $\left|B_{1} M_{1}\right|=c . M_{1} N_{1} \| B_{1} C_{1}$. Hence $\left|M_{1} N_{1}\right|=b_{1}-b+a=2 b$. So we have $l_{2}\left(K_{1}\right)=l_{2}\left(K_{3}\right)=l_{M_{1} N_{1}}$ since $K_{1} \cap K_{3} \neq \emptyset$. Thus $\beta=2$. Let P be the midpoint of $M_{1} N_{1}$; then $P \in l_{1}\left(K_{2}\right)$ since $K_{1} \cap K_{2} \neq \emptyset$ and $K_{2} \cap K_{3} \neq \varnothing$.

For any $K \in \mathbb{K}$, it is easy to see that $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$.
(a) $l_{2}(K)=l_{B_{1} C_{1}}$.

It is easy to see that $K=K_{2}$ since $K \cap K_{1} \neq \emptyset$ and $K \cap K_{3} \neq \emptyset$. Thus $P \in K$.
(b) $l_{2}(K)$ lies between $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$ (excluding $l_{B_{1} C_{1}}$ and $l_{M_{1} N_{1}}$).

Let $M N=K \cap M_{1} N_{1}$. If $P \notin M N$, then either $M N \subseteq M_{1} P \backslash\{P\}$ or $M N \subseteq$ $P N_{1} \backslash\{P\}$. Therefore either $K \cap K_{3}=\varnothing$ or $K \cap K_{1} \neq \emptyset$, a contradiction since \mathbb{K} is Π_{2}^{1}. So we have $P \in M N$, which implies $P \in K$.
(c) $l_{2}(K)=l_{M_{1} N_{1}}$.

Let $M N=K \cap M_{1} N_{1}$; then $|M N|=b$. However, $\left|M_{1} P\right|=\left|P N_{1}\right|=b$. So we have $P \in M N$, and therefore $P \in K$.

By (a), (b), (c), we can conclude that \mathbb{K} is Π^{1}. Therefore \mathbb{K} is Π^{3} if $b_{1}=3 b-a$.

Figure 8: $1<\beta \leq 2, b_{1}=3 b-a$

Subcase $2.6 b_{1}>3 b-a$.
It is easy to see that $K_{1} \cap K_{3}=\emptyset$ if $b_{1}>3 b-a$, a contradiction since \mathbb{K} is Π_{2}^{1}. So b_{1} cannot be greater than $3 b-a$.

The proof is complete.

References

[1] R. N. Karasev, Transversals for families of translates of a two-dimensional convex compact set, Discrete Comput. Geom. 24 (2000), 345-353.
[2] M. Katchalski and D. Nashtir, A Helly type conjecture, Discrete Comput. Geom. 21 (1999), 37-43.

[^0]: * This research was supported by NSFH and SFHEM

