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Abstract

Suppose G is a primitive graph with n > 1 vertices. Let L(u) be the
length of a shortest closed walk of odd length containing vertex u ∈ V (G),
and let M = max{L(u) | u ∈ V (G)}. We prove that the exponent of G
is equal to M − 1 if M ≥ n − g + 1 and less than or equal to n − g if
M ≤ n − g + 1, where g is the length of a shortest cycle in G of odd
length. We then determine the exponent set of primitive graphs with
given n and g.

Let G = (V, E) be a digraph with vertex set V and arc set E. All of our digraphs
are finite, and loops are permitted but no multiple arcs. A digraph G is symmetric
if for all u, v ∈ V (G), (u, v) is an arc if and only if (v, u) is.

A walk, W , from u to v is a sequence of not necessarily distinct vertices u, u1, . . . ,
up = v and a sequence of arcs (u, u1), (u1, u2), . . . , (up−1, v). A closed walk is a walk
where u = v. A path is a walk with distinct vertices. A cycle is a closed walk where
all the vertices except the first and last are distinct. The length of a walk W , denoted
|W |, is the number of arcs in it. The walk W = A+B is obtained by identifying the
final vertex of A with the initial vertex of B. If u and v are vertices on a walk W ,
then W (u, v) denotes the portion of W from u to v.

If G is symmetric and W (u, v) is a portion of a walk W in G, then W ′(v, u) denotes
the walk from v to u whose vertex sequence consists of the vertices of W (u, v) listed
in reverse order. If u and v are the initial and terminal vertices of W , then we write
W ′ = W ′(v, u).

A digraph G is said to be primitive if there exists a positive integer k such that
there is a walk of length k from u to v for all u, v ∈ V (G). The minimum such k is
called the exponent of G, denoted exp(G). Define exp(G; u, v) to be the minimum
integer k such that there is a walk of length m from u to v for all m ≥ k. Clearly,
exp(G) = max

u,v∈V (G)
exp(G; u, v). Primitive digraphs and the corresponding exponents

have been extensively studied.
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We will be concerned with symmetric digraphs. Note that a symmetric digraph
G can naturally correspond to an (undirected) graph G̃ by replacing each pair of
arcs (u, v) and (v, u) by an edge (u, v) and that G is primitive if and only if G̃ is
connected and G contains at least one odd cycle, where an odd cycle is a cycle of odd
length. The odd girth of a primitive digraph G is the length of a shortest odd cycle
in G. In this paper, we refer to symmetric digraphs simply as graphs. Shao [5] and
Liu et al. [3] determined respectively the exponent set of primitive graphs and the
exponent set of primitive graphs with no loops. These are proved more expediently
by Neufeld [4] recently. We consider the concept of odd girth in conjunction with
primitive graphs. Using the results and techniques of Neufeld [4], we first propose an
upper bound for the exponents of primitive graphs with given order and odd girth.
Then we prove a general property (Theorem 2) for estimating the exponents, which
is the main result of this paper and is finally used to determine the exponent set of
this class of primitive graphs.

The following lemmas are due to Neufeld [4].

Lemma 1 Let G be a primitive graph and let u, v ∈ V (G). If there are walks P and
Q of opposite parity from u to v, then

exp(G; u, v) ≤ max{|P |, |Q|} − 1.

The proof of the following lemma can be found in [4, pp. 135–136]. To be more
self-contained in this paper, a proof is reproduced here.

Lemma 2 Let G be a primitive graph. Let u ∈ V (G) and let W be a shortest closed
walk of odd length containing u. Then no vertex of G can occur more than twice
in W .

