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Abstract
Consider a composition of two regular coverings π1 : Γ0 → Γ1 and π2 :
Γ1 → Γ2 of graphs, given by voltage assignments α1, α2 on Γ1, Γ2 in
groups G1 and G2, respectively. In the case when π2 ◦ π1 is regular we
present an explicit voltage assignment description of the composition in
terms of G1, G2, α1, α2, and walks in Γ1.

1 Introduction

Lifts of graphs have become a widely adopted means in algebraic and topological
graph theory. The corresponding coverings are in many cases regular and hence
admit a description in terms of voltage assignments.

It is well known that a composition of two regular coverings need not be regular
in general. Various necessary and sufficient conditions for regularity of such a com-
position can be found in [7]. In a situation when a composition of graph coverings
is regular and both coverings are given by voltage assignments, it is natural to ask
about a voltage assignment description of the composition of the two coverings. The
purpose of this note is to present such a description (Section 3). In conclusion we
apply our results to a composition of regular covering of graphs that has arisen in
constructions of currently largest vertex-transitive graphs of diameter two and given
valence.

For a general treatment of graph coverings we refer to [4, 5]. Our preference for
regular coverings and for their description in the language of voltage assignments is
motivated by their wide use, ease of understanding, and the potential of being ap-
plied by researchers outside algebraic graph theory. The few necessary prerequisites
regarding graph coverings and voltage assignments are presented in Section 2.

2 Preliminaries

Let Γ be a graph, possibly with loops or parallel edges. An edge of Γ with a preas-
signed orientation will be called an arc; the set of all arcs of Γ will be denoted by D(Γ).
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If x is an arc of D(Γ) then x−1 is its reverse. Given two graphs Γ and Γ′, a mapping
f : D(Γ) → D(Γ′) is a graph homomorphism from Γ into Γ′ if f(x−1) = (f(x))−1 for
each arc x ∈ D(Γ) and if for any arcs x, y ∈ D(Γ) emanating from the same vertex of
Γ the arcs f(x), f(y) ∈ D(Γ′) (possibly f(x) = f(y)) also emanate from a common
vertex of Γ′. A bijective homomorphism A : Γ → Γ is a graph automorphism. The
group of all automorphisms of Γ will be denoted by Aut(Γ).

A graph homomorphism π : Γ → Γ′ is a covering if for every vertex v of Γ, the
arcs emanating from v are mapped bijectively by π onto the arcs emanating from
π(v). A covering transformation of π is an automorphism A : Γ → Γ such that
π(A(x)) = π(x) for each arc x ∈ D(Γ). The covering π is regular if the group of its
covering transformations acts regularly on each fibre π−1(v) for any vertex v of Γ′.

A walk W = x1x2 . . . xm of length m in Γ is a sequence of arcs xi of Γ, such that
the arc xi−1 terminates in the initial vertex of xi, 2 ≤ i ≤ m. The walk W is closed
if x1 emanates from the terminal vertex of xm.

Let Γ be a connected graph and let G be a group. We say that a mapping
α : D(Γ) → G is a voltage assignment on Γ if α(x−1) = (α(x))−1 for each arc
x ∈ D(Γ). To specify a voltage assignment we usually fix in advance an orientation of
the undirected graph Γ and assign voltages to arcs obtained this way; the reverse arcs
will automatically receive the corresponding inverse voltages. The voltage assignment
α can be extended to walks in the obvious way: If W = x1x2 . . . xm is a walk in Γ
then α(W ) = α(x1)α(x2) . . . α(xm).

With the help of a voltage assignment α on Γ in a nontrivial group G we can
construct a new larger graph Γα, called a lift of Γ. The vertex and arc sets of the
lift are V (Γα) = V (Γ) × G and D(Γα) = D(Γ) × G, respectively. An arc xg in Γα

emanates from a vertex ug and terminates at a vertex vh if and only if x is an arc in
Γ from u to v and h = gα(x). The reverse of the arc xg is the arc (x−1)gα(x). Such a
pair of mutually reverse arcs forms an edge in the undirected graph Γα.

A voltage assignment characterization of regular coverings can be given in the
following form [2].

Lemma 1 Let π : Γ1 → Γ2 be a covering of connected graphs. Then π is regular if
and only if there exists a voltage assignment α on Γ2 such that π is isomorphic to
the covering Γα

2 → Γ2. �

Using walks and their voltages it is possible to describe lifts of automorphisms.
We say that an automorphism A ∈ Aut(Γ) lifts to an automorphism A′ ∈ Aut(Γα)
if π ◦ A′ = A ◦ π. Further, a voltage assignment α is said to be A-compatible if
αW = 1G ⇐⇒ αAW = 1G for each closed walk W in Γ. The characterization of lifts
we give here appeared first (in this form) in [3]; for a restricted version see e.g. [1],
and for later development and generalizations see [4, 5].

