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Abstract

Enumerating formulae are constructed which count the number of parti-
tions of a positive integer into positive summands in arithmetic progres-
sion with common difference D. These enumerating formulae (denoted
pD(n)) which are given in terms of elementary divisor functions together
with auxiliary arithmetic functions (to be defined) are then used to es-
tablish a known characterisation for an integer to possess a partition of
the form in question.

1 Introduction

In recent times there has been some interest in the problem of representing a positive
integer as the sum of at least two consecutive terms of an arithmetic progression of
positive integers with a prescribed common difference. It is known ([2], [3, p. 85],
[4]) that the number n can be expressed as a sum of consecutive positive integers
provided it is not a power of 2 and that the number of such representations is one
less than the number of odd divisors of n. A more general result in this direction has
been found ([1]) which gives a necessary and sufficient condition for a positive integer
to possess a partition with summands in arithmetic progression. If n = 2hs with s
odd, and n > 1, then n is the sum of positive integers in arithmetic progression with
common difference D if and only if

(1) when D is odd, n is not a power of 2 and either s > D(2h+1 − 1) or n >
1
2
Dp(p − 1) where p is the smallest odd prime factor of n;

(2) when D is even, either n is even and n > D or n is odd and n > 1
2
Dp(p − 1)

where again p is the smallest odd prime factor of n.
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In this paper we will show how the above characterisation can, for D > 2, be
derived as a corollary of two new formulae which count the number of partitions of
the desired type and which depend on the parity of D. These enumerating functions,
denoted pD(n), like those of Jacobi for representations of a number as the sum of
two, four, six or eight squares, are given in terms of elementary divisor functions,
but together with auxiliary arithmetic functions, f(n) and g(n), which are defined
later. Although these latter functions do not possess a closed form expression for
general n, we are able to find specific conditions under which f(n), g(n) assume the
value 0, thereby allowing closed form expressions for pD(n) in those instances. Before
deriving these enumerating functions in §3 we will, for completeness, determine in
§2 a closed form expression for p2(n). Indeed, we shall show that

p2(n) =
1

2

(
d(n) − 2 +

(−1)d(n)+1 + 1

2

)
, (1)

where d(n) is the number of divisors of n. In addition, as a consequence of (1),
we shall derive an enumerating function for the number of representations of n as a
difference of two squares.

2 Partition formula for D = 2

In what follows di(n) denotes the number of divisors d of n with d ≡ i(mod 2), that
is, d0(n) and d1(n) are the number of even and odd divisors of n respectively, and
d(n) = d0(n)+d1(n) is the total number of divisors of n. In addition, let N denote the
set of non-negative integers. We proceed now to establish a closed form expression
for p2(n) via the use of generating functions.

Theorem 2.1 For any integer n > 1, the number of partitions of n with summands
in arithmetic progression having common difference 2 is given by

p2(n) =
1

2

(
d(n) − 2 +

(−1)d(n)+1 + 1

2

)
. (2)

Proof: Recall that

a + (a + 2) + · · · + (a + 2(n − 1)) = n(n + a − 1)

and for the partitions in question a, n ∈ N with a ≥ 1 and n ≥ 2. Thus we see that
the generating function of p2(n) is given by

f(q) =
∞∑

n=2

p2(n)qn =
∞∑

n=2

qn2

1 − qn
=

∞∑
n=0

∞∑
k=0

qn(n+k).

It follows that p2(N) is the number of representations of N = n(n + k) with n ≥ 2
and k ≥ 0. As n ≥ 2 and n + k ≥ n our task is reduced to determining the number
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of divisors d of N such that d �= 1, N and d ≤ N
d
. If N is not a square then d(N)

is even. Excluding the divisors 1, N we see after grouping the remaining d(N) − 2
divisors into pairs of the form (d, N

d
) that there are precisely (d(N) − 2)/2 divisors

that satisfy the above condition. On the other hand if N is a square then d(N)
is odd. After excluding the divisors 1,

√
N , N and pairing, we see that there are

(d(N) − 3)/2 divisors d with d < N
d
, and, including

√
N , there are (d(N) − 1)/2

divisors d with d �= 1, N and d ≤ N
d
. So in either case,

pD(N) =
1

2
(d(N) − 2 +

(−1)d(N)+1 + 1

2
).

Corollary 2.1 An integer n > 1 is representable as a sum of positive integers in
arithmetic progression with common difference 2 if and only if n is not prime.

Proof: For prime p, d(p) = 2, so p2(p) = 0. Conversely, if p2(n) = 0 then

d(n) +
(−1)d(n)+1 + 1

2
= 2.

However if n > 1, d(n) ≥ 2, so the only solution to the above equation is d(n) = 2,
and n is prime.

We now examine an unexpected consequence of Theorem 2.1.

Corollary 2.2 The number s(n) of representations of an integer n > 1, as a differ-
ence of squares of two non-negative integers is given by

s(n) =
1

2

(
d0(n) + (−1)n+1d1(n) +

(−1)d(n)+1 + 1

2

)
. (3)

Proof: We begin by making the simple observation that the partitions of n counted
by p2(n) have summands that are either all odd or all even. If we denote by φ(n),
σ(n) the number of partitions with consecutive even and odd summands respectively
we have

p2(n) = φ(n) + σ(n) .

Now for n > 2 and even, there are p1(
n
2
) = d1(

n
2
) − 1 = d1(n) − 1 partitions of n

2

of the form n
2

=
∑p

r=m r with p > m. Consequently there are d1(n) − 1 partitions
of n of the form n =

∑p
r=m 2r, and so φ(n) = d1(n) − 1. Of course, when n is odd,

φ(n) = 0 so

φ(n) =
(−1)n + 1

2
(d1(n) − 1).

Thus from the decomposition of p2(n) above and (2) we find

σ(n) =
1

2

(
d(n) − 2 +

(−1)d(n)+1 + 1

2

)
− (−1)n + 1

2
(d1(n) − 1)

=
1

2

(
d0(n) + (−1)n+1d1(n) +

(−1)d(n)+1 + 1

2

)
+

(−1)n − 1

2
, (4)
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where we have made use of the fact that d(n) = d0(n) + d1(n). Recalling that n2 is
equal to the sum of the first n consecutive odd integers, it is clear that each partition
counted by σ(n) corresponds to a unique representation of n in the form x2−y2 with
x, y ∈ N. Since by definition each partition counted by σ(n) contains at least two
summands, we have x − y > 1. However, when n = 2r + 1 for some r ∈ N, one of
the representations counted by s(n) is n = (r + 1)2 − r2, and so s(n) = σ(n) + 1.
On the other hand, if n = 2r then n is not the difference of consecutive squares and
s(n) = σ(n). Thus we may set

s(n) = σ(n) +
(−1)n+1 + 1

2
.

This together with (4) yields (3). Finally, observe that (3) also holds for n = 2.

Remark 2.1 Clearly for any positive integer n, s(n2)−1 gives the number of Pythagorean
triads with n as a side.

3 Partition formulae for D > 2

So far we have managed to produce a closed form expression for p2(n) in terms of
the number of divisors d(n), while it is well-known that p1(n) = d1(n) − 1. In this
section we shall derive two further formulae for pD(n) based on the parity of D. We
shall establish these enumerating formulae via purely combinatorial arguments. In
what follows we need only consider integers n ≥ D +2, since clearly n = 1 +(1 +D)
is the smallest number with a partition of the desired form. We begin with case D
odd.

Theorem 3.1 Suppose D > 1 ∈ N is odd with n ≥ D + 2. Then the number of
partitions of n into positive integers in arithmetic progression with common difference
D is given by

pD(n) =

{
d1(n) − 2 − f(n) if n = Dm(m+1)

2
for some m > 1

d1(n) − 1 − f(n) otherwise

where f(n) = |An| with An = {d|n : d odd, d2 < D(2n − d), 2n < Dd(d − 1)}.

