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Abstract

Let λKv be the complete multigraph with v vertices, where any two
distinct vertices x and y are joined by λ edges (x, y). Let G be a finite
simple graph. A G-design (G-packing, G-covering) of λKv, denoted by
(v, G, λ)-GD ((v, G, λ)-PD, (v, G, λ)-CD), is a pair (X,B) where X is the
vertex set of Kv and B is a collection of subgraphs of Kv, called blocks,
such that each block is isomorphic to G and any two distinct vertices in
Kv are joined in exactly (at most, at least) λ blocks of B. In this paper,
we determine the existence spectrum for the G-designs of λKv, λ > 1,
and construct the maximum packings and the minimum coverings of λKv

with G for any positive integer λ, where the graph G has six vertices and
contains a triangle.

1 Introduction

A complete multigraph of order v and index λ, denoted by λKv, is a graph with v
vertices, where any two distinct vertices x and y are joined by λ edges (x, y). Let
G be a finite simple graph. A G-design (G-packing, G-covering) of λKv, denoted by
(v, G, λ)-GD ((v, G, λ)-PD, (v, G, λ)-CD), is a pair (X,B) where X is the vertex set
of Kv and B is a collection of subgraphs of Kv, called blocks, such that each block is
isomorphic to G and any two distinct vertices in Kv are joined in exactly (at most,
at least) λ blocks of B. A G-packing (G-covering) is said to be maximum (mini-
mum), denoted by (v, G, λ)-MPD (MCD), if no other such G-packing (G-covering)
has more (fewer) blocks. The number of blocks in a maximum G-packing (mini-
mum G-covering), denoted by p(v, G, λ)(c(v, G, λ)), is called the packing (covering)
number. It is well known that

p(v, G, λ) ≤ �λv(v − 1)

2e(G)
� ≤ �λv(v − 1)

2e(G)
� ≤ c(v, G, λ),
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where e(G) denotes the number of edges in G, �x� denotes the greatest integer y
such that y ≤ x and �x� denotes the least integer y such that y ≥ x. A (v, G, λ)-PD
((v, G, λ)-CD) is said to be optimal and denoted by (v, G, λ)-OPD ((v, G, λ)-OCD)
if the left (right) equality holds. Obviously, there exists a (v, G, λ)-GD if and only
if p(v, G, λ) = c(v, G, λ) and a (v, G, λ)-GD can be regarded as (v, G, λ)-OPD or
(v, G, λ)-OCD.

By a Lλ(D) of a packing D, called the leave edge graph, we mean that it is a
subgraph of λKv and its edges are the supplement of D in λKv. The number of
edges in Lλ(D) is denoted by |Lλ(D)|. Especially, when D is maximum, |Lλ(D)| is
called leave edge number and is denoted by lλ(v). Similarly, the repeat edge graph
Rλ(D) of a covering D is a subgraph of λKv and its edges are the supplement of λKv

in D. When D is minimum, |Rλ(D)| is called the repeat edge number and is denoted
by rλ(v). Generally, the symbols Lλ(D), lλ(v), Rλ(D) and rλ(v) can be denoted by
Lλ, lλ, Rλ and rλ, briefly.

Many researchers have been involved in graph design, graph packing and graph
covering of λKv with five vertices or less (see [1–10]).

Yin [11] listed the spectrum of graph designs of Kv with six vertices and e(G) ≤ 6.
(See Table A.)

Table A

note G1 G2 G3

graph � � �
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d e
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� �
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a b cd

e f
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b c d e

f

spectrum v ≡ 0, 1 (mod 5), v ≡ 0, 1 (mod 5), v ≡ 0, 1, 4, 9 (mod 12),
v > 6 v ≥ 6 v ≥ 6

note G4 G5 G6

graph � ��� � ���
� �

a b

c

d e

f
� ��� ��� �

� �

a

b

c d e

f
� �

� �

���� ��

b

a

f

d

c e

spectrum v ≡ 0, 1, 4, 9 (mod 12), v ≡ 0, 1, 4, 9 (mod 12), v ≡ 0, 1, 4, 9 (mod 5),
v ≥ 6 v ≥ 6 v ≥ 6

note G7 G8 G9

graph � ��� � �

�

��
�

a b

c d

e f
� ��� �

�

��
� �

��
a

b

c

d e

f
� ���
�

��� �

�

a

b

c d

e

f

spectrum v ≡ 0, 1, 4, 9 (mod 12), v ≡ 0, 1, 4, 9 (mod 12), v ≡ 0, 1, 4, 9 (mod 12),
v ≥ 6 v ≥ 6 v ≥ 6

Throughout this paper, the graph G is denoted by [a, b, c, d, e, f ]. In what follows,
the notations (a, b ∈ Z): [a, b] = {x ∈ Z | a ≤ x ≤ b}, [a, b]k = {x ∈ Z | a ≤ x ≤
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b, x ≡ a(mod k)} for a, b ∈ Z, [a, b, · · · , c] + i = [a + i, b + i, · · · , c + i] and (Zn)m =
{im | i ∈ Zn} are used frequently. The edge set {(a1, a2), (a2, a3), · · · , (an−1, an)} is
denoted by (a1, a2, · · · , an).

In this paper, we prove the following theorem:

Theorem For i ∈ [1, 9], the p(v, Gi, λ) and c(v, Gi, λ) are determined.

Example We construct (14, Gi, 1)-OPD (i ∈ [3, 9]) on the set Z13 ∪ {a} as follows:

i=3 [5, 9, 3, 8, 11, 4]+ i, i ∈ [0, 9], [7, 10, a, 0, 6, 12], [6, 9, a, 1, 0, 11], [5, 8, a, 2, 6, 4],
[3, 7, 1, 2, 0, 6], [4, 8, 2, 3, a, 7]. Leave edge: (0, 5).

i=4 [4, 5, 9, 3, 6, 8] + i, i ∈ [0, 9], [4, 1, 7, 3, 2, a], [0, 2, 8, 4, 3, a], [12, a, 5, 0, 6, 3],
[2, 1, 6, a, 10, 11], [5, 2, 7, a, 8, 9]. Leave edge: (2, 6).