Proof. Suppose a vertex v ∈ V (G) occurs three times in W . Let v1, v2, and v3

be the first, second, and third occurrences of v in W . Then W = W1 +W2 +W3 +W4

where W1 = W (u, v1), W2 = W (v1, v2), W3 = W (v2, v3) and W4 = W (v3, u). The
closed walk W1 + W4 containing u is shorter than W and hence must be of even
length. Then exactly one of W2 or W3, say, W2 is of odd length. But now the closed
walk W1+W2+W4 containing u is of odd length and shorter than W , a contradiction.
This proves this lemma. �

Lemma 3 Let G be a primitive graph with odd girth g and let u ∈ V (G). Let W
be a shortest closed walk of odd length containing u and let l(W ) be the number of
distinct vertices in W . Then l(W ) ≥ (|W | + g)/2. Also, if equality holds, then W
contains a cycle of length g and is unique (up to isomorphism).

Proof. Observe that W must contain an odd cycle, say, C. Let v be the first
vertex of W which is also a vertex of C. Suppose x �= v is on C and occurs twice in
W . Let W = W1 +C +W2 +W3 where W1 = W (u, v), W2 = W (v, x), W3 = W (x, u).
Then one of the closed walks W1 +C(v, x)+W3 and W1 +C ′(v, x)+W3 containing u
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is of odd length and shorter than W , which is a contradiction. Hence every vertex of
C except v occurs in W exactly once. By Lemma 2, no vertex of G can occur more
than twice in W. Hence l(W ) ≥ (|W | − |C|)/2 + |C| = (|W |+ |C|)/2 ≥ (|W |+ g)/2.

If l(W ) = (|W | + g)/2, then |C| = g, and every vertex of (W\C) ∪ {v} occurs
exactly twice in W . Let wa and wb be the first and second occurrences of a vertex
w ∈ (W\C) ∪ {v} in W . Since W (u, wa) + W (wb, u) is a closed walk and shorter
than W , W (wa, wb) is of odd length.

Let (u, x) and (y, u) be arcs of W . Suppose x �= y. Note that both |W (xa, xb)|
and |W (ya, yb)| are odd and hence W ′(yb, ya) is odd. Since (u, xa)+W (xb, yb)+(yb, u)
is a closed walk and shorter than W , |W (xb, yb)| is odd. Now (u, xa) + W (xb, yb) +
W ′(yb, ya)+ (yb, u) is a closed walk and shorter than W , a contradiction. So we have
x = y.

Observe that x is contained in a closed walk W1 = W (xa, xb) of odd length
|W1| = |W | − 2, l(W1) = (|W1| + g)/2 and W1 ⊆ W . By repeating this observation
we obtain a sequence of walks W1, W2, . . . , Wk where l(Wi) = (|Wi|+g)/2 (1 ≤ i ≤ k),
W1 ⊇ W2 ⊇ . . . ⊇ Wk and |W1| = |W |−2, |W2| = |W1|−2, . . . , |Wk| = |Wk−1|−2 = g.
Thus Wk = W (v, v) = C, and the decomposition of W shows that it is unique (up
to isomorphism). �

We first establish the following.

Theorem 1 [7] Let G be a primitive graph on n > 1 vertices with odd girth g.
Then exp(G) ≤ 2n − g − 1. Moreover, if Gn,g = (V, E) where V = {1, . . . , n},
E = {(i, i + 1) : 1 ≤ i ≤ n − 1} ∪ {(n, n − g + 1)}, then Gn,g is the unique (up to
isomorphism) graph with exponent 2n − g − 1.

Proof. Let d be the diameter of G. Then [4] exp(G) ≤ 2d, and equality hold
if and only if there is a vertex u such that a shortest closed walk of odd length
containing u has length 2d + 1.

Note that d ≤ n−(g+1)/2. We have exp(G) ≤ 2n−g−1. If exp(G) = 2n−g−1,
then d = n−(g+1)/2 and there is a vertex u in G such that a shortest closed walk W
of odd length containing u is of length 2(n− (g + 1)/2) + 1 = 2n− g. By Lemma 3,
the number of distinct vertices in W is at least (|W | + g)/2 = n. Thus, also by
Lemma 3, the extremal graph Gn,g is the unique (up to isomorphism) graph on n
vertices and with odd girth g and exponent 2n − g − 1. �

Theorem 1 gives the maximum value of exponents of primitive graphs with given
order and odd girth and the corresponding extremal graphs. Now we prove the main
result.