Proof: The argument will be split into two main steps. In the first step, we demon-
strate that the number of ways of expressing n as a finite sum of integers, some
possibly negative, in arithmetic progression with the required common difference, is
2d1(n). In the second step, we show how to count those arithmetic progressions with
positive terms only, which will lead to the construction of the desired enumerating
functions.
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Step 1:
Suppose that n is representable as a sum of integers in arithmetic progression with
common difference D,

n = a + (a + D) + (a + 2D) + · · · + (a + rD),

for some pair (a, r) ∈ Z × Z. Then clearly we have

2n = (r + 1)(2a + Dr). (5)

For the given n and D consider the set

SD(n) = {(a, r) ∈ Z × Z : 2n = (r + 1)(2a + Dr)},

which we now show contains exactly 2d1(n) distinct elements. By recalling that D
is odd, observe from the equality

(r + 1) + (2a − 1 + (D − 1)r) = 2a + Dr,

that the terms r+1 and 2a+Dr are of opposite parity. Thus to solve the Diophantine
equation in (5) it suffices to consider the system of simultaneous equations

r + 1 = x

2a + Dr = y

where (x, y) = (d, 2n
d

) or (2n
d

, d) for a positive odd divisor d of n. If we denote the
solutions (a, r) arising from these right hand sides by (a1(d), r1(d)) and (a2(d), r2(d))
respectively, we find that

(a1(d), r1(d)) =

(
1

2
(
2n

d
− D(d − 1)), d − 1

)

and

(a2(d), r2(d)) =

(
1

2
(d − D(

2n

d
− 1)),

2n

d
− 1

)
.

As d|n and both d and D are odd, a simple parity check establishes that both
solutions are ordered pairs of integers. Thus the set of integer solutions (a, r) to (5)
can be recast in the form

SD(n) =
⋃

d odd , d|n
Id ,

where Id = {(a1(d), r1(d)), (a2(d), r2(d))}. To show that there is no repetition (or
duplication) of any ordered pairs, it will suffice to demonstrate that the second
components of all ordered pairs in SD(n) are distinct. Now as r1 and r2 are clearly
of opposite parity we have r1(d) �= r2(d

′) for any two odd, possibly equal, divisors
d, d′ of n. Moreover, ri(d) = ri(d

′) for i = 1, 2 if and only if d = d′. Consequently
Id ∩ Id′ is empty when d �= d′ and so SD(n) is a finite union of mutually disjoint
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sets, each containing two different elements. Thus SD(n) contains 2d1(n) distinct
elements, which is the number of integer arithmetic progressions, as required.

Step 2:
Clearly the partitions we seek correspond to those arithmetic progressions of n in Step
1 which consist of at least two terms, all of which are strictly positive. Consequently
we wish to count those ordered pairs (a, r) ∈ SD(n) where a ≥ 1 and r ≥ 1. With
this is mind it is convenient to consider the following two cases separately.
Case 1: n �= Dm(m+1)

2
for all m > 1.

In this instance, no ordered pair (a, r) ∈ SD(n) has a = 0, since otherwise as n ≥ D+2

we would have n =
∑r

i=1 iD = D r(r+1)
2

for some r > 1. Now to determine the number
of ordered pairs (a, r) ∈ SD(n) with a ≥ 1 and r ≥ 1, we examine the elements in Id

for every odd divisor d of n. Clearly I1 contributes no such ordered pairs as r1(1) = 0,
while a2(1) = 1 − D(2n − 1) < 0. In the remaining solution set SD(n)\I1, observe
that since d ≥ 3, r1(d) = d − 1 ≥ 2 and r2(d) = 2n

d
− 1 ≥ 1 as n

d
≥ 1. Thus we need

only concentrate on finding those ordered pairs (a, r) ∈ SD(n)\I1 with a > 0. To
this end, consider the sum