Lemma 2 Let α be a voltage assignment on a connected graph Γ in a group G and
let A be an automorphism of Γ. Then A lifts to an automorphism of Γα if and only
if α is A-compatible. �
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3 Main result

To present our main result we need to introduce more terminology and notation. Let
Γ be a connected graph, and let α be a voltage assignment on Γ in a group H such that
the lift Γα is connected; let πα : Γα → Γ be the corresponding (regular) covering. Let
β be a voltage assignment on Γα in a group K such that the lift (Γα)β is connected,
with the associated covering πβ : (Γα)β → Γα. We know that in regular coverings,
the voltage group is isomorphic to the covering transformation group. Keeping the
notation from the previous section, all covering transformations of πα have the form
Ih : xa �→ xha, where h ∈ H and xa is an arbitrary arc of Γα; similarly, all covering
transformations of the covering πβ are given by Jk : (xa)b �→ (xa)kb where k ∈ K.
For a walk W in Γα we will often use the abbreviated notation hW instead of Ih(W ).

By Lemma 1, the composition πα ◦ πβ : (Γα)β → Γ is a regular covering if and
only if there exists a voltage assignment γ on the graph (Γα)β in some group G such
that the coverings Γγ → Γ and (Γα)β → Γ are isomorphic (which means that there
exists an isomorphism f : Γγ → (Γα)β such that πγ = πα ◦ πβ ◦ f).

We shall be more specific now and describe the structure of the group G; more-
over, we give an explicit description of a corresponding voltage assignment γ. (It is
well known that such an assignment need not be unique; see [2] for basic information
about equivalence of voltage assignments.)

Theorem 1 Let α be a voltage assignment on a connected graph Γ in a group H
and let β be a voltage assignment on the lift Γα in a group K such that the lift (Γα)β

is connected. Let πα and πβ be the corresponding regular covering projections, and
assume that their composition πα ◦ πβ is regular. Then there is a group G, a voltage
assignment γ on the graph Γ in G, and an isomorphism f : Γγ → (Γα)β such that
πγ = πα ◦ πβ ◦ f . The group G is a product of H and K. Fixing an arbitrary vertex
t of Γ, multiplication in G is given by

(h, k) ∗ (h′, k′) = (hh′, kβ(hV )), (1)

where h, h′ ∈ H, k, k′ ∈ K, and V is a walk in Γα from the vertex t1H
to the vertex

th′ such that β(V ) = k′.
The voltage assignment γ on arcs of Γ can be described as follows. Let W be a

walk in Γα from t1H
to w1H

such that β(W ) = 1k. Then,

γ(x) = (α(x), β(x1H
)β(α(x)W )−1). (2)

With this choice of γ, the isomorphism f is given by

f(x(h,k)) = (Ih)k(x1H
)1K

.

Proof. Assume that πα ◦ πβ is regular. Using the above notation this means that
all covering transformations Ih have lifts (proved in [7]). According to Lemma 2,
each Ih has a lift if and only if the voltage assignment β is Ih-compatible for each
h ∈ H. In other words for each closed walk U in the graph Γα, based at a fixed
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vertex (e.g. t1H
), we have β(U) = 1K if and only if β(IhU) = 1K for any h ∈ H (see

[3]). Moreover, in such a case Ih lifts to |K| covering transformations (Ih)k. By [9],
for each k ∈ K the action of (Ih)k on arcs (xa)b (and similarly on vertices (ua)b) of
the lift (Γα)β is given as follows. Let W be a walk in Γα from our fixed vertex t1H

to the initial vertex va of the arc xa such that β(W ) = b. (The existence of such a
walk for each b ∈ K is equivalent to our connectivity assumption for the lift (Γα)β.)
Then we have

(Ih)k((xa)b) = (Ih)k((xa)β(W )) = (xha)kβ(hW ) , (3)

where hW stands for Ih(W ).
A formula for composition of two such covering transformations (Ih)k and (Ih′)k′

may also be derived from [3] or from a more detailed account in [9]. Let V be a walk
from t1H

to th′ in Γα such that β(V ) = k′. Then,

(Ih)k ◦ (Ih′)k′ = (Ihh′)kβ(hV ) . (4)

The fact that the definitions (3) and (4) do not depend on a particular choice of
walks W and V is a consequence of compatibility of the voltage assignment β with
the covering transformations of πα. This way the information contained in [9] helped
us to obtain an explicit description of the group Cov(πα ◦ πβ) of all transformations
of the covering πα ◦ πβ.

As the sought voltage group G is isomorphic to Cov(πα ◦ πβ), we define the
elements of G to be ordered pairs (h, k) where h ∈ H and k ∈ K, with the binary
operation * that, by (4), has the form

(h, k) ∗ (h′, k′) = (hh′, kβ(hV )) (5)

where V is any walk from t1H
to th′ in Γα such that βV = k′. The mapping ϕ : G →

Cov(πα ◦ πβ) given by ϕ(h, k) = (Ih)k is then a group isomorphism.
Finally, we need to find a voltage assignment γ on the base graph Γ in the group

G and an isomorphism f of the coverings πγ : Γγ → Γ and πα ◦ πβ : (Γα)β → Γ.
Arcs of the lift Γγ have the form x(h,k) where x ∈ Γ and (h, k) ∈ G. Since fibres in
the lift are determined by the action of the covering transformation group, we define
f : Γγ → (Γα)β as follows:

f(x(h,k)) = ϕ(h, k)((x1H
)1K

) = (Ih)k(x1H
)1K

, (6)

with an analogous formula for the f -images of vertices uh,k:

f(u(h,k)) = ϕ(h, k)((u1H
)1K

) = (Ih)k(u1H
)1K

.