Theorem 2 Let G be a primitive graph on n > 1 vertices with odd girth g. Let
u ∈ V (G) and let Wu be a shortest closed walk of odd length containing u. Let
M = max

u∈V (G)
|Wu|. If M ≥ n − g + 1, then exp(G) = M − 1 and if M ≤ n − g + 1,

then exp(G) ≤ n − g.
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Proof. Let u, v ∈ V (G). We wish to show that exp(G; u, v) ≤ max{M, n − g +
1} − 1.

Case 1: Wu and Wv intersect. Let x be a vertex in both Wu and Wv. Assume
without loss of generality |Wu(u, x)| < |Wu(x, u)| and |Wv(x, v)| < |Wv(v, x)|. Let
U = Wu(u, x) + Wv(x, v). Then |U | ≤ max{|Wu|, |Wv|}. If |Wu(u, x)| < |Wv(x, v)|,
then the walk Wu(u, x) + W ′(x, v) is u to v, have parity opposite U , and is of length
less than |Wv|. If |Wu(u, x)| ≥ |Wv(x, v)|, then the walk W ′(u, x) + Wv(x, v) is u to
v, have parity opposite U , and is of length less than |Wu|. By Lemma 1, we have
exp(G; u, v) ≤ max{|Wu|, |Wv|} − 1 ≤ M − 1.

Case 2: Wu and Wv do not intersect. Then G has at least two vertex disjoint
odd cycles C1 and C2 and they are contained respectively in Wu and Wv. Let P be
a shortest path from u to v. Note that at least (|C1| − 1)/2 + (|C2| − 1)/2 ≥ g − 1
vertices on C1 and C2 do not lie on P . Then P has at most n − g + 1 vertices, and
hence |P | ≤ n − g.

Let x be the final vertex of P which is also a vertex of Wu and let y be the first
vertex of P after x which is also a vertex of Wv. Suppose without loss of gener-
ality that |Wu(u, x)| < |Wu(x, u)| and |Wv(y, v)| < |Wv(v, y)|. Clearly |P (u, x)| ≤
|Wu(u, x)|. In fact, |P (u, x)| = |Wu(u, x)|, for otherwise, one of the closed walks
Wu(u, x)+P ′(x, u) or W ′

u(u, x)+P ′(x, u) containing u would be shorter than Wu and
of odd length since Wu(u, x) and W ′

u(u, x) have different parity. Similarly, |P (y, v)| =
|Wv(y, v)|. Let L1 = Wu(u, x) + P (x, y) + Wv(y, v). Then |L1| = |P | ≤ n − g.

Let L2 = W ′
u(u, x) + P (x, y) + Wv(y, v) and L3 = Wu(u, x) + P (x, y) + W ′

v(y, v).
Suppose min{|L2|, |L3|} > max{M, n − g + 1}, i.e., min{|W ′

u(u, x)| + |P (x, y)| +
|Wv(y, v)|, |Wu(u, x)| + |P (x, y)| + |W ′

v(y, v)|} > max{M, n − g + 1}. Then |Wu| +
2|P (x, y)| + |Wv| > 2 max{M, n − g + 1}. By Lemma 3, the number of distinct
vertices in Wu, P and Wv total at least (|Wu|+ g)/2 + |P (x, y)|− 1 + (|Wv|+ g)/2 =
(|Wu| + 2|P (x, y)| + |Wv|)/2 + g − 1 > max{M, n − g + 1} + g − 1 ≥ n, which is a
contradiction. Hence we have min{|L2|, |L3|} ≤ max{M, n−g+1}. Suppose without
loss of generality that |L2| ≤ max{M, n − g + 1}.