i=5 [5, 9, 3, 4, 7, 12] + i, i ∈ [0, 9] − {1}, [6, 10, 4, 5, 2, 1], [8, 2, 4, 1, a, 12],
[1, 3, 7, a, 8, 5], [4, 9, a, 0, 2, 6], [5, 10, a, 11, 6, 3], [2, 3, a, 6, 0, 1]. Leave edge: (0, 8).

i=6 [11, 8, 3, 9, 5, 4]+ i, i ∈ [0, 9], [12, a, 1, 7, 3, 2], [11, a, 4, 8, 2, 0], [6, 0, a, 10, 7, 2],
[4, 3, a, 9, 6, 1], [6, 2, a, 8, 5, 0]. Leave edge: (1, 2).

i=7 [9, 3, 4, 8, 6, 11] + i, i ∈ [0, 9] − {1}, [a, 0, 1, 5, 3, 8], [a, 3, 5, 10, 2, 8],
[a, 5, 7, 12, 4, 10], [10, a, 1, 2, 7, 3], [11, a, 2, 4, 6, 0], [12, a, 4, 1, 9, 5]. Leave edge: (a, 8).

i=8 [4, 8, 2, 3, 5, 7] + i, i ∈ [0, 9], [1, 5, 12, a, 2, 4], [a, 7, 1, 2, 3, 4], [2, 6, a, 4, 5, 8],
[0, 3, a, 9, 10, 11], [1, 6, 0, 2, 5, 12]. Leave edge: (3, 7).

i=9 [5, 10, 4, 8, 6, 11]+ i, i ∈ [0, 9], [2, 7, 1, 5, 8, a], [3, 8, 2, a, 0, 1], [3, 4, 9, a, 11, 12],
[7, 10, a, 6, 2, 4], [7, 5, 3, a, 4, 8]. Leave edge: (6, 9).

Let the bipartite graph G have six vertices and let its edge number be not greater
than 6. The G-design, maximum G-packing and minimum G-covering of λKv was
solved by Z. Liang [13]. When six vertex graph G contains a triangle and e(G) ≤ 6,
we give the G-design, maximum G-packing and minimum G-covering of λKv in this
paper.

2 Recursion

By Kn1,n2,···,nh
we mean the complete multipartite graph with h parts of sizes

n1, n2, · · · , nh. Let X =
⋃

1≤i≤h Xi be the vertex set of Kn1,n2,···,nh
where Xi (1 ≤

i ≤ h) are disjoint sets with |Xi| = ni and v =
∑

1≤i≤h ni. For any fixed graph
G, if Kn1,n2,···,nh

can be decomposed into edge-disjoint subgraphs isomorphic to G,
then we call (X,G,A) a holey G-design, where G ={X1, X2, · · · , Xh}, and A is the
collection of all subgraphs called G-blocks (or simply blocks). Each set Xi(1 ≤ i ≤ h)
is said to be a hole and the multiset {n1, n2, · · · , nh} is called the type of the holey
G-design. We denote the design by G-HGD(n1

1n
1
2 · · ·n1

h) (or Kn1,n2,···,nh
/G) and use

an “exponential” notation to describe its type in general: a type 1i2j3k · · ·, denotes
i occurrences of 1, j occurrences of 2, etc. A G-HGD(1v−ww1) is called an incom-
plete G-design, denoted by (v, w, G)-IGD. Obviously, a (v, G, 1)-GD is a G-HGD(1v),
which can be thought of as a (v, w, G)-IGD with w = 0 or 1.

Let S be a finite set and H = {S1, S2, · · · , Sn} be a partition of S. A holey Latin
square having partition H is an |S| × |S| array L indexed by S × S, satisfying the
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following condition:

1) every cell of L either contains an element of S or is empty;

2) every element of S occurs at most once in any row or any column of L;

3) the subarrays(called holes) indexed by Si × Si are empty for 1 ≤ i ≤ n;

4) element s ∈ S occurs in row s or column t if and only if (s, t) ∈ (S ×
S)\(⋃i∈[1,n] Si × Si).

The order of L is |S|, and the type of L is the multiset T = {|Si| : i ∈ [1, n]}.
A holey Latin square is called symmetric if the element in cell (i, j) is the element
in cell (j, i) for all i and j. We simply write HSL(T ) for a holey symmetric Latin
square of type T .

Theorem 2.1 [12] There exist HSL(2n) for all n ≥ 3.

Theorem 2.2 Let v = 2ne(Gi). There exist Gi-HGD((2e(Gi))
n) for n ≥ 3 and

i ∈ [1, 9].

Proof By Theorem 2.1, let A = (aij) be a HSL(2n), S = [1, 2n] and H = {St : St =
{2t−1, 2t}, t ∈ [1, n]}. Vertex set X = Ze(Gi)×S, hole set G = {Ze(Gi)×St : t ∈ [1, n]}.
We construct A as follows:

for G1 [(1, i), (3, aij), (1, j), (0, i), (0, j), (1, aij)] (mod 5,−);

for G2 [(0, i), (1, j), (3, j), (2, i), (2, j), (0, aij)] (mod 5,−);

for G3 [(0, j), (1, aij), (0, i), (3, j), (5, i), (2, j)] (mod 6,−);

for G4 [(5, j), (2, i), (2, j), (0, aij), (1, i), (1, j)] (mod 6,−);

for G5 [(1, aij), (0, i), (0, j), (2, i), (4, j), (1, i)] (mod 6,−);

for G6 [(4, j), (2, i), (0, aij), (1, i), (1, j), (4, i)] (mod 6,−);

for G7 [(4, j), (1, i), (0, aij), (2, i), (1, j), (3, i)] (mod 6,−);

for G8 [(1, i), (1, j), (0, aij), (2, i), (2, j), (3, i)] (mod 6,−);

for G9 [(1, i), (1, j), (0, aij), (2, i), (4, j), (5, j)] (mod 6,−).

Then (X,G,A) is a Gi-HGD((2e(Gi))
n), i ∈ [1, 9]. �

Theorem 2.3 If both (2e(Gi) + w, w, Gi)-IGD and (2e(Gi) + w, Gi, 1)-MPD(MCD)
exist, then a (2ne(Gi) + w, Gi, 1)-MPD(MCD) exists for n ≥ 3 and i ∈ [1, 9].

Proof By Theorem 2.2, there exists Gi-HGD((2e(Gi))
n)=(X,G,A) for i ∈ [1, 9].

Let Y =(Zn × Z2e(Gi))
⋃{∞1,∞2, · · · ,∞w}, Yj=({j} × Z2e(Gi))

⋃{∞1,∞2, · · · ,∞w},
for j ∈ Zn. On Yj (j ∈ Z∗

n), let (2e(Gi) + w, w, Gi)-IGD=(Yj,Aj). On Y0, let
(2e(Gi) + w, Gi, 1)-MPD=(Y0,A0). Since |A| = 2n(n − 1)e(Gi),

| ⋃

1≤j≤n−1

Aj| = (n − 1)(2e(Gi) + 2w − 1)

and |A0|=(2e(Gi) + 2w − 1) + �w(w − 1)

2e(Gi)
�,

|A| + | ⋃

1≤j≤n−1

Aj | + |A0| = 2n2e(Gi) + 2nw − n + �w(w − 1)

2e(Gi)
�
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= �(2ne(Gi) + w)(2ne(Gi) + w − 1)

2e(Gi)
�.

Therefore (Y,A⋃
(
⋃

0≤j≤n−1 Aj)) is a (2ne(Gi) + w, Gi, 1)-MPD.

In the same way we can prove an MCD exists. �

Theorem 2.4 Let l be the leave edge number of the (n, G, 1)-OPD and λ̄ =
e(G)/gcd(e(G), l). If there exist (n, G, λ)-OPD and (n, G, λ)-OCD for 1 ≤ λ ≤ λ̄,
then there exist (n, G, λ)-OPD and (n, G, λ)-OCD for any positive integer λ.

The following theorem is a modified version of Theorem 4 in Section 3 of [14].

Theorem 2.5 Given positive integers v, λ and µ, let X be a v-set.
(1) Suppose that there exists a (v, G, λ)-MPD = (X,D) with leave edge graph Lλ(D),
and a (v, G, µ)-MPD = (X, E) with leave edge graph Lµ(E). If |Lλ(D)| + |Lµ(E)| =
lλ+µ(v) < e(G), then there exists a (v, G, λ+µ)-MPD with leave edge graph Lλ(D)∪
Lµ(E).
(2) Suppose that there exists a (v, G, λ)-MCD = (X,D) with repeat edge graph Rλ(D)
and a (v, G, µ)-MCD = (X, E) with repeat edge graph Rµ(E). If |Rλ(D)|+ |Rµ(E)| =
rλ+µ(v) < e(G), then there exists a (v, G, λ+µ)-MCD with repeat edge graph Rλ(D)∪
Rµ(E).
(3) Suppose that there exists a (v, G, λ)-MPD = (X,D) with leave edge graph Lλ(D)
and a (v, G, µ)-MCD = (X, E) with repeat edge graph Rµ(E). If Rµ(E) ⊂ Lλ(D) and
|Lλ(D)|− |Rµ(E)| = lλ+µ(v) < e(G), then there exists a (v, G, λ+µ)-MPD with leave
edge graph Lλ(D)\Rµ(E).
(4) Suppose that there exists a (v, G, λ)-MCD = (X,D) with repeat edge graph Rλ(D)
and a (v, G, µ)-MPD = (X, E) with leave edge graph Lµ(E). If Lµ(E) ⊂ Rλ(D) and
|Rλ(D)| − |Lµ(E)| = rλ+µ(v) < e(G), then there exists a (v, G, λ + µ)-MCD with
repeat edge graph Rλ(D)\Lµ(E).

If we replace MPD and MCD by OPD and OCD respectively, then the theorem
is also true.

Corollary 2.6 If there exist (v, G, λ1)-GD and (v, G, λ2)-GD, then there exists a
(v, G, λ1 + λ2)-GD.

3 Incomplete graph designs

Theorem 3.1 Let G be a graph and n a positive integer satisfying n(n−1) < 2e(G).
A (v, G, 1)-OPD exists and its leave edge graph is Kn if and only if there exists a
(v, n, G)-IGD.

Theorem 3.2 For w ∈ {2, 3, 4, 7, 8, 9} and G ∈ {G1, G2}, there exists a (10 +
w, w, G)-IGD.

Proof When w = 2, 3, see the proof of Theorem 4.4. When w ∈ {4, 7, 8, 9}, we can
construct a (10 + w, w, G)-IGD (see the Appendix). �

Theorem 3.3 When w ∈ {2, 3, 5, 6, 7, 8, 10, 11}, there exists a (12 + w, w, Gi)-IGD
for i ∈ [3, 9].

Proof When w = 2, it follows from Example and Theorem 3.1 that the theorem
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is true. When w ∈ {3, 5, 6, 7, 8, 10, 11}, a (12 + w, w, Gi)-IGD for i ∈ [3, 9] can be
directly constructed (see the Appendix). �

Theorem 3.4 When i ∈ [1, 9], if a (v, G, 1)-MPD(MCD) exists for 6 ≤ v < 6e(Gi),
then a (v, G, 1)-MPD(MCD) exists for any v ≥ 6.

4 Packing and covering

Let P be the spectrum for the existence (v, G, 1)-GD. In this section, we discuss
(v, G, λ)-PD and (v, G, λ)-CD when v does not satisfy P .

Theorem 4.1 If there exists a (v, G, 1)-OPD(OCD) and l1 = 1 (r1 = 1), then there
exists a (v, G, λ)-OCD(OPD).

Theorem 4.2 (1). If there exists a (v, G, 1)-GD, then a (v, G, λ)-OCD(OPD) exists
for λ ≥ 1.
(2). Let G be a graph. If a (v, G, 1)-OPD = (X, A) exists, and L1 ⊂ G, then a
(v, G, 1)-OCD exists.

Proof The following proves case (2). We take R1 = G \L1; then R1 ∪L1 = G. The
block of the graph G is denoted by [a, b, c, d, e, f ]. Then (X, A ∪ {[a, b, c, d, e, f ]}) is
a (v, G, 1)-OCD, and its repeat edge graph is R1. �

Lemma 4.3 There does not exist a (v, G1, 1)-OPD(OCD) for v = 6, 7, that is,
p(6, G1, 1) = 2, c(6, G1, 1) = 4, p(7, G1, 1) = 3 and c(7, G1, 1) = 6.