Note that with such a definition we have

f(x(h,k)∗(a,b)) = ϕ((h, k) ∗ (a, b))(x1H
)1K

= (Ih)k ◦ (Ia)b(x1H
)1K

. (7)

Next we check whether f maps arcs onto arcs (the incidence at vertices is automatic).
Let x be an arbitrary arc of the base graph Γ from a vertex v to a vertex w. Take an
arbitrary element (h, k) ∈ G and let x(h,k) be the arc of Γγ that emanates from the
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vertex v(h,k). The terminal vertex of x(h,k) depends on the voltage assignment γ; if
γ(x) = (a, b) ∈ G then x(h,k) terminates at w(h,k)∗(a,b). The mapping f will send the
arc x(h,k) of the graph Γγ (from v(h,k) to w(h,k)∗(a,b)) onto the arc (Ih)k(x1H

)1K
of (Γα)β,

starting at the vertex (Ih)k(v1H
)1K

and ending at the vertex (Ih)k ◦(Ia)b(w1H
)1K

. But
applying the inverse covering transformation to (Ih)k we see that, in the graph (Γα)β,
the arc (Ih)k(x1H

)1K
starts at (Ih)k(v1H

)1K
and ends at (Ih)k◦(Ia)b(w1H

)1K
if and only

if the arc (x1H
)1K

emanates from (v1H
)1K

and terminates at (Ia)b(w1H
)1K

. On the
other hand, we know that the terminal vertex of (x1H

)1K
is (wα(x))β(x1H

). Therefore
we must have

(Ia)b(w1H
)1K

= (wα(x))β(x1H
). (8)

Let W be a walk in the intermediate graph Γα from our fixed vertex t1H
to

the vertex w1H
(recall that we are working with an arc x from v to w) such that

β(W ) = 1K . Then by (3) we have (Ia)b(w1H
)1K

= (wa)bβ(aW ). Combining this with
(8) yields a = α(x) and b = β(x1H

)β(α(x)W )−1. It means that a suitable voltage
assignment γ on the v → w arc x of the base graph Γ is given by

γ(x) = (α(x), β(x1H
)β(α(x)W )−1), (9)

where W is a t1H
→ w1H

walk in Γα with β(W ) = 1K . (Again, by the compatibility
assumption this definition is independent of the choice of W .)

Working backwards, one may check that introducing a voltage assignment γ on
Γ in the group G as in (9), the function f defined by (6) is indeed an isomorphism
of the coverings πγ and πα ◦ πβ, as desired. �

4 An application

For a prime power q of the form q = 4k + 1 let Γ be the graph consisting of two
vertices v and w joined by q parallel edges, and (q − 1)/4 loops attached to each
vertex. Let F+ be the additive group of F = GF (q). To define a voltage assignment
on Γ we pick the orientation of all the parallel edges xi, i ∈ F , from v to w. The
orientation of the loops is arbitrary. The loops at the vertex v will be denoted by
yj , and at the vertex w by zj, where j ∈ {0, 1, . . . (q − 5)/4}. We define a voltage
assignment α on Γ in the group F+ by α(xi) = i, α(yj) = 0, α(zj) = 0. It is easy to
see that the lift Γα is connected, isomorphic to a complete bipartite graph Kq,q with
(q − 1)/4 loops at each vertex.

Let us describe a voltage assignment β on the graph Γα in the group F+. Each
edge of Γα, denoted by (xi)k, i, k ∈ F , will be oriented from the vertex vk to the vertex
wl, where l = k+α(xi). Again the orientation on the loops is chosen arbitrarily. The
(q − 1)/4 directed loops at the vertex vk and (q − 1)/4 loops at the vertex wk will
be denoted by (yj)k, and (zj)k, respectively. We fix a primitive element ξ of F and
define a voltage assignment β by β((xi)k) = kl, β((yj)k) = ξ2j, and β((zj)k) = ξ2j+1.

It can be checked that the composition of the two coverings Γα → Γ and (Γα)β →
Γα is regular. With the help of Theorem 1 one can work out the corresponding
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group G and a voltage assignment γ. Keeping the same orientation of edges of
Γ as before and fixing the vertex v0 of Γα we successively obtain γ(yj) = (0, ξ2j),
γ(zj) = (0, ξ2j+1), and γ(xi) = (i,−i2); the new voltage group G turns out to be the
direct product F+ × F+.

As was proved in [6], the lift (Γα)β belongs to the family of the so-called McKay-
Miller-Širáň graphs, the currently largest known vertex-transitive graphs of diameter
two and valence d = (3q−1)/2, whose order is 8

9
(d+ 1

2
)2. We thus have a new proof of

an earlier fact [8] that the McKay-Miller-Širáň graphs are lifts of two-vertex graphs
endowed with relatively simple voltage assignments.
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