Note that the walks L1 and L2 are both from u to v and have opposite parity.
By Lemma 1, exp(G; u, v) ≤ max{|L1|, |L2|} − 1 ≤ max{M, n − g + 1} − 1.

Since u and v are artitrary vertices of G, we have from Cases 1 and 2 that
exp(G) ≤ max{M, n − g + 1} − 1. Hence, if M ≤ n − g + 1, then exp(G) ≤ n − g.
Observe that u is contained in no closed walk of length |Wu| − 2 which implies
exp(G) ≥ max

u∈V (G)
exp(G; u, u) ≥ max

u∈V (G)
|Wu| − 1 = M − 1. Hence, if M ≥ n − g + 1,

then exp(G) = M − 1. �

Remark Let G be a primitive digraph on n > 1 vertices with odd girth g. With
notation as in Theorem 2, it is easy to see that M ≤ 2n − g and hence exp(A) ≤
2n− g − 1; equality here implies M = 2n− g and hence G is isomorphic to Gn,g. So
Theorem 1 follows from Theorem 2.

Finally we apply Theorem 2 to determine the exponent set for primitive graphs
with given order and odd girth.

Theorem 3 [6, 7] The exponent set of primitive graphs on n > 1 vertices with odd
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girth g, E(n, g), is the set {g−1, . . . , 2n−g−1}\S where S is the set of odd integers
in {n − g + 1, . . . , 2n − g − 2} and 0.

Proof. The case g = 1 has been proved in [4]. In the following we suppose g ≥ 3.
By Theorem 2, E(n, g) ⊆ {g − 1, . . . , 2n − g − 1}\S since for a primitive graph

G with odd girth g on n vertices, exp(G) ≤ 2n − g − 1, and if exp(G) ≥ n − g + 1,
then exp(G) is even. We need to show that the reverse inclusion holds. Note that
the largest odd integer less than or equal to n − g is 2	(n − g − 1)/2
 + 1.

For any even k ∈ {g− 1, g +1, . . . , 2n− g− 1}, let r = (k + g +1)/2 and consider
the graph G = (V, E) where V = V (Gr,g) ∪ {r + 1, . . . , n} and E = E(Gr,g) ∪ {(r −
1, i), (i, r − g + 1) : r + 1 ≤ i ≤ n}. Clearly exp(G) = exp(Gr,g) = 2r − g − 1 = k.
Hence {g − 1, g + 1, . . . , 2n − g − 1} ⊆ E(n, g).

For any odd k ∈ {g, g+2, . . . , 2	(n−g−1)/2
+1}, consider the graph G = (V, E)
where V = {1, . . . , n} and E = {(i, i+1) : 1 ≤ i ≤ k+g−2}∪{(k+g−1, k)}∪{(g−
1, i), (i, 1) : k + g ≤ i ≤ n}. Let H be obtained by deleting vertices k + g + 1, . . . , n
from G. Clearly exp(G) = exp(H). Note that the diameter of H is k. So exp(H) ≥ k.
Let u, v ∈ V (H) and let P be a shortest path from u to v in H. If either u or v is
on a cycle of length g, then there is a walk from u to v of length at most k + 1 and
parity opposite P , and so exp(H; u, v) ≤ k by Lemma 1.

Suppose u, v ∈ {g, g + 1, . . . , k − 1}. Further, suppose without loss of generality
that u ≤ v and k − v ≤ u− (g − 1). Then the walk u, u + 1, . . . , k, k + 1, . . . , k + g −
1, k, k − 1, . . . , v from u to v has length 2k + g − (u + v) ≤ k + 1 and parity opposite
P . By Lemma 1, exp(H; u, v) ≤ k. Thus for all u, v we have exp(H; u, v) ≤ k and so
exp(G) = exp(H) = k. It follows that {g, g + 2, . . . , 2	(n− g − 1)/2
+ 1} ⊆ E(n, g).

Hence we have {g− 1, . . . , 2n− g− 1}\S ⊆ E(n, g). The proof is now completed.
�
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