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Abstract

A configuration of pebbles on the vertices of a graph is solvable if one can
place a pebble on any given root vertex via a sequence of pebbling steps.
The pebbling number of a graph G is the minimum number π(G) so that
every configuration of π(G) pebbles is solvable. A graph is Class 0 if its
pebbling number equals its number of vertices. A function is a pebbling
threshold for a sequence of graphs if a randomly chosen configuration
of asymptotically more pebbles is almost surely solvable, while one of
asymptotically fewer pebbles is almost surely not. Here we prove that
graphs on n ≥ 9 vertices having minimum degree at least �n/2� are Class
0, as are bipartite graphs with m ≥ 336 vertices in each part having
minimum degree at least �m/2� + 1. Both bounds are best possible. In
addition, we prove that the pebbling threshold of graphs with minimum
degree δ, with

√
n � δ, is O(n3/2/δ), which is tight when δ is proportional

to n.

1 Introduction

1.1 Pebbling Numbers

Let G = (V, E) be a connected graph with n = n(G) vertices V = {v1, . . . , vn}
and having edge set E. A configuration C of t pebbles on G is an assignment of t
indistinguishable pebbles to the vertices of G. The notation C(v) = x means that x
pebbles have been assigned to the vertex v. (Notation such as C(a, b, c) = x means
that x pebbles have been assigned to each of the vertices a, b, c.) The parameter t is
known as the size of C, which is also denoted by |C|. A pebbling step from vertex
u to vertex v involves the removal of two pebbles from u and the placement of one
of them onto v. A configuration is r-solvable if it is possible to place a pebble on
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the root vertex r via a (possibly empty) sequence of pebbling steps. A configuration
is solvable if it is r-solvable for all choices of a root r. The pebbling number of a
graph G, denoted π(G), is the least number t for which every configuration of size
t is solvable. One should read [10] for the history and main results of the theory of
pebbling in graphs.

Clearly π(G) ≥ n(G) for every G, for the configuration which places no pebble
on r and one pebble on all other vertices is not r-solvable. The authors of [4] defined
G to be Class 0 when π(G) = n(G). Examples of Class 0 graphs include cliques (via
the Pigeonhole Principle) and cubes (see [2]), as well as the 5-cycle, the Petersen
graph, and many others. They proved that all 3-connected, diameter 2 graphs are
Class 0, and conjectured that fixed diameter graphs with large enough connectivity
are also Class 0. This conjecture was proved in [6], where the result was used to prove
that the random graph in which each edge appears independently with probability
p � (n lg n)1/d/n for some d > 0 is almost surely Class 0.

Let B(m) be the set of all connected bipartite graphs with m vertices in each
part. It was proven in [9] that every regular graph in B(m) having degree at least
�2m/3	 + 1 is Class 0. In this paper we derive a more general and stronger result
for large m. Let b = b(m) be the minimum number so that every G ∈ B(m) having
minimum degree at least b is Class 0.

Theorem 1 For all m ≥ 336, b(m) = �m/2� + 1.

We prove this in Section 2.1. We also derive an analogous result for connected
graphs. Let G(n) be the set of all connected graphs on n vertices, and let g(n) be
the minimum number g so that every G ∈ G(n) having minimum degree at least g
is Class 0. We prove the following in Section 2.2.

Theorem 2 For all n ≥ 9, g(n) = �n/2�.

1.2 Thresholds

We next consider a randomized version of pebbling, introduced in [3], in which we
consider the probability space of all configurations of t pebbles, each equally likely.
The pebbling number is the minimum t for which the probability that a configuration
is solvable equals 1. Now we wish to find t so that this probability is nearly 1. To
be more precise, let us introduce some notation.

For two functions f = f(n) and g = g(n) we say that f � g (g � f) if f/g→0
as n→∞. We set o(g) = {f | f � g} and ω(f) = {g | g � f}. We also write
f ∼ g whenever f/g→1 as n→∞. Further, we set O(f) = {g | for some c, k > 0, g <
cf for all n > k}, and similarly Ω(g) = {f | for some c, k > 0, f > cg for all n > k}.
Finally we define Θ(f) = O(f) ∩ Ω(f).

We consider sequences G = (G1, . . . , Gn, . . .) of graphs for which the number of
vertices increases with n (e.g. Gn has n vertices). For a function t = t(n) we denote
by Prt(n) the probability that a randomly chosen configuration of t pebbles on Gn

is solvable. A function τ = τ (n) is a pebbling threshold for G if Prt(n)→1 for all
t � τ and Prt(n)→0 for all t � τ . We denote by τ (G) the set of all pebbling
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thresholds for G. It is not immediately evident that every graph sequence has such a
threshold, but it is proven so in [1]. The first threshold result, from [3], established
that τ (K) = Θ(n1/2), where K is the sequence of complete graphs. More results on
the pebbling thresholds of paths, cubes, and other sequences appear in [1, 5, 7, 8].
For instance, it is known that if t ∈ τ (G) for some graph sequence G, then t ∈ Ω(n1/2).

For our purposes let us define G(n, δ) to be the set of all connected graphs on n
vertices having minimum degree at least δ = δ(n). Let Gδ = (G1, . . . , Gn, . . .) denote
any sequence of graphs with each Gn ∈ G(n, δ). In Section 2.3 we prove the following
theorem.

Theorem 3 For every function
√

n � δ = δ(n) ≤ n − 1, τ (Gδ) ⊆ O(n3/2/δ). In
particular, if in addition δ ∈ Ω(n) then τ (Gδ) = Θ(n1/2).

2 Proofs

2.1 Theorem 1

Lower bound. First we give a proof of the lower bound, that b(m) ≥ �m/2� + 1
for all m ≥ 7.

We define, for each m, the bipartite graph Bm as follows. Let |L| = |R| = m with
L = L1 ∪L2 and R = R1 ∪R2 so that |L1| = |R1| = �m/2	 and |L2| = |R2| = �m/2�.
Let the induced subgraphs on L1 ∪ R1 and on L2 ∪ R2 each be complete bipartite
with one missing edge. Let the two missing edges be xy, with x ∈ L1 and y ∈ R1,
and wz, with w ∈ L2 and z ∈ R2. Finally include the two edges wy and xz. Note
that for δ = �m/2� the graph Bm has minimum degree δ, and is δ-regular when m
is even.

Now we define a configuration C of size n = n(Bm) = 2m, and show that it is
unsolvable when m ≥ 7. We choose the root r ∈ L2−{w} and define C(r, w, x, y, z) =
0. We find a, b, c ∈ L1 − {x} and define C(a, b) = 3 and C(c) = 2. Finally we define
C(v) = 1 for all other vertices v. Clearly, |C| = n.

In order that C is r-solvable one must be able to move 2 pebbles onto either w
or z, and consequently 4 pebbles onto either x or y. It is not difficult to see that
both cases are impossible, since at most three pebbles can be put in motion via
pebbling steps from a, b, and c. Hence, for all m ≥ 7, Bm is not Class 0 and so
b(m) ≥ �m/2� + 1. �

Upper bound. Second we give a proof of the upper bound, that b(m) ≤ �m/2�+1
for all m ≥ 336.

Let B ∈ B(m) have bipartition L, R and minimum degree at least �m/2� + 1,
where |L| = |R| = m. Choose any configuration C of size n = n(B) = 2m and
let r be any chosen root (which we may assume lies in L). We assume that C is
r-unsolvable and derive a contradiction.
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We will make use of the following two observations about B. First, every pair of
vertices in the same part has a common neighbor. Second, from this it is clear that
the diameter of B is at most 3. We will derive a contradiction by accumulating 8
pebbles on some vertex, from which we can obviously pebble to r.

Denote the neighborhood of a vertex v by N(v), and the union of neighborhoods
of a set S of vertices by N(S). Then we must have C(r) = 0 and C(v) ≤ 1 for
all v ∈ N(r). We also know that C(v) ≤ 3 for all v ∈ N(N(r)) = L. Let Z =
{v | C(v) = 0}, U = {u | C(u) = 1}, and H = V −Z −U . We let ZL = Z ∩L, with
ZR, UL, UR, HL, and HR defined analogously.

Claim. |Z| > m/2.

Proof. The claim is trivial if N(r) ⊆ Z so we assume otherwise and pick some
r′ ∈ N(r) ∩ U . Now we know that we cannot move another pebble to r′. We note
that H is nonempty because Z is nonempty. Also we note that if there is some
vertex v with C(v) ≥ 4, then we can move a pebble to either r or r′. Hence we
assume C(v) ≤ 3 for all v. Moreover, we note that it must be impossible to ever put
4 pebbles on any vertex.

Suppose that there is a vertex t having C(t) = 3; without loss of generality we
assume that t ∈ L (if t ∈ R, we think of r′ as our new root and argue similarly). Since
N(r)∩N(t) ⊆ Z, we know that |Z| ≥ 2. Moreover, N(t) ⊆ Z implies |Z| > m/2, so
we assume otherwise and pick t′ ∈ N(t) ∩ (U ∪H). Then N(t′) ∩N(r′) ⊆ Z, and so
|Z| ≥ 3, which implies that |H| ≥ 2.

If there is a vertex s ∈ HL − {t} then we can argue as follows. Let X = N(r),
T = N(t), and S = N(s). Of course, (X ∩ S) ∪ (X ∩ T ) ∪ (S ∩ T ) ⊆ Z (S ∩ T ⊆ Z
since otherwise we could place 4 pebbles on t), and X ∩ S ∩ T = ∅. Therefore we
have that

m ≥ |X ∪ S ∪ T |
= |X | + |S| + |T | − |X ∩ S| − |X ∩ T | − |S ∩ T |
> 3m/2 − |Z|,

which implies that |Z| > m/2. If instead there is a vertex s′ ∈ HR then we know
that, either |Z| > m/2 because N(s′) ⊆ Z, or there is some s ∈ N(s′)∩(U∪H)−{t}.
In the latter case we move a pebble from s′ to s and argue as above. Henceforth we
may assume that C(v) ≤ 2 for all v.

Consequently the equality

|Z| + |U | + |H| = n(B) = |C| = |U | + 2|H|

tells us that |H| = |Z|, and so |H| ≥ 3. Therefore, again without loss of generality,
|HL| ≥ 2, say {s, t} ⊆ HL. If S ∩ T ⊆ Z then we may copy the above argument
that m ≥ |X ∪ S ∪ T | implies |Z| > m/2. Otherwise we may move a pebble from s
through S ∩ T to t, find p ∈ H − {s, t} and use the original argument for the case
that C(t) = 3. This completes the proof of the Claim. �



PEBBLING IN DENSE GRAPHS 205

Now we can use the relations

|Z| + |U | + |H| = n(B) = |C| = |U | +
∑
v∈H

C(v)

to see that
m

2
< |Z| =

∑
v∈H

C(v) − |H| ≤ 6|H| ,

so that |H| > m/12. From this we can assume, without loss of generality, that |HL| >
m/24, so that the number of edges with one end in HL is more than (m/24)(m/2).
Since m ≥ 336 there must be some x ∈ R having at least 8 neighbors in HL, so that
we can put 8 pebbles on x, a contradiction.

This contradiction proves that C is r-solvable. �

2.2 Theorem 2

Lower bound. First we give a proof of the lower bound, that g(n) ≥ �n/2� for all
n ≥ 9.

We define, for each n, the graph Gn as follows. Let the vertex set V = L∪R, with
|L| = �n/2	 and |R| = �n/2�. Let the induced subgraphs on L and on R each be
complete with one missing edge. Suppose the edge xy is missing from the subgraph
on L, and the edge wz is missing from the subgraph on R. Finally include the two
edges wy and xz. Note that for δ = �n/2� − 1 the graph Gn has minimum degree δ,
and is δ-regular when n is even.

Next we define a configuration C of size n = n(Gn), and show that it is unsolvable
when n ≥ 9. We choose the root r ∈ R − {w, z} and define C(r, w, x, y, z) = 0. We
find a, b, c ∈ L − {x, y} and define C(a, b) = 3 and C(c) = 2. Finally we define
C(v) = 1 for all other vertices v. Clearly, |C| = n.

In order that C is r-solvable one must be able to move 2 pebbles onto either w or
z, and consequently 4 pebbles onto either x or y. It is not difficult to see that both
cases are impossible. Hence for all n ≥ 9, Gn is not Class 0, and so b(n) ≥ �n/2�. �

Upper bound. Second we give a proof of the upper bound, that g(n) ≤ �n/2� for
all n ≥ 6.

Let G be graph with minimum degree �n/2�. We suppose that G is not Class 0
and derive a contradiction. Because complete graphs are Class 0, G has diameter at
least 2, and because every pair of vertices of G has a common neighbor, the diameter
of G is exactly 2. It is proven in [11] that every graph G of diameter two has pebbling
number n(G) or n(G) + 1 (Class 1). In [4] we find the following characterization of
Class 1 graphs of diameter two (see Figure 1).

In the figure, F0 is any (possibly empty) graph, F1 is any nonempty graph, and
F2 and F3 are any nonempty connected graphs. The solid lines indicate an edge from
the given vertex to every vertex in the corresponding set. At least two of the three
dashed lines must be present, and the arrows indicate that every vertex in F0 must
have at least one edge to {a, b}.
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Figure 1: A schematic diagram of Class 1 graphs of diameter two

Suppose that G is labeled as in Figure 1. Choose any vertices p ∈ F3, q ∈ F2, r ∈
F1, and recall that N(x) denotes the neighborhood of a vertex x. Since {p, q} is not
an edge, |N(p) ∩ N(q)| = 1 and r /∈ N(p) ∪ N(q), we have deg(p) + deg(q) ≤ n − 2,
and so at least one of p or q has degree smaller than �n/2�, a contradiction. Hence
G is Class 0. �

In fact it is easy to show by induction that every diameter two Class 1 graph has
minimum degree at most �n/3�.

2.3 Theorem 3

In this section we prove Theorem 3. The proof is divided into two steps. First, we will
show that it is possible to partition the vertices of Gn = (V, E) into O(n

δ
) subgraphs

of diameter at most two. Second, we prove that if a distribution has enough pebbles
then there will be in every subgraph “many” vertices with two pebbles each.

We call a partition V1, . . . , Vl, W a q-star partition of V if

1. for every 1 ≤ i ≤ l, Vi contains a star on at least q vertices and

2. every vertex of W has a neighbor in Vi for some 1 ≤ i ≤ l.

The following procedure constructs a (δ + 1)-star partition V1, . . . , Vl, W of V with
l = O(n/δ). Select v ∈ V arbitrarily and let V1 = N(v) ∪ {v}. For a general step,
suppose V1, . . . , Vk have been selected and let U = V \ ⋃k

i=1 Vi. Either every vertex
from U has a neighbor in Vi for some 1 ≤ i ≤ k, in which case we stop the process
with l = k and W = U , or there is a vertex u ∈ U such that N(u) ⊆ U . In the latter
case we set Vi+1 = N(u) ∪ {u} and continue the process.

Assume that Vi = {vi0, vi1, . . . , viki
} with ki ≥ δ and let C be a pebbling distribu-

tion with t = ωn3/2/δ pebbles where ω = ω(n) → ∞ is such that t ≤ n−1. Consider
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the random variable Xij, which is equal to one if C(vij) = 2 and zero otherwise, and

let Xi =
∑ki

j=0 Xij. Then

E[Xij] =

(
t+n−4

t−2

)
(

t+n−1
t

) ;

using the assumptions about t and n it is easy to check that E[XijXik] ≤ E[Xij]E[Xik]
for j �= k. Consequently

var[Xi] = E[X2
i ] − E[Xi]

2 ≤ E[Xi] ,

and by Chebyshev’s Inequality

Pr

[
Xi <

E[Xi]

2

]
≤ Pr

[
|Xi − E[Xi]| ≥ E[Xi]

2

]
≤ 4

E[Xi]
.

Thus the probability that there exists an 1 ≤ i ≤ l such that Xi < E[Xi]/2 is
O(n/δE[Xi]). But, with our choice of t and n,

E[Xi] = Ω

(
δt2

n2

)
= Ω

(
ω2n

δ

)
.

Thus, with probability tending to one, for all i, we have Xi ≥ E[Xi]/2, which is at
least 8 for large enough n. Therefore, with probability tending to one, 4 pebbles can
be accumulated on the center of every star, and since every vertex is within distance
two of some center, it is possible to move a pebble to any given root vertex.
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