Proof Let Z6 be the vertex set of K6. Since (Z6, {[2, 4, 5, 0, 1, 3], [0, 4, 1, 2, 3, 5]}) is a
(6, G1, 1)-PD and (Z6, {[2, 4, 5, 0, 1, 3], [5, 0, 2, 1, 3, 4], [4, 0, 1, 2, 3, 5], [3, 4, 0, 5, 1, 2]}) is
a (6, G1, 1)-CD, p(6, G1, 1) = 2 and c(6, G1, 1) = 4. The leave edges are (3, 4), (2, 0, 5,
1, 2), and repeated edges are (2, 5), (1, 3, 4, 0, 1).

Let X be the vertex set of K7. Suppose that there exists a (7, G1, 1)-OPD.
Then the number of blocks is four, with leave an edge. Without loss of gener-
ality, let the leave edge be ab. The types of vertices a and b are 2211 and 2113.
The types of other vertices are 2212 and 23. Vertex numbers of these types can
be {0, 2, 1, 4}, {1, 1, 2, 3} or {2, 0, 3, 2}. No type can give rise to a (7, G1, 1)-OPD.
Since (Z7, {[2, 6, 5, 0, 1, 3], [0, 6, 3, 1, 2, 4], [1, 6, 4, 2, 3, 5]}) is a (7, G1, 1)-PD, we have
p(7, G1, 1) = 3 and the leave edges are (0, 4, 5, 0), (3, 4), (0, 2), (1, 5). No leave edge
graph of (7, G1, 1)-MPD can be covered by two blocks, therefore there is no (7, G1, 1)-
OCD. Since (Z7, {[6, 2, 5, 0, 1, 4], [6, 4, 5, 1, 2, 3], [3, 4, 2, 1, 5, 6], [4, 5, 1, 0, 2, 6], [2, 1, 3,
0, 3, 5], [2, 4, 1, 0, 3, 6]}) is a (7, G1, 1)-CD, we have c(7, G1, 1) = 6 and repeat edges
are (1, 2, 4, 1), (1, 3), (6, 2), (4, 5), (1, 5) and (6, 0, 3). �

Theorem 4.4 There exists a (v, Gi, 1)-OPD(OCD) for i = 1, 2, except for (v, i) =
(7, 1), (6, 1).

Proof v = 7 On the set X = Z5 ∪ {a, b}, (7, G2, 1)-OPD = (X, A),
A: [a, 2, b, 4, 0, 1], [a, 4, b, 3, 1, 2], [4, 2, 1, a, 0, 3], [3, 4, 1, b, 0, 2], leave edge is ab.

By Theorem 4.1, there exists a (7, G2, 1)-OCD.

v = 8 On the set X = Z5 ∪ {a, b, c}, (8, G1, 1)-OPD = (X, A), A: [2, a, 3, 0, 1, 4],
[b, a, 4, 1, 2, 3], [1, c, 3, b, 0, 2], [c, 0, a, b, 3, 4], [a, 1, b, c, 2, 4], leave edges: 03, bc, ca.
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(8, G1, 1)-OCD = (X, A ∪ {[0, 3, 2, b, c, a]}), repeat edges: 32, ab.

(8, G2, 1)-OPD = (X, A), A: [a, 3, c, 0, 1, 4], [a, 4, 0, 3, 1, 2], [c, 1, a, b, 0, 2], [a, 0, c,
3, 4, b], [b, 1, a, c, 2, 4], leave edges: 2a, a1, bc.

(8, G2, 1)-OCD = (X, A ∪ {[b, c, 4, a, 2, 1]}), repeat edges: 12, c4.

v = 9 On the set X = Z7 ∪ {a, b}, (9, G1, 1)-OPD = (X, A), A: [a, 2, b, 0, 1, 3]
(mod 7). (9, G2, 1)-OPD = (X, A), A: [a, 2, b, 0, 1, 3] (mod 7). Their leave edge is ab.
By Theorem 4.1, there exists a (9, Gi, 1)-OCD for i=1,2.

v = 12 On the set X = Z10 ∪ {a, b}, (12, G1, 1)-OPD = (X, A),
A: [a, 9, 1, 0, 4, 3] + i, i ∈ Z10\{0, 1}, [a, 9, 1, 0, 5, b], [a, 10, 2, 4, 9, b], [4, 3, 0, 1, 6, b],
[0, 4, 1, 2, 7, b], [1, 5, 4, 3, 8, b].

(12, G2, 1)-OPD = (X, A), A: [a, 8, 2, 0, 4, 3] + i, i ∈ Z10\{0, 1}, [a, 8, 4, 0, 5, b],
[a, 9, 5, 1, 6, b], [4, 1, 0, 2, 7, b], [5, 4, 0, 3, 8, b], [1, 2, 3, 4, 9, b].

Their leave edge is ab. It follows from Theorem 4.1 that there exists a (12, Gi, 1)-
OCD for i=1,2.

v = 13 On the set X = Z10 ∪ {a, b, c}, (13, G1, 1)-OPD = (X, A),
A: [a, 5, 7, 0, 4, 3] + i, i ∈ Z10, [1, c, 6, 0, 5, b] + i, i ∈ [0, 4], leave edges: ab, ac, bc.

(13, G1, 1)-OCD = (X, A ∪ {[0, 1, 2, a, b, c]}), repeat edges: (0, 1, 2).

(13, G2, 1)-OPD = (X, A), A: [a, 5, c, 0, 4, 3] + i, i ∈ Z10, [5, 7, 3, 1, 6, b] + i, i ∈
[0, 3], [9, 1, 2, 0, 5, b], leave edges: ab, ac, bc.

(13, G2, 1)-OCD = (X, A ∪ {[2, 3, 0, b, a, c], [9, 1, b, 5, 0, 2]}\{[9, 1, 2, 0, 5, b]}), re-
peat edges: (5, 2, 3).

v = 14 On the set X = Z12 ∪{a, b}, (14, G1, 1)-OPD = (X, A), A: [a, 5, 7, 0, 4, 3]
(mod 12), [5, 10, 3, 0, 6, b], [11, 4, 9, 1, 7, b], [1, 6, 11, 2, 8, b], [7, 0, 5, 3, 9, b], [3, 8, 1, 4, 10,
b], [9, 2, 7, 5, 11, b].

(14, G2, 1)-OPD = (X, A), A: [a, 5, 2, 0, 4, 3] (mod 12), [6, 11, 7, 2, 8, b] + i, i ∈
[0, 3], [10, 3, 5, 0, 6, b], [11, 4, 6, 1, 7, b]. Their leave edge is ab. It follows from Theorem
4.1 that there exist (14, Gi, 1)-OCD for i = 1, 2.

v = 17 On the set X = Z15∪{a, b}, (17, G1, 1)-OPD = (X, A), A: [a, 0, 5, 1, 8, 14]
(mod 15), [1, b, 8, 0, 4, 3]+i, i ∈ [0, 6], [b, 0, 12, 7, 11, 10], [13, 2, 14, 8, 12, 11], [14, 3, 2, 9,
13, 12], [12, 1, 0, 10, 14, 13], [2, 1, 13, 11, 0, 14].

(17, G2, 1)-OPD = (X, A), A: [a, 2, b, 0, 4, 3] (mod 15), [12, 7, 5, 0, 6, 13] + i, i ∈
[0, 6], [1, 8, 9, 7, 13, 5], [0, 7, 10, 8, 14, 6], [13, 4, 0, 9, 11, 2], [4, 11, 1, 10, 12, 3], [11, 13, 4,
14, 5, 12].

Their leave edge is ab. It follows from Theorem 4.1 that there exist (17, Gi, 1)-
OCD for i = 1, 2.

v = 18 On the set X = Z15∪{a, b, c}, (18, G1, 1)-OPD = (X, A), A: [a, 1, 6, 0, 4, 3]
(mod 15), [b, 1, c, 0, 7, 13] (mod 15), leave edges: ab, ac, bc.

(18, G1, 1)-OCD = (X, A ∪ {[0, 1, 2, a, b, c]}), repeat edges: (0, 1, 2).

(18, G2, 1)-OPD = (X, A), A: [a, 1, 5, 0, 4, 3] (mod 15), [b, 1, c, 0, 7, 13] (mod 15),
leave edges: ab, ac, bc.

(18, G2, 1)-OCD = (X, A∪{[1, 2, c, 0, 7, 13], [2, 3, 1, b, a, c]}\{[b, 1, c, 0, 7, 13]}), re-
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peat edges: (1, 2, 3).

v = 19 On the set X = Z17 ∪ {a, b}, (19, G1, 1)-OPD = (X, A), A: [b, 1, 7, 0, 4, 3]
(mod 17), [a, 1, 6, 0, 7, 15] (mod 17), leave edge: ab.

(19, G2, 1)-OPD = (X, A), A: [b, 1, 6, 0, 4, 3] (mod 17), [a, 1, 5, 0, 7, 15] (mod 17),
leave edge: ab.

It follows from Theorem 4.1 that there exist (19, Gi, 1)-OCD for i = 1, 2.

v = 22 On the set X = Z22, (22, G1, 1)-OPD = (X, A), A: [12, 4, 13, 0, 1, 6] (mod
22), [4, 6, 17, 0, 3, 10]+i, i ∈ [0, 10], [2, 6, 10, 11, 14, 21]+i, i ∈ [0, 3], [10, 14, 18, 19, 0, 7]
+ i, i ∈ [0, 2], [21, 19, 1, 15, 18, 3] + i, i ∈ [0, 2], [15, 17, 21, 0, 2, 4], [16, 18, 20, 1, 3, 5],
[13, 17, 19, 18, 21, 6], leave edge: (18, 0).

(22, G2, 1)-OPD = (X, A), A: [12, 4, 9, 0, 1, 6] (mod 22), [4, 6, 11, 0, 3, 10] + i, i ∈
[0, 10], [18, 20, 7, 11, 14, 21] + i, i ∈ [0, 3], [4, 8, 11, 15, 18, 3] + i, i ∈ [0, 2], [15, 17, 0, 18,
21, 6] + i, i ∈ [0, 2], [15, 19, 6, 2, 4, 0] + i, i ∈ [0, 1], [18, 14, 3, 21, 2, 9], leave edge:
(17, 21).

It follows from Theorem 4.1 that there exist (22, Gi, 1)-OCD for i = 1, 2.

v = 23 On the set X = Z23, (23, G1, 1)-OPD = (X, A), A: [12, 4, 13, 0, 1, 6] (mod
23), [19, 8, 10, 1, 4, 11]+i, i ∈ [0, 14], [2, 6, 10, 16, 19, 3]+i, i ∈ [0, 1], [1, 12, 8, 18, 21, 5]+
i, i ∈ [0, 5], [15, 19, 0, 4, 6, 8] + i, i ∈ [0, 1], [18, 22, 3, 0, 2, 4], [17, 21, 2, 1, 3, 5], leave
edges: (11, 0), (7, 18, 14).

(23, G1, 1)-OCD = (X, A ∪ {[11, 0, 1, 7, 18, 14]}), repeat edges: (0, 1), (7, 14).

(23, G2, 1)-OPD = (X, A), A: [12, 4, 9, 0, 1, 6] (mod 23), [8, 12, 11, 0, 3, 10] + i,
i ∈ [0, 14], [8, 10, 3, 15, 18, 2]+ i, i ∈ [0, 7], [16, 18, 6, 2, 4, 0]+ i, i ∈ [0, 1], [18, 20, 10, 6,
8, 4] + i, i ∈ [0, 1], leave edges: (21, 0), (20, 22, 1).

(23, G2, 1)-OCD = (X, A ∪ {[21, 0, 2, 22, 20, 1]}), repeat edges: (1, 20), (2, 22).

v = 24 On the set X = (Z11 × Z2) ∪ {a, b}, (24, G1, 1)-OPD = (X, A),
A = {[40, 01, 21, 00, 11, 20], [a, 01, 41, 00, 21, 31], [a, 20, 60, 00, 51, 10], [b, 10, 60, 01, 50, 20],
[b, 51, 01, 60, 31, 61] (mod (11,−))}, leave edge: ab.

(24, G2, 1)-OPD = (X, A), A = [40, 01, 31, 11, 20, 00], [a, 01, 71, 31, 00, 21], [a, 20, 40,
00, 51, 10], [b, 10, 00, 50, 20, 01], [b, 51, 11, 61, 60, 31], (mod (11,−))}, leave edge: ab. It
follows from Theorem 4.1 that there exist (24, Gi, 1)-OCD for i = 1, 2.

v = 27 On the set X = Z27, (27, G1, 1)-OPD = (X, A), A: [1, 12, 24, 0, 6, 13] and
[2, 10, 20, 0, 4, 9] (mod 27), [16, 17, 19, 0, 1, 3] + i, i ∈ [0, 10], [16, 19, 22, 11, 12, 14] + i,
i ∈ [0, 2], [1, 25, 22, 14, 15, 17] + i, i ∈ [0, 1], leave edge: (0, 24).

(27, G2, 1)-OPD = (X, A), A: [1, 7, 10, 0, 4, 9] (mod 27), [25, 26, 2, 0, 7, 19] + i,
i ∈ [11, 26], [15, 1, 2, 0, 7, 19] + i, i ∈ [0, 10]\{0, 4}, [12, 15, 11, 0, 13, 24] + i, i ∈
[0, 11], [11, 14, 23, 12, 25, 9], [14, 0, 12, 26, 10, 13], [15, 1, 26, 0, 7, 19], [25, 26, 3, 2, 0, 1],
[19, 5, 3, 4, 11, 23], [8, 9, 7, 6, 4, 5], leave edge: (7, 8). It follows from Theorem 4.1 that
there exist (24, Gi, 1)-OCD for i = 1, 2.

v = 28 On the set X = Z25 ∪ {a, b, c}, (28, G1, 1)-OPD = (X, A) and (28, G2, 1)-
OPD = (X, A′), A = A′: [6, 12, a, 0, 8, 18], [2, 13, b, 0, 1, 3] and [1, 13, c, 0, 4, 9] (mod
25), leave edge: (a, b, c, a).
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v = 29 On the set X =Z27∪{a, b}, (29, G1, 1)-OPD = (X, A), A: [1, 9, 19, 0, 6, 13],
[2, 13, 25, 0, 1, 3] and [a, 2, b, 0, 4, 9] (mod 27), leave edge: ab.

(29, G2, 1)-OPD = (X, A), A: [1, 9, 10, 0, 6, 13], [2, 13, 12, 0, 1, 3] and [a, 2, b, 0, 4, 9]
(mod 27), leave edge: ab. It follows from Theorem 4.1 that there exist (29, Gi, 1)-
OCD for i = 1, 2.
By Theorem 2.3, Theorem 3.2 and Lemma 4.3, we find that the theorem is true. �

Theorem 4.5 There exist (v, Gi, λ)-OPD(OCD) for i = 1, 2, except for (v, i) =
(7, 1).

Proof Set A = {[5, 3, 6, 0, 1, 4], [3, 4, 5, 6, 0, 2], [0, 5, 4, 1, 2, 3], [2, 4, 0, 1, 5, 6], [2, 6, 5, 0,
1, 3], [1, 6, 4, 2, 3, 5]}, B = {[6, 4, 3, 2, 5, 0], [0, 6, 3, 1, 2, 4]}, C = {[3, 6, 4, 2, 5, 0], [6, 3, 0,
1, 2, 4], [2, 5, 3, 0, 1, 4], [0, 6, 4, 1, 2, 3], [4, 5, 1, 6, 0, 2], [0, 3, 4, 1, 5, 6]}. It is easy to verify
that (Z7, A ∪ B) is a (7, G1, 2)-OPD (leave edges: (1, 5), (0, 3)), and (Z7, A ∪ C) is a
(7, G1, 3)-OPD (leave edges: (0, 5), (3, 4, 2)), and (Z7, A ∪ C ∪ {[5, 0, 1, 3, 4, 2]}) is a
(7, G1, 3)-OCD (repeat edges: (0, 1), (2, 3)).

By Theorems 2.4–2.5 and following table, we find that (7, G1, λ)-OPD(OCD)
exists for λ > 1.

Table B

λ 1 2 3 4
Lλ G7 P2 ∪ P2 P3 ∪ P2 P3 ∪ P3

Rλ G7 ∪ P2 ∪ P3 P2 ∪ P3 P2 ∪ P2 P2

When v ≡ 2, 4 (mod 5), the leave edge number is 1, and by Theorem 4.1 we know
the theorem is true. When v ≡ 3 (mod 5), we have l1 = 1, barλ = 5. By Theorems
2.4–2.5, we can list the following table to obtain (v, Gi, λ)-OPD(OCD) for i = 1, 2
and λ > 1.
For G1:

Table C

λ 1 2 3 4

Lλ
� � �

� �

� �

� � �

� � � � �

� �

Rλ
� �

� �

� � �

� � �

� �

� � �

� �

λ 1 2 3 4

Lλ
� �

�

���� � �

� �

�

����� �

� �

� �

Rλ � � �

� � �

� � �

� �

� � �

� �
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For G2:
Table D

λ 1 2 3 4

Lλ
� � �

� �

� �

� � �

�

�

� � � �

� �

Rλ
� �

� �

� � ��

�� �

� �

� � �

� �

λ 1 2 3 4

Lλ
� �

�

���� � �

� �

�

����� �

� �

� �

Rλ � � �

� �

�

����
�

� �

� �

�

����

Theorem 4.6 Let l1 = e(G)/2 be an integer.
(1) If there exist (v, G, 1)-OPD = (X,A) and (v, G, 1)-OCD = (X,B), and L1(A) ∼=
R1(B), then there exist (v, G, λ)-OPD(OCD) for any positive integer λ.
(2) If there exist two (v, G, 1)-OPD and their leave edge graphs are L1 and L′

1, then
when L1 ∪ L′

1 = G, there is a (v, G, λ)-OPD(OCD) for any positive integer λ.
(3) If (v, G, λ)-OPD exists for λ = 1, 2, and L1 ⊂ G, then (v, G, λ)-OPD(OCD)
exists for any positive integer λ.

Proof (1) When λ = 1, this is well-known. When λ = 2, we can construct an
isomorphic mapping, which transforms B to B′, and R1(B) ∼= R1(B′) and L1(A) =
R1(B′) are satisfied. We take (X,A) and (X,B′); then (X,A∪B′) is a (v, G, 2)-GD.
It follows from Theorem 2.4 that there exist (v, G, λ)-OPD(OCD) for any positive
integer λ.

(2) Let a (v, G, 1)-OPD be (X,B) and another be (X,B′). We can construct an
isomorphic mapping, which transforms B′ to B′′, and L1 ∪L′′

1 = G and V (L1 ∪L′′
1) =

V (G) are satisfied. If a block of the graph G is denoted by [a, b, c, d, e, f ], then
(X,B ∪ B′′ ∪ {[a, b, c, d, e, f ]}) is a (v, G, 2)-GD. Since L1 ∪ L′

1 = G, L1 ⊂ G. It
follows from Theorem 4.2 that a (v, G, 1)-OCD exists. By Theorem 2.4 we find that
there exists a (v, G, λ)-OPD(OCD) for any positive integer λ.

(3) This part of the theorem is also true. �

Example On the set X = (Z3 × Z2) ∪ {a}, (7, G4, 1)-OPD = (X, A),
A: [a, 01, 11, 00, 10, 21] mod (3,−). Leave edges: a00, a10, a20.

(X, A ∪ {[00, 11, 00, a, 10, 20]}) is a (7, G4, 1)-OCD. We construct an isomorphic
mapping f satisfying 10 �−→ 00, 20 �−→ a, a �−→ 11, 00 �−→ 01. It is easy to see that
L1

∼= R1. By the above theorem we find that a (7, G4, λ)-OPD(OCD) exists for any
positive integer λ.

We construct a (7, G8, 1)-OPD = (X, B) as follows: [01, 11, 00, 10, 21, a] mod
(3,−). Leave edges: a01, a11, a21; and again construct (7, G8, 1)-OPD = (X, B′) as
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follows: Replace the first block in B by [a, 01, 00, 10, 11, 21]; leave edges: (21, a, 11, 01).
We construct an isomorphic mapping f satisfying 21 �−→ 21, a �−→ 00, 11 �−→ a,
01 �−→ 10. Thus (X, B ∪ f(B′) ∪ {[00, 21, a, 01, 11, 10}) is a (7, G8, 2)-GD. By the
above theorem we find that a (7, G8, λ)-OPD(OCD) exists for any positive integer λ.

On the set Z7, let A = {[6, 3, 0, 1, 4, 2], [6, 4, 1, 2, 5, 0], [6, 5, 2, 0, 3, 1]}; then (Z7, A)
is a (7, G7, 1)-OPD, with leave edges: (0, 6, 1), (6, 2). (Z7, A ∪ {[5, 0, 6, 2, 1, 4]}) is
a (7, G7, 1)-OCD, with repeated edges: (5, 0, 1, 4). B: [2, 0, 6, 5, 3, 1] (mod 7); then
(Z7, B) is a (7, G7, 2)-GD. Therefore a (7, G7, λ)-OPD(OCD) exists for any positive
integer λ.

In the same way, we can obtain the following theorem:

Theorem 4.7 There exists a (v, Gi, λ)-OPD(OCD) for i ∈ [3, 9].

5 Graph designs for λ ≥ 1

Lemma 5.1 The necessary conditions for a (v, G, λ)-GD to exist are

(1) λv(v − 1) ≡ 0 (mod 2e(G));

(2) λ(v − 1) ≡ 0 (mod n), where n = gcd({d(u)|u ∈ V (G)}).
By Corollary 2.6, Section 4 and Table A, we easily get following theorem:

Theorem 5.2 If v satisfies the conditions in Lemma 5.1 and v > 6, then there
exists a (v, Gi, λ)-GD for i ∈ [1, 9] and λ ≥ 1.
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Appendix

Construction of (10 + w,w,G)-IGD for w ∈ {4, 7, 8, 9}:
Let X = Z10 ∪ {a1, a2, · · · , aw} and (10 + w,w,G)-IGD = (X,A). We construct A as

follows:
w = 4 For G1: [a, 2, b, 0, 1, 4] + i, i ∈ Z10, [4, d, 7, 0, 5, c] + i, i ∈ [0, 2], [7, 9, 1, 3, 8, c],

[6, 8, 0, 4, 9, c], [3, 5, 7, 0, 2, d], [2, 4, 6, 1, 3, d].
For G2: [2, a1, 3, 0, 1, y] + i, i ∈ Z10, when i is even y = a2; when i is odd y = a3;

[6, 8, 3, 7, a4, 2] + i, i ∈ [0, 4], [0, 4, 9, 3, 5, 1], [5, 7, 8, 2, 4, 6].
w = 7 For G1: [a1, 3, a2, 0, 4, a5] + i, i ∈ [0, 3], [a1, 7, a2, 4, 8, a6] + i, i ∈ [0, 3],

[a3, 2, a4, 0,
5, a7]+i, i ∈ [0, 4], [a3, 7, a4, 3, 4, 6]+i, i ∈ [0, 4], [9, 1, 8, 2, 3, a6], [a1, 2, a2, 8, 9, a5], [a1, 1, a2,
9, 0, 2], [9, 3, 5, 1, 2, 4], [8, 2, 5, 0, 1, 3].

For G2: [2, a1, a2, 0, 1, a3]+2i, i ∈ [0, 4], [3, a1, a2, 1, 2, a4]+2i, i ∈ [0, 4], [1, 6, a5, 0, 3, a6]
+2i, i ∈ [0, 4], [6, 8, a5, 1, 4, a7]+2i, i ∈ [0, 2], [9, 3, a5, 7, 0, a7], [4, 8, a5, 9, 2, a7], [0, 4, 9, 1, 3,
5], [3, 7, 8, 2, 4, 6], [6, 0, 1, 7, 9, 5].
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w = 8 For G1: [2, x, 7, 0, 1, y] + i, i ∈ Z10, [1, 5, 7, 0, 3, z] + i, i ∈ Z10, when i is even
x = a1, y = a2, z = a3; when i is odd x = a4, y = a5, z = a6; [1, a7, 6, 0, 5, a8] + i, i ∈ [0, 4].

For G2: [2, a1, a2, 0, 1, y] + i, i ∈ Z10, [1, 5, a5, 0, 3, z] + i, i ∈ Z10, when i is even
y = a3, z = a6; when i is odd y = a4, z = a7; [0, 2, 8, 6, a8, 1] + i, i ∈ [0, 3], [4, 6, 7, 5, a8, 0].

w = 9 For G1: [2, x, 7, 0, 1, y] + i, i ∈ Z10, [1, t, 6, 0, 3, z] + i, i ∈ Z10, when i is
even x = a1, y = a2, z = a3, t = a4; when i is odd x = a5, y = a6, z = a7, t = a8;
[6, 4, 8, 0, 5, a9] + i, i ∈ [0, 2], [7, 1, 9, 3, 8, a9], [0, 8, 2, 4, 9, a9], [4, 2, 6, 1, 3, 5], [2, 0, 4, 3, 7, 9].

For G2: [2, a1, a2, 0, 1, y] + i, i ∈ Z10, [1, a5, a6, 0, 3, z] + i, i ∈ Z10, when i is even
y = a3, z = a7; when i is odd y = a4, z = a8; [4, 8, 7, 5, a9, 0] + i, i ∈ [0, 4], [0, 4, 7, 3, 5, 1],
[9, 3, 0, 2, 4, 6].

Construction of (12 + w,w,G)-IGD for w ∈ {3, 5, 6, 7, 8, 10, 11}:
Let X = Z12 ∪ {a1, a2, · · · , aw} and (12 + w,w,G)-IGD = (X,A). We construct A as

follows:
w = 3 For G3: [5, x, 2, 6, a3, 7]+ i, i ∈ Z12\[0, 1], when i is even x = a1; when i is odd

x = a2; [5, a1, 2, 7, 9, 6], [6, a2, 3, 8, 2, 7], [5, 4, 6, 0, 10, a3], [8, 6, 7, 5, 3, a3], [2, 0, 1, 11, 5, 7],
[4, 2, 3, 9, 11, 1], [9, 8, 10, 11, 0, 4].

For G4: [a3, 11, x, 2, 7, 10] + i, i ∈ Z12\[0, 1], when i is even x = a1; when i is odd x =
a2; [7, 2, a1, 11, 10, a3], [8, 3, a2, 0, 11, a3], [8, 2, 4, 3, 9, 11], [2, 10, 8, 9, 7, 11], [0, 6, 8, 7, 1, 5],
[10, 0, 2, 1, 3, 11], [10, 4, 6, 5, 3, 11].

For G5: [6, x, 3, 11, 4, 2] + i, i ∈ Z∗
12, when i is even x = a1; when i is odd x = a2;

[6, a1, 3, 2, 1, 0], [0, a3, 6, 7, 8, 9], [1, 7, a3, 11, 10, 9], [9, a3, 3, 4, 5, 6], [4, 10, a3, 5, 11, 0],
[8, a3, 2, 4, 11, 3].

For G6: [1, 5, 10, x, 7, 9] + i, i ∈ Z∗
12, when i is even x = a1; when i is odd x =

a2; [0, 11, 10, a1, 7, 9], [2, 1, 0, a3, 6, 7], [10, 5, 1, a3, 7, 8], [4, 3, 2, a3, 8, 9], [6, 5, 4, 10, a3, 11],
[11, 5, a3, 3, 9, 10].

For G7: [a1, 1, 6, a2, 3, a3]+i, i ∈ Z12\[0, 2], [3, a1, 1, 0, 2, 4], [8, a2, 6, 3, 7, 2], [5, a3, 3, 1, 4,
10], [2, 3, 8, 7, 5, 11], [6, 0, 8, 9, 4, 5] + i, i = 0, 1, [8, 2, 10, 11, 6, 1], [9, 3, 11, 0, 7, 4].

For G8: [3, x, 6, 4, 11, a3] + i, i ∈ Z∗
12, when i is even x = a1; when i is odd x = a2;

[6, a1, 3, 2, 4, 9], [0, 4, 8, 2, 7, 9], [3, 7, 11, 0, 5, 6], [2, 6, 10, 4, 9, 11], [4, 5, 6, 0, 7, a3], [9, 5, 1, 0,
2, 7].

For G9: [1, x, 4, 6, 11, a3] + i, i ∈ Z∗
12, when i is even x = a1; when i is odd x = a2;

[1, a1, 4, 6, 7, a3], [0, 6, 11, 10, 4, 9], [8, 4, 0, 1, 2, 7], [1, 5, 9, 3, 2, 4], [2, 10, 6, 5, 4, 11], [3, 11, 7, 8,
9, 2].

w = 5 For G3: [x, 0, 1, y, 2, a1] + i, i ∈ Z12, when i is even x = a2, y = a3; when
i is odd x = a4, y = a5; [4, 6, 0, 5, 10, 3] + i, i ∈ [0, 4], [3, 11, 5, 9, 6, 8], [1, 3, 10, 0, 9, 7],
[11, 4, 2, 10, 6, 0], [1, 9, 11, 8, 0, 7].

For G4: [a1, 0, x, 1, a2, a3] + i, i ∈ Z12, when i is even x = a4; when i is odd x = a5;
[11, 6, 4, 0, 3, 5] + i, i ∈ [0, 3], [7, 4, 8, 10, 3, 6], [7, 10, 2, 0, 8, 9], [5, 3, 11, 1, 9, 10], [6, 9, 11, 5, 8,
10], [9, 4, 2, 11, 7, 8].

For G5: [x, 0, 1, y, 2, a1] + i, i ∈ Z12, when i is even x = a2, y = a3; when i is odd x =
a4, y = a5; [0, 2, 5, 1, 7, 11] + i, i ∈ [0, 4], [5, 7, 10, 6, 8, 11], [2, 9, 11, 6, 0, 4], [9, 7, 0, 3, 10, 1],
[11, 4, 1, 8, 10, 0].

For G6: [2, x, 1, y, 0, a1] + i, i ∈ Z12, when i is even x = a2, y = a3; when i is odd x =
a4, y = a5; [8, 5, 0, 4, 6, 10] + i, i ∈ [0, 4], [1, 10, 5, 11, 9, 2], [4, 7, 0, 10, 3, 1], [5, 2, 4, 11, 1, 8],
[0, 2, 11, 6, 3, 5].
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For G7: [a1, 0, 4, a2, x, 8] + i, i ∈ Z12, when i ∈ [0, 3], x = a3, when i ∈ [4, 7], x = a4,
when i ∈ [8, 11], x = a5; [11, 6, 5, 7, 0, 9] + i, i = 0, 1, 3, [11, 8, 7, 9, 2, 4], [0, 10, 9, 6, 4, 7],
[4, 1, 0, 2, 11, 9], [8, 1, 3, 6, 2, 11], [10, 3, 5, 8, 4, 6], [4, 11, 10, 7, 5, 2].

For G8: [x, 0, 1, a1, a2, a3] + i, i ∈ Z12, