On the enumeration of partitions with summands in arithmetic progression

M. A. Nyblom C. Evans
Department of Mathematics and Statistics
RMIT University, GPO Box 2476 V
Melbourne, Victoria 3001
Australia

Abstract

Enumerating formulae are constructed which count the number of partitions of a positive integer into positive summands in arithmetic progression with common difference D. These enumerating formulae (denoted $\left.p_{D}(n)\right)$ which are given in terms of elementary divisor functions together with auxiliary arithmetic functions (to be defined) are then used to establish a known characterisation for an integer to possess a partition of the form in question.

1 Introduction

In recent times there has been some interest in the problem of representing a positive integer as the sum of at least two consecutive terms of an arithmetic progression of positive integers with a prescribed common difference. It is known ([2], [3, p. 85], [4]) that the number n can be expressed as a sum of consecutive positive integers provided it is not a power of 2 and that the number of such representations is one less than the number of odd divisors of n. A more general result in this direction has been found ([1]) which gives a necessary and sufficient condition for a positive integer to possess a partition with summands in arithmetic progression. If $n=2^{h} s$ with s odd, and $n>1$, then n is the sum of positive integers in arithmetic progression with common difference D if and only if
(1) when D is odd, n is not a power of 2 and either $s>D\left(2^{h+1}-1\right)$ or $n>$ $\frac{1}{2} D p(p-1)$ where p is the smallest odd prime factor of n;
(2) when D is even, either n is even and $n>D$ or n is odd and $n>\frac{1}{2} D p(p-1)$ where again p is the smallest odd prime factor of n.

In this paper we will show how the above characterisation can, for $D>2$, be derived as a corollary of two new formulae which count the number of partitions of the desired type and which depend on the parity of D. These enumerating functions, denoted $p_{D}(n)$, like those of Jacobi for representations of a number as the sum of two, four, six or eight squares, are given in terms of elementary divisor functions, but together with auxiliary arithmetic functions, $f(n)$ and $g(n)$, which are defined later. Although these latter functions do not possess a closed form expression for general n, we are able to find specific conditions under which $f(n), g(n)$ assume the value 0 , thereby allowing closed form expressions for $p_{D}(n)$ in those instances. Before deriving these enumerating functions in $\S 3$ we will, for completeness, determine in $\S 2$ a closed form expression for $p_{2}(n)$. Indeed, we shall show that

$$
\begin{equation*}
p_{2}(n)=\frac{1}{2}\left(d(n)-2+\frac{(-1)^{d(n)+1}+1}{2}\right) \tag{1}
\end{equation*}
$$

where $d(n)$ is the number of divisors of n. In addition, as a consequence of (1), we shall derive an enumerating function for the number of representations of n as a difference of two squares.

2 Partition formula for $D=2$

In what follows $d_{i}(n)$ denotes the number of divisors d of n with $d \equiv i(\bmod 2)$, that is, $d_{0}(n)$ and $d_{1}(n)$ are the number of even and odd divisors of n respectively, and $d(n)=d_{0}(n)+d_{1}(n)$ is the total number of divisors of n. In addition, let \mathbb{N} denote the set of non-negative integers. We proceed now to establish a closed form expression for $p_{2}(n)$ via the use of generating functions.

Theorem 2.1 For any integer $n>1$, the number of partitions of n with summands in arithmetic progression having common difference 2 is given by

$$
\begin{equation*}
p_{2}(n)=\frac{1}{2}\left(d(n)-2+\frac{(-1)^{d(n)+1}+1}{2}\right) . \tag{2}
\end{equation*}
$$

Proof: Recall that

$$
a+(a+2)+\cdots+(a+2(n-1))=n(n+a-1)
$$

and for the partitions in question $a, n \in \mathbb{N}$ with $a \geq 1$ and $n \geq 2$. Thus we see that the generating function of $p_{2}(n)$ is given by

$$
f(q)=\sum_{n=2}^{\infty} p_{2}(n) q^{n}=\sum_{n=2}^{\infty} \frac{q^{n^{2}}}{1-q^{n}}=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} q^{n(n+k)} .
$$

It follows that $p_{2}(N)$ is the number of representations of $N=n(n+k)$ with $n \geq 2$ and $k \geq 0$. As $n \geq 2$ and $n+k \geq n$ our task is reduced to determining the number
of divisors d of N such that $d \neq 1, N$ and $d \leq \frac{N}{d}$. If N is not a square then $d(N)$ is even. Excluding the divisors $1, N$ we see after grouping the remaining $d(N)-2$ divisors into pairs of the form $\left(d, \frac{N}{d}\right)$ that there are precisely $(d(N)-2) / 2$ divisors that satisfy the above condition. On the other hand if N is a square then $d(N)$ is odd. After excluding the divisors $1, \sqrt{N}, N$ and pairing, we see that there are $(d(N)-3) / 2$ divisors d with $d<\frac{N}{d}$, and, including \sqrt{N}, there are $(d(N)-1) / 2$ divisors d with $d \neq 1, N$ and $d \leq \frac{N}{d}$. So in either case,

$$
p_{D}(N)=\frac{1}{2}\left(d(N)-2+\frac{(-1)^{d(N)+1}+1}{2}\right) .
$$

Corollary 2.1 An integer $n>1$ is representable as a sum of positive integers in arithmetic progression with common difference 2 if and only if n is not prime.

Proof: For prime $p, d(p)=2$, so $p_{2}(p)=0$. Conversely, if $p_{2}(n)=0$ then

$$
d(n)+\frac{(-1)^{d(n)+1}+1}{2}=2 .
$$

However if $n>1, d(n) \geq 2$, so the only solution to the above equation is $d(n)=2$, and n is prime.

We now examine an unexpected consequence of Theorem 2.1.
Corollary 2.2 The number $s(n)$ of representations of an integer $n>1$, as a difference of squares of two non-negative integers is given by

$$
\begin{equation*}
s(n)=\frac{1}{2}\left(d_{0}(n)+(-1)^{n+1} d_{1}(n)+\frac{(-1)^{d(n)+1}+1}{2}\right) . \tag{3}
\end{equation*}
$$

Proof: We begin by making the simple observation that the partitions of n counted by $p_{2}(n)$ have summands that are either all odd or all even. If we denote by $\phi(n)$, $\sigma(n)$ the number of partitions with consecutive even and odd summands respectively we have

$$
p_{2}(n)=\phi(n)+\sigma(n) .
$$

Now for $n>2$ and even, there are $p_{1}\left(\frac{n}{2}\right)=d_{1}\left(\frac{n}{2}\right)-1=d_{1}(n)-1$ partitions of $\frac{n}{2}$ of the form $\frac{n}{2}=\sum_{r=m}^{p} r$ with $p>m$. Consequently there are $d_{1}(n)-1$ partitions of n of the form $n=\sum_{r=m}^{p} 2 r$, and so $\phi(n)=d_{1}(n)-1$. Of course, when n is odd, $\phi(n)=0$ so

$$
\phi(n)=\frac{(-1)^{n}+1}{2}\left(d_{1}(n)-1\right) .
$$

Thus from the decomposition of $p_{2}(n)$ above and (2) we find

$$
\begin{align*}
\sigma(n) & =\frac{1}{2}\left(d(n)-2+\frac{(-1)^{d(n)+1}+1}{2}\right)-\frac{(-1)^{n}+1}{2}\left(d_{1}(n)-1\right) \\
& =\frac{1}{2}\left(d_{0}(n)+(-1)^{n+1} d_{1}(n)+\frac{(-1)^{d(n)+1}+1}{2}\right)+\frac{(-1)^{n}-1}{2} \tag{4}
\end{align*}
$$

where we have made use of the fact that $d(n)=d_{0}(n)+d_{1}(n)$. Recalling that n^{2} is equal to the sum of the first n consecutive odd integers, it is clear that each partition counted by $\sigma(n)$ corresponds to a unique representation of n in the form $x^{2}-y^{2}$ with $x, y \in \mathbb{N}$. Since by definition each partition counted by $\sigma(n)$ contains at least two summands, we have $x-y>1$. However, when $n=2 r+1$ for some $r \in \mathbb{N}$, one of the representations counted by $s(n)$ is $n=(r+1)^{2}-r^{2}$, and so $s(n)=\sigma(n)+1$. On the other hand, if $n=2 r$ then n is not the difference of consecutive squares and $s(n)=\sigma(n)$. Thus we may set

$$
s(n)=\sigma(n)+\frac{(-1)^{n+1}+1}{2} .
$$

This together with (4) yields (3). Finally, observe that (3) also holds for $n=2$.

Remark 2.1 Clearly for any positive integer $n, s\left(n^{2}\right)-1$ gives the number of Pythagorean triads with n as a side.

3 Partition formulae for $D>2$

So far we have managed to produce a closed form expression for $p_{2}(n)$ in terms of the number of divisors $d(n)$, while it is well-known that $p_{1}(n)=d_{1}(n)-1$. In this section we shall derive two further formulae for $p_{D}(n)$ based on the parity of D. We shall establish these enumerating formulae via purely combinatorial arguments. In what follows we need only consider integers $n \geq D+2$, since clearly $n=1+(1+D)$ is the smallest number with a partition of the desired form. We begin with case D odd.

Theorem 3.1 Suppose $D>1 \in \mathbb{N}$ is odd with $n \geq D+2$. Then the number of partitions of n into positive integers in arithmetic progression with common difference D is given by

$$
p_{D}(n)= \begin{cases}d_{1}(n)-2-f(n) & \text { if } n=D \frac{m(m+1)}{2} \text { for some } m>1 \\ d_{1}(n)-1-f(n) & \text { otherwise }\end{cases}
$$

where $f(n)=\left|A_{n}\right|$ with $A_{n}=\left\{d \mid n: d\right.$ odd $\left., d^{2}<D(2 n-d), 2 n<D d(d-1)\right\}$.

Proof: The argument will be split into two main steps. In the first step, we demonstrate that the number of ways of expressing n as a finite sum of integers, some possibly negative, in arithmetic progression with the required common difference, is $2 d_{1}(n)$. In the second step, we show how to count those arithmetic progressions with positive terms only, which will lead to the construction of the desired enumerating functions.

Step 1:

Suppose that n is representable as a sum of integers in arithmetic progression with common difference D,

$$
n=a+(a+D)+(a+2 D)+\cdots+(a+r D)
$$

for some pair $(a, r) \in \mathbb{Z} \times \mathbb{Z}$. Then clearly we have

$$
\begin{equation*}
2 n=(r+1)(2 a+D r) \tag{5}
\end{equation*}
$$

For the given n and D consider the set

$$
S_{D}(n)=\{(a, r) \in \mathbb{Z} \times \mathbb{Z}: 2 n=(r+1)(2 a+D r)\}
$$

which we now show contains exactly $2 d_{1}(n)$ distinct elements. By recalling that D is odd, observe from the equality

$$
(r+1)+(2 a-1+(D-1) r)=2 a+D r,
$$

that the terms $r+1$ and $2 a+D r$ are of opposite parity. Thus to solve the Diophantine equation in (5) it suffices to consider the system of simultaneous equations

$$
\begin{aligned}
r+1 & =x \\
2 a+D r & =y
\end{aligned}
$$

where $(x, y)=\left(d, \frac{2 n}{d}\right)$ or $\left(\frac{2 n}{d}, d\right)$ for a positive odd divisor d of n. If we denote the solutions (a, r) arising from these right hand sides by $\left(a_{1}(d), r_{1}(d)\right)$ and $\left(a_{2}(d), r_{2}(d)\right)$ respectively, we find that

$$
\left(a_{1}(d), r_{1}(d)\right)=\left(\frac{1}{2}\left(\frac{2 n}{d}-D(d-1)\right), d-1\right)
$$

and

$$
\left(a_{2}(d), r_{2}(d)\right)=\left(\frac{1}{2}\left(d-D\left(\frac{2 n}{d}-1\right)\right), \frac{2 n}{d}-1\right)
$$

As $d \mid n$ and both d and D are odd, a simple parity check establishes that both solutions are ordered pairs of integers. Thus the set of integer solutions (a, r) to (5) can be recast in the form

$$
S_{D}(n)=\bigcup_{d o d d, d \mid n} I_{d}
$$

where $I_{d}=\left\{\left(a_{1}(d), r_{1}(d)\right),\left(a_{2}(d), r_{2}(d)\right)\right\}$. To show that there is no repetition (or duplication) of any ordered pairs, it will suffice to demonstrate that the second components of all ordered pairs in $S_{D}(n)$ are distinct. Now as r_{1} and r_{2} are clearly of opposite parity we have $r_{1}(d) \neq r_{2}\left(d^{\prime}\right)$ for any two odd, possibly equal, divisors d, d^{\prime} of n. Moreover, $r_{i}(d)=r_{i}\left(d^{\prime}\right)$ for $i=1,2$ if and only if $d=d^{\prime}$. Consequently $I_{d} \cap I_{d^{\prime}}$ is empty when $d \neq d^{\prime}$ and so $S_{D}(n)$ is a finite union of mutually disjoint
sets, each containing two different elements. Thus $S_{D}(n)$ contains $2 d_{1}(n)$ distinct elements, which is the number of integer arithmetic progressions, as required.

Step 2:

Clearly the partitions we seek correspond to those arithmetic progressions of n in Step 1 which consist of at least two terms, all of which are strictly positive. Consequently we wish to count those ordered pairs $(a, r) \in S_{D}(n)$ where $a \geq 1$ and $r \geq 1$. With this is mind it is convenient to consider the following two cases separately.
Case 1: $n \neq D \frac{m(m+1)}{2}$ for all $m>1$.
In this instance, no ordered pair $(a, r) \in S_{D}(n)$ has $a=0$, since otherwise as $n \geq D+2$ we would have $n=\sum_{i=1}^{r} i D=D \frac{r(r+1)}{2}$ for some $r>1$. Now to determine the number of ordered pairs (a, r) $\in S_{D}(n)$ with $a \geq 1$ and $r \geq 1$, we examine the elements in I_{d} for every odd divisor d of n. Clearly I_{1} contributes no such ordered pairs as $r_{1}(1)=0$, while $a_{2}(1)=1-D(2 n-1)<0$. In the remaining solution set $S_{D}(n) \backslash I_{1}$, observe that since $d \geq 3, r_{1}(d)=d-1 \geq 2$ and $r_{2}(d)=\frac{2 n}{d}-1 \geq 1$ as $\frac{n}{d} \geq 1$. Thus we need only concentrate on finding those ordered pairs $(a, r) \in S_{D}(n) \backslash I_{1}$ with $a>0$. To this end, consider the sum

$$
\begin{aligned}
2\left(a_{1}(d)+a_{2}(d)\right) & =(1-D)\left(\frac{2 n}{d}+d\right)+2 D \\
& \leq(1-D) 5+2 D \\
& =5-3 D
\end{aligned}
$$

noting here that the inequality holds since $\frac{n}{d} \geq 1$ and $d \geq 3$. Now, $5-3 D \leq-4$ as $D \geq 3$ and so $a_{1}(d)+a_{2}(d)<0$. Consequently, in each set I_{d} for $d \geq 3, a_{1}(d)$ and $a_{2}(d)$ are not both positive. That is, $a_{1}(d)$ and $a_{2}(d)$ are both negative or are of opposite sign. Thus if we extract from $S_{D}(n) \backslash I_{1}$ those sets I_{d} with both $a_{1}(d)$ and $a_{2}(d)$ negative, exactly half the remaining ordered pairs (a, r) have $a>0$. By definition, A_{n} is the set of odd divisors d of n for which both $a_{1}(d)<0$ and $a_{2}(d)<0$ and so after extracting the $2 f(n)$ ordered pairs (a, r) with $a<0$ from $S_{D}(n) \backslash I_{1}$ (noting here that $1 \notin A_{n}$) we find

$$
\begin{aligned}
p_{D}(n) & =\frac{1}{2}\left(2 d_{1}(n)-2-2 f(n)\right) \\
& =d_{1}(n)-1-f(n)
\end{aligned}
$$

Case 2: $n=D \frac{m(m+1)}{2}$ for some $m>1$.
In this case, one representation of n is $n=0+D+\cdots+m D$ and so there exists an odd divisor $d^{\prime}>1$ of n such that either $a_{1}\left(d^{\prime}\right)=0$ or $a_{2}\left(d^{\prime}\right)=0$ (noting here that $d^{\prime}>1$ since again I_{1} contributes no partition of the required form). Furthermore we have

$$
n=D+\cdots+(D+(m-1) D)
$$

that is, $(D, m-1) \in S_{D}(N) \backslash I_{1}$ and this ordered pair rather than $(0, m)$ can be considered as corresponding to one of the required partitions of n. Moreover as $a_{1}\left(d^{\prime}\right)+a_{2}\left(d^{\prime}\right)<0$ we see that the remaining ordered pairs $(a, r) \in I_{d^{\prime}}$ have $a<0$, and so $(D, m-1) \notin I_{d^{\prime}}$, since $D>0$. Consequently the number of desired partitions
of n is equal to the number of ordered pairs $(a, r) \in S_{D}(n) \backslash\left(I_{1} \cup I_{d^{\prime}}\right)$ with $a>0$. Thus as in Case 1, after extracting from this set the $2 f(n)$ ordered pairs (a, r) with $a<0$, precisely half the remaining ordered pairs have $a>0$ (noting here that $1, d^{\prime} \notin A_{n}$). Hence

$$
\begin{aligned}
p_{D}(n) & =\frac{1}{2}\left(2 d_{1}(n)-4-2 f(n)\right) \\
& =d_{1}(n)-2-f(n)
\end{aligned}
$$

as required.
Using the above formulation for $p_{D}(n)$, we can now establish the characterisation, proved in [1], for a number to be representable as a sum of positive integers in arithmetic progression with odd common difference $D>1$.

Corollary 3.1 A number $n=2^{r} s \geq D+2$ with s odd is a sum of positive integers in arithmetic progression with odd common difference $D>1$ if and only if n is not a power of 2 and either $s>D\left(2^{r+1}-1\right)$ or $n>\frac{1}{2} D p(p-1)$ where p is the smallest odd prime factor of n.

Proof: Suppose n satisfies the above condition. It suffices to show that $p_{D}(n) \geq 1$ when $n \neq D \frac{m(m+1)}{2}$, since if $n=D \frac{m(m+1)}{2}$ for some $m>1$ then $n=D+2 D+\cdots+m D$ and $p_{D}(n) \geq 1$. We note first that $1 \notin A_{n}$ as $n>0$ and so $0 \leq f(n) \leq d_{1}(n)-1$, since A_{n} has at most $d_{1}(n)-1$ elements. Now if $s>D\left(2^{r+1}-1\right)$ it is clear that the inequality $d^{2}<D(2 n-d)$ fails for $d=s$ while if $n>\frac{1}{2} D p(p-1)$ it is clear that the inequality $2 n<D d(d-1)$ fails for $d=p$ (noting that $s, p>1$). So A_{n} fails to contain another odd divisor of n. Thus A_{n} has at most $d_{1}(n)-2$ elements. Hence the function $f(n)$ does not attain its maximum value, $d_{1}(n)-1$, and so $p_{D}(n) \geq 1$.

Establishing the converse is equivalent to showing that if n is a power of 2 or if both $s \leq D\left(2^{r+1}-1\right)$ and $n \leq \frac{1}{2} D p(p-1)$ then $p_{D}(n)=0$. Now if $n=2^{r}$ then the only odd divisor of n is 1 , and as $1 \notin A_{n}$, clearly A_{n} is empty and $p_{D}(n)=1-1-0=0$. Now suppose n is not a power of 2 . If $n \neq D \frac{m(m+1)}{2}$ then for any odd divisor $d>1$ of n we have $n<\frac{1}{2} D p(p-1) \leq \frac{1}{2} D d(d-1)$ (noting here that the strict inequality holds since $\left.n \neq D \frac{p(p-1)}{2}\right)$. Furthermore, $s<D\left(2^{r+1}-1\right)$, since if $s=D\left(2^{r+1}-1\right)$ then $\left(a_{2}(s), r_{2}(s)\right)=(0,1)$ and so $n<D+2$, a contradiction. Consequently, for any odd divisor $d>1$ of n we have $d \leq s<D\left(2^{r+1}-1\right) \leq D\left(\frac{2 n}{d}-1\right)$ as $\frac{n}{d} \geq 2^{r}$. That is, $d^{2}<D(2 n-d)$. Thus there are $d_{1}(n)-1$ odd divisors of n contained in A_{n}, and so $f(n)=d_{1}(n)-1$ and $p_{D}(n)=0$. If $n=D \frac{m(m+1)}{2}$ then since $n \leq \frac{1}{2} D p(p-1)$ we have $m \leq p-1$. However, from the minimality of p we have $m=p-1$. So for any odd divisor $d>p$ of n we have $n=\frac{1}{2} D p(p-1)<\frac{1}{2} D d(d-1)$. That is, precisely $d_{1}(n)-2$ odd divisors of n satisfy the inequality $2 n<\operatorname{Dd}(d-1)$. Moreover, since $s<D\left(2^{r+1}-1\right)$ we see that all odd divisors $d>1$ of n satisfy the inequality $d^{2}<D(2 n-d)$. Thus in this case A_{n} has exactly $d_{1}(n)-2$ elements and so $f(n)=d_{1}(n)-2$ and again $p_{D}(n)=0$.

Clearly for an arbitrary positive integer n it may not be easy to evaluate $f(n)$. In the following corollary we provide an example where $f(n)$ can be determined explicitly, thereby giving a closed form expression for $p_{D}(n)$.

Corollary 3.2 If $n=2^{r} s \geq D+2$ where s is odd and $2^{r+1}>D(s-1)$ then

$$
p_{D}(n)= \begin{cases}d_{1}(n)-2 & \text { if } n=D \frac{m(m+1)}{2} \text { for some } m>1 \\ d_{1}(n)-1 & \text { otherwise } .\end{cases}
$$

Proof: The assumed inequality can be recast in the form of $\frac{2 n}{s}>D(s-1)$. Then for any odd divisor d of n we have $\frac{2 n}{d} \geq \frac{2 n}{s}>D(s-1) \geq D(d-1)$. That is, $2 n>D d(d-1)$, so A_{n} is empty and $f(n)=0$.

By applying a somewhat analogous argument to that used in Theorem 3.1 we can now obtain a formulation for $p_{D}(n)$ in the case D even, which is given in terms of the number of divisors of n and another auxiliary function.

Theorem 3.2 Suppose $D>2 \in \mathbb{N}$ is even and $n \geq D+2$. Then the number of partitions of n into positive integers in arithmetic progression with common difference D is given by

$$
p_{D}(n)= \begin{cases}\frac{1}{2}\left(d(n)-4+\frac{(-1)^{d(n)+1}+1}{d^{2}}-2 g(n)\right) & \text { if } n=D \frac{m(m+1)}{2} \text { for some } m>1 \\ \frac{1}{2}\left(d(n)-2+\frac{(-1)^{d(n)+1}+1}{2}-2 g(n)\right) & \text { otherwise }\end{cases}
$$

where $g(n)=\left|B_{n}\right|$ with $B_{n}=\left\{d \mid n: d \leq \sqrt{n}, 2 n<D d(d-1), 2 d^{2}<D(n-d)\right\}$.
Proof: Once again we split the argument into two main steps. In the first step we demonstrate that the number of ways of expressing n as a finite sum of integers, some possibly negative, in arithmetic progression with the required common difference, is $d(n)$. In the second step we show how to count those arithmetic progressions with positive terms only, by examining the solution set of a Diophantine equation in two cases based on the parity of $d(n)$.

Step 1:

Suppose that n is representable as a sum of integers in arithmetic progression with common difference D,

$$
n=a+(a+D)+(a+2 D)+\cdots+(a+r D)
$$

for some pair $(a, r) \in \mathbb{Z} \times \mathbb{Z}$. Denoting $S_{D}(n)=\{(a, r) \in \mathbb{Z} \times \mathbb{Z}: 2 n=(r+1)(2 a+$ $D r)\}$ it is clear, since $2 a+D r$ is even, that to solve the Diophantine equation, it suffices to consider the system of simultaneous equations

$$
\begin{aligned}
2 a+D r & =2 d \\
r+1 & =\frac{n}{d}
\end{aligned}
$$

where d is a positive divisor of n. Denoting for each such d the resulting solution (a, r) by $(a(d), r(d))$, we have $(a(d), r(d))=\left(\frac{1}{2}\left(2 d-D\left(\frac{n}{d}-1\right)\right), \frac{n}{d}-1\right)$. A simple parity check establishes that $(a(d), r(d))$ is an ordered pair of integers. Thus for every divisor d of n there is an integer pair (a, r) corresponding to the equation $2 n=(r+1)(2 a+D r)$. Moreover, there are exactly $d(n)$ ordered pairs, since the second components are distinct for distinct divisors. Consequently $S_{D}(n)$ has $d(n)$ distinct elements which correspond to the integer arithmetic progressions, as required.

Step 2:

As before, in order to determine $p_{D}(n)$ it suffices to count those ordered pairs $(a, r) \in$ $S_{D}(n)$ with $a \geq 1$ and $r \geq 1$. To this end it is convenient to consider the following two cases.
Case 1: $d(n)$ even
In this case n is not a square and so $\frac{n}{d} \neq d$ for every divisor d of n. Hence $S_{D}(n)$ can be recast in the form

$$
S_{D}(n)=\bigcup_{d \mid n, 1 \leq d<\sqrt{n}} I_{d}
$$

where $I_{d}=\left\{(a(d), r(d)),\left(a\left(\frac{n}{d}\right), r\left(\frac{n}{d}\right)\right)\right\}$. Now if $n \neq D \frac{m(m+1)}{2}$ then as no ordered pair $(a, r) \in S_{D}(n)$ has $a=0$, it suffices to determine the number of such pairs with $a \geq 1$ and $r \geq 1$. Clearly I_{1} contributes no such ordered pairs as $a(1)=$ $\frac{1}{2}(2-D(n-1))<0$ and $r(n)=0$. In the remaining solution set $S_{D}(n) \backslash I_{1}$, observe that since $d, \frac{n}{d}>1, r(d), r\left(\frac{n}{d}\right) \geq 1$. Thus we need only concentrate on finding those ordered pairs $(a, r) \in S_{D}(n) \backslash I_{1}$ with $a>0$. To this end it will be necessary to examine the sign of $a(d)+a\left(\frac{n}{d}\right)$. First observe from the arithmetic-geometric mean inequality that $d+\frac{n}{d} \geq 2 \sqrt{n} \geq 2 \sqrt{D+2} \geq 2 \sqrt{6}$, and since $d+\frac{n}{d}$ is a positive integer, $d+\frac{n}{d} \geq 5$. Consequently

$$
\begin{aligned}
2\left(a(d)+a\left(\frac{n}{d}\right)\right) & =(2-D)\left(d+\frac{n}{d}\right)+2 D \\
& \leq(2-D) 5+2 D \\
& =10-3 D \\
& \leq-2 \\
& <0
\end{aligned}
$$

Thus in each set I_{d} with $1<d<\sqrt{n}, a(d)$ and $a\left(\frac{n}{d}\right)$ aren't both positive. That is, either $a(d)$ and $a\left(\frac{n}{d}\right)$ are both negative or they are of opposite sign. If we extract from $S_{D}(n) \backslash I_{1}$ those sets I_{d} with both $a(d)$ and $a\left(\frac{n}{d}\right)$ negative, exactly half the remaining ordered pairs (a, r) have $a>0$. By definition, B_{n} is the set of divisors d of n with both $a(d)<0$ and $a\left(\frac{n}{d}\right)<0$, and so after extracting these $2 g(n)$ ordered pairs (a, r) with $a<0$ from $S_{D}(n) \backslash I_{1}$ (noting here that $i \notin B_{n}$), we find

$$
p_{D}(n)=\frac{1}{2}(d(n)-2-2 g(n)) .
$$

Suppose now $n=D \frac{m(m+1)}{2}$ for some $m>1$. Then one of the representations of n is
of the form $n=0+D+\cdots+m D$ and so there is a divisor $1<d^{\prime}<\sqrt{n}$ such that either $a\left(d^{\prime}\right)=0$ or $a\left(\frac{n}{d^{\prime}}\right)=0$. Furthermore, we also have

$$
n=D+\cdots+(D+(m-1) D)
$$

that is, $(D, m-1) \in S_{D}(n) \backslash I_{1}$ and this ordered pair rather than $(0, m)$ can be considered to correspond to one of the required partitions of n. Moreover as $a\left(d^{\prime}\right)+$ $a\left(\frac{n}{d^{\prime}}\right)<0$ we see that the remaining $(a, r) \in I_{d^{\prime}}$ have $a<0$ and so $(D, m-1) \notin I_{d^{\prime}}$ since $D>0$. Consequently the number of desired partitions of n equals the number of ordered pairs $(a, r) \in S_{D}(n) \backslash\left(I_{1} \cup I_{d^{\prime}}\right)$ with $a>0$. Thus after extracting from this set the $2 g(n)$ ordered pairs (a, r) with $a<0$, exactly half the remainder have $a>0$ (noting here that $1, d^{\prime} \notin B_{n}$). Hence

$$
p_{D}(n)=\frac{1}{2}(d(n)-4-2 g(n)) .
$$

Case 2: $d(n)$ odd
In this case n is a square and $S_{D}(n)$ is of the form

$$
S_{D}(n)=\bigcup_{d \mid n, 1 \leq d \leq \sqrt{n}} I_{d}
$$

where we note that $I_{\sqrt{n}}=\{(a(\sqrt{n}), r(\sqrt{n}))\}$. Now if $n \neq D \frac{m(m+1)}{2}$ then as above we need only count those ordered pairs $(a, r) \in S_{D}(n) \backslash I_{1}$ with $a>0$. If $d^{\prime}=\sqrt{n}$ observe that $2 a\left(d^{\prime}\right)=2 a\left(\frac{n}{d^{\prime}}\right)=2 d^{\prime}-D\left(d^{\prime}-1\right)<0$ as $D \geq 4$, so as $I_{d^{\prime}}$ contains only one element, there are $2 g(n)-1$ ordered pairs $(a, r) \in S_{D}(n) \backslash I_{1}$ with $a<0$. After extracting these ordered pairs, exactly half the remainder have $a>0$ (noting here that $1 \notin B_{n}$). Hence

$$
\begin{aligned}
p_{D}(n) & =\frac{1}{2}(d(n)-2-(2 g(n)-1)) \\
& =\frac{1}{2}(d(n)-1-2 g(n)) .
\end{aligned}
$$

However if $n=D \frac{m(m+1)}{2}$ for some $m>1$ then again there is a divisor $1<d^{\prime \prime}<\sqrt{n}$ such that either $a\left(d^{\prime \prime}\right)=0$ or $a\left(\frac{n}{d^{\prime \prime}}\right)=0$. Arguing as in Case 1 , we deduce that the number of desired partitions of n equals the number of ordered pairs $(a, r) \in$ $S_{D}(n) \backslash\left(I_{1} \cup I_{d^{\prime \prime}}\right)$ with $a>0$. After extracting from this set the $2 g(n)-1$ ordered pairs with $a<0$, exactly half the remaining have $a>0$ (noting here that $1, d^{\prime \prime} \notin B_{n}$). Hence

$$
\begin{aligned}
p_{D}(n) & =\frac{1}{2}(d(n)-4-(2 g(n)-1)) \\
& =\frac{1}{2}(d(n)-3-2 g(n))
\end{aligned}
$$

Thus Theorem 3.2 is proven.
Using the above formulation for $p_{D}(n)$, we can now establish the characterisation, proved in [1], for a number to be representable as a sum of positive integers in arithmetic progression with an even common difference $D>1$.

Corollary 3.3 A number $n \geq D+2$ is a sum of positive integers in arithmetic progression with even common difference $D>2$ if and only if either n is even or n is odd and $n>\frac{1}{2} D p(p-1)$ where p is the smallest odd prime factor of n.

Proof: Suppose n satisfies the above condition. It suffices to show that $p_{D}(n) \geq 1$ when $n \neq D \frac{m(m+1)}{2}$, since if $n=D \frac{m(m+1)}{2}$ for some $m>1, n=D+2 D+\cdots+m D$ and $p_{D}(n) \geq 1$. Recall that the number of divisors d of n with $1<d \leq \sqrt{n}$ is $\frac{d(n)-2}{2}$ when $d(n)$ is even, and $\frac{d(n)-1}{2}$ when $d(n)$ is odd. Consequently since $1 \notin B_{n}$, as $n>0$, we deduce that B_{n} contains at most $\frac{d(n)-2}{2}$ elements when $d(n)$ is even, at most $\frac{d(n)-1}{2}$ elements when $d(n)$ is odd. If n is even, then the inequality $2 n<D d(d-1)$ fails to hold for $d=2$ since $n \geq D+2$, while if n is odd and $n>\frac{1}{2} D p(p-1)$ then the same inequality will fails for $d=p$. So B_{n} fails to contain one of $2, p$. In either case $g(n)$ doesn't attain its maximum value and $p_{D}(n) \geq 1$.
Conversely, assume $p_{D}(n) \geq 1$. If n is even then $n>D$, since $D+2$ is the smallest value of n for which $p_{D}(n) \neq 0$. If n is odd, suppose $n<\frac{1}{2} D p(p-1)$ (noting here that $n \neq \frac{1}{2} D p(p-1)$ as n is odd). If $d>1$ is a divisor of n then d is odd and $d \geq p$. Consequently $n<\frac{1}{2} D p(p-1) \leq \frac{1}{2} D d(d-1)$ and the inequality $2 n<D d(d-1)$ holds for every divisor $d>1$ of n. However provided $d \neq n$, as $\frac{n}{d}$ is also a divisor of n with $\frac{n}{d}>1$ we find, on substituting $\frac{n}{d}$ for d in the inequality $2 n<\operatorname{Dd}(d-1)$ that $2 d^{2}<D(n-d)$. Thus all divisors $1<d \leq \sqrt{n}$, must be contained in B_{n} and the function $g(n)$ attains its maximum value, and $p_{D}(n)=0$, a contradiction. Hence $n>\frac{1}{2} D p(p-1)$, as required.

Acknowledgement. The authors are indebted to the anonymous referee for the many valuable comments and suggestions made which helped to improve the presentation of this paper.

References

[1] R. Cook and D. Sharp, Sums of arithmetic progressions, Fibonacci Quarterly 33 (1995), 218-221.
[2] E. E. Guerin, Consecutive integer partitions, Ars Combinatoria 39 (1995), 255260.
[3] W. J. LeVeque, Topics in Number Theory, Addison-Wesley, (1965).
[4] M.A. Nyblom, On the representation of integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39 (2001), 256-263.