2(a1(d) + a2(d)) = (1 − D)

(
2n

d
+ d

)
+ 2D

≤ (1 − D)5 + 2D

= 5 − 3D,

noting here that the inequality holds since n
d
≥ 1 and d ≥ 3. Now, 5 − 3D ≤ −4

as D ≥ 3 and so a1(d) + a2(d) < 0. Consequently, in each set Id for d ≥ 3, a1(d)
and a2(d) are not both positive. That is, a1(d) and a2(d) are both negative or are
of opposite sign. Thus if we extract from SD(n)\I1 those sets Id with both a1(d)
and a2(d) negative, exactly half the remaining ordered pairs (a, r) have a > 0. By
definition, An is the set of odd divisors d of n for which both a1(d) < 0 and a2(d) < 0
and so after extracting the 2f(n) ordered pairs (a, r) with a < 0 from SD(n)\I1

(noting here that 1 �∈ An) we find

pD(n) =
1

2
(2d1(n) − 2 − 2f(n))

= d1(n) − 1 − f(n).

Case 2: n = Dm(m+1)
2

for some m > 1.
In this case, one representation of n is n = 0 + D + · · ·+ mD and so there exists an
odd divisor d′ > 1 of n such that either a1(d

′) = 0 or a2(d
′) = 0 (noting here that

d′ > 1 since again I1 contributes no partition of the required form). Furthermore we
have

n = D + · · · + (D + (m − 1)D),

that is, (D, m − 1) ∈ SD(N)\I1 and this ordered pair rather than (0, m) can be
considered as corresponding to one of the required partitions of n. Moreover as
a1(d

′) + a2(d
′) < 0 we see that the remaining ordered pairs (a, r) ∈ Id′ have a < 0,

and so (D, m− 1) �∈ Id′ , since D > 0. Consequently the number of desired partitions
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of n is equal to the number of ordered pairs (a, r) ∈ SD(n)\(I1∪Id′) with a > 0. Thus
as in Case 1, after extracting from this set the 2f(n) ordered pairs (a, r) with a < 0,
precisely half the remaining ordered pairs have a > 0 (noting here that 1, d′ �∈ An).
Hence

pD(n) =
1

2
(2d1(n) − 4 − 2f(n))

= d1(n) − 2 − f(n),

as required.

Using the above formulation for pD(n), we can now establish the characterisation,
proved in [1], for a number to be representable as a sum of positive integers in
arithmetic progression with odd common difference D > 1.

Corollary 3.1 A number n = 2rs ≥ D + 2 with s odd is a sum of positive integers
in arithmetic progression with odd common difference D > 1 if and only if n is not
a power of 2 and either s > D(2r+1 − 1) or n > 1

2
Dp(p − 1) where p is the smallest

odd prime factor of n.

Proof: Suppose n satisfies the above condition. It suffices to show that pD(n) ≥ 1

when n �= Dm(m+1)
2

, since if n = Dm(m+1)
2

for some m > 1 then n = D+2D+· · ·+mD
and pD(n) ≥ 1. We note first that 1 �∈ An as n > 0 and so 0 ≤ f(n) ≤ d1(n) − 1,
since An has at most d1(n)− 1 elements. Now if s > D(2r+1 − 1) it is clear that the
inequality d2 < D(2n − d) fails for d = s while if n > 1

2
Dp(p − 1) it is clear that

the inequality 2n < Dd(d − 1) fails for d = p (noting that s, p > 1). So An fails to
contain another odd divisor of n. Thus An has at most d1(n) − 2 elements. Hence
the function f(n) does not attain its maximum value, d1(n) − 1, and so pD(n) ≥ 1.

Establishing the converse is equivalent to showing that if n is a power of 2 or if
both s ≤ D(2r+1−1) and n ≤ 1

2
Dp(p−1) then pD(n) = 0. Now if n = 2r then the only

odd divisor of n is 1, and as 1 �∈ An, clearly An is empty and pD(n) = 1− 1− 0 = 0.

Now suppose n is not a power of 2. If n �= Dm(m+1)
2

then for any odd divisor d > 1
of n we have n < 1

2
Dp(p − 1) ≤ 1

2
Dd(d − 1) (noting here that the strict inequality

holds since n �= D p(p−1)
2

). Furthermore, s < D(2r+1 − 1), since if s = D(2r+1 − 1)
then (a2(s), r2(s)) = (0, 1) and so n < D + 2, a contradiction. Consequently, for any
odd divisor d > 1 of n we have d ≤ s < D(2r+1 − 1) ≤ D(2n

d
− 1) as n

d
≥ 2r. That

is, d2 < D(2n− d). Thus there are d1(n)− 1 odd divisors of n contained in An, and

so f(n) = d1(n) − 1 and pD(n) = 0. If n = Dm(m+1)
2

then since n ≤ 1
2
Dp(p − 1)

we have m ≤ p − 1. However, from the minimality of p we have m = p − 1. So
for any odd divisor d > p of n we have n = 1

2
Dp(p − 1) < 1

2
Dd(d − 1). That

is, precisely d1(n) − 2 odd divisors of n satisfy the inequality 2n < Dd(d − 1).
Moreover, since s < D(2r+1 − 1) we see that all odd divisors d > 1 of n satisfy the
inequality d2 < D(2n− d). Thus in this case An has exactly d1(n)− 2 elements and
so f(n) = d1(n) − 2 and again pD(n) = 0.
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Clearly for an arbitrary positive integer n it may not be easy to evaluate f(n).
In the following corollary we provide an example where f(n) can be determined
explicitly, thereby giving a closed form expression for pD(n).

Corollary 3.2 If n = 2rs ≥ D + 2 where s is odd and 2r+1 > D(s − 1) then

pD(n) =

{
d1(n) − 2 if n = Dm(m+1)

2
for some m > 1

d1(n) − 1 otherwise.

Proof: The assumed inequality can be recast in the form of 2n
s

> D(s − 1). Then
for any odd divisor d of n we have 2n

d
≥ 2n

s
> D(s − 1) ≥ D(d − 1). That is,

2n > Dd(d − 1), so An is empty and f(n) = 0.

By applying a somewhat analogous argument to that used in Theorem 3.1 we
can now obtain a formulation for pD(n) in the case D even, which is given in terms
of the number of divisors of n and another auxiliary function.

Theorem 3.2 Suppose D > 2 ∈ N is even and n ≥ D + 2. Then the number of
partitions of n into positive integers in arithmetic progression with common difference
D is given by

pD(n) =

{
1
2
(d(n) − 4 + (−1)d(n)+1+1

2
− 2g(n)) if n = Dm(m+1)

2
for some m > 1

1
2
(d(n) − 2 + (−1)d(n)+1+1

2
− 2g(n)) otherwise

where g(n) = |Bn| with Bn = {d|n : d ≤ √
n, 2n < Dd(d − 1), 2d2 < D(n − d)}.

Proof: Once again we split the argument into two main steps. In the first step we
demonstrate that the number of ways of expressing n as a finite sum of integers, some
possibly negative, in arithmetic progression with the required common difference, is
d(n). In the second step we show how to count those arithmetic progressions with
positive terms only, by examining the solution set of a Diophantine equation in two
cases based on the parity of d(n).

Step 1:
Suppose that n is representable as a sum of integers in arithmetic progression with
common difference D,

n = a + (a + D) + (a + 2D) + · · · + (a + rD),

for some pair (a, r) ∈ Z × Z. Denoting SD(n) = {(a, r) ∈ Z × Z : 2n = (r + 1)(2a +
Dr)} it is clear, since 2a + Dr is even, that to solve the Diophantine equation, it
suffices to consider the system of simultaneous equations

2a + Dr = 2d

r + 1 =
n

d
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where d is a positive divisor of n. Denoting for each such d the resulting solution (a, r)
by (a(d), r(d)), we have (a(d), r(d)) = (1

2
(2d−D(n

d
−1)), n

d
−1). A simple parity check

establishes that (a(d), r(d)) is an ordered pair of integers. Thus for every divisor d of
n there is an integer pair (a, r) corresponding to the equation 2n = (r +1)(2a+Dr).
Moreover, there are exactly d(n) ordered pairs, since the second components are
distinct for distinct divisors. Consequently SD(n) has d(n) distinct elements which
correspond to the integer arithmetic progressions, as required.

Step 2:
As before, in order to determine pD(n) it suffices to count those ordered pairs (a, r) ∈
SD(n) with a ≥ 1 and r ≥ 1. To this end it is convenient to consider the following
two cases.
Case 1: d(n) even
In this case n is not a square and so n

d
�= d for every divisor d of n. Hence SD(n) can

be recast in the form
SD(n) =

⋃
d|n, 1≤d<

√
n

Id,

where Id = {(a(d), r(d)), (a(n
d
), r(n

d
))}. Now if n �= Dm(m+1)

2
then as no ordered

pair (a, r) ∈ SD(n) has a = 0, it suffices to determine the number of such pairs
with a ≥ 1 and r ≥ 1. Clearly I1 contributes no such ordered pairs as a(1) =
1
2
(2 − D(n − 1)) < 0 and r(n) = 0. In the remaining solution set SD(n)\I1, observe

that since d, n
d

> 1, r(d), r(n
d
) ≥ 1. Thus we need only concentrate on finding those

ordered pairs (a, r) ∈ SD(n)\I1 with a > 0. To this end it will be necessary to
examine the sign of a(d) + a(n

d
). First observe from the arithmetic-geometric mean

inequality that d+ n
d
≥ 2

√
n ≥ 2

√
D + 2 ≥ 2

√
6, and since d+ n

d
is a positive integer,

d + n
d
≥ 5. Consequently

2(a(d) + a(
n

d
)) = (2 − D)(d +

n

d
) + 2D

≤ (2 − D)5 + 2D

= 10 − 3D

≤ −2

< 0.

Thus in each set Id with 1 < d <
√

n, a(d) and a(n
d
) aren’t both positive. That is,

either a(d) and a(n
d
) are both negative or they are of opposite sign. If we extract from

SD(n)\I1 those sets Id with both a(d) and a(n
d
) negative, exactly half the remaining

ordered pairs (a, r) have a > 0. By definition, Bn is the set of divisors d of n with
both a(d) < 0 and a(n

d
) < 0, and so after extracting these 2g(n) ordered pairs (a, r)

with a < 0 from SD(n)\I1 (noting here that i �∈ Bn), we find

pD(n) =
1

2
(d(n) − 2 − 2g(n)).

Suppose now n = Dm(m+1)
2

for some m > 1. Then one of the representations of n is
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of the form n = 0 + D + · · · + mD and so there is a divisor 1 < d′ <
√

n such that
either a(d′) = 0 or a( n

d′ ) = 0. Furthermore, we also have

n = D + · · · + (D + (m − 1)D),

that is, (D, m − 1) ∈ SD(n)\I1 and this ordered pair rather than (0, m) can be
considered to correspond to one of the required partitions of n. Moreover as a(d′) +
a( n

d′ ) < 0 we see that the remaining (a, r) ∈ Id′ have a < 0 and so (D, m − 1) �∈ Id′

since D > 0. Consequently the number of desired partitions of n equals the number
of ordered pairs (a, r) ∈ SD(n)\(I1 ∪ Id′) with a > 0. Thus after extracting from this
set the 2g(n) ordered pairs (a, r) with a < 0, exactly half the remainder have a > 0
(noting here that 1, d′ �∈ Bn). Hence

pD(n) =
1

2
(d(n) − 4 − 2g(n)).

Case 2: d(n) odd
In this case n is a square and SD(n) is of the form

SD(n) =
⋃

d|n, 1≤d≤√
n

Id,

where we note that I√n = {(a(
√

n), r(
√

n))}. Now if n �= Dm(m+1)
2

then as above
we need only count those ordered pairs (a, r) ∈ SD(n)\I1 with a > 0. If d′ =

√
n

observe that 2a(d′) = 2a( n
d′ ) = 2d′ − D(d′ − 1) < 0 as D ≥ 4, so as Id′ contains only

one element, there are 2g(n) − 1 ordered pairs (a, r) ∈ SD(n)\I1 with a < 0. After
extracting these ordered pairs, exactly half the remainder have a > 0 (noting here
that 1 �∈ Bn). Hence

pD(n) =
1

2
(d(n) − 2 − (2g(n) − 1))

=
1

2
(d(n) − 1 − 2g(n)).

However if n = Dm(m+1)
2

for some m > 1 then again there is a divisor 1 < d′′ <
√

n
such that either a(d′′) = 0 or a( n

d′′ ) = 0. Arguing as in Case 1, we deduce that
the number of desired partitions of n equals the number of ordered pairs (a, r) ∈
SD(n)\(I1 ∪ Id′′) with a > 0. After extracting from this set the 2g(n) − 1 ordered
pairs with a < 0, exactly half the remaining have a > 0 (noting here that 1, d′′ �∈ Bn).
Hence

pD(n) =
1

2
(d(n) − 4 − (2g(n) − 1))

=
1

2
(d(n) − 3 − 2g(n)).

Thus Theorem 3.2 is proven.

Using the above formulation for pD(n), we can now establish the characterisation,
proved in [1], for a number to be representable as a sum of positive integers in
arithmetic progression with an even common difference D > 1.
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Corollary 3.3 A number n ≥ D + 2 is a sum of positive integers in arithmetic
progression with even common difference D > 2 if and only if either n is even or n
is odd and n > 1

2
Dp(p − 1) where p is the smallest odd prime factor of n.

Proof: Suppose n satisfies the above condition. It suffices to show that pD(n) ≥ 1

when n �= Dm(m+1)
2

, since if n = Dm(m+1)
2

for some m > 1, n = D + 2D + · · · + mD

and pD(n) ≥ 1. Recall that the number of divisors d of n with 1 < d ≤ √
n is d(n)−2

2

when d(n) is even, and d(n)−1
2

when d(n) is odd. Consequently since 1 �∈ Bn, as n > 0,

we deduce that Bn contains at most d(n)−2
2

elements when d(n) is even, at most d(n)−1
2

elements when d(n) is odd. If n is even, then the inequality 2n < Dd(d − 1) fails to
hold for d = 2 since n ≥ D + 2, while if n is odd and n > 1

2
Dp(p− 1) then the same

inequality will fails for d = p. So Bn fails to contain one of 2, p. In either case g(n)
doesn’t attain its maximum value and pD(n) ≥ 1.
Conversely, assume pD(n) ≥ 1. If n is even then n > D, since D + 2 is the smallest
value of n for which pD(n) �= 0. If n is odd, suppose n < 1

2
Dp(p − 1) (noting here

that n �= 1
2
Dp(p− 1) as n is odd). If d > 1 is a divisor of n then d is odd and d ≥ p.

Consequently n < 1
2
Dp(p − 1) ≤ 1

2
Dd(d − 1) and the inequality 2n < Dd(d − 1)

holds for every divisor d > 1 of n. However provided d �= n, as n
d

is also a divisor
of n with n

d
> 1 we find, on substituting n

d
for d in the inequality 2n < Dd(d − 1)

that 2d2 < D(n − d). Thus all divisors 1 < d ≤ √
n, must be contained in Bn and

the function g(n) attains its maximum value, and pD(n) = 0, a contradiction. Hence
n > 1

2
Dp(p − 1), as required.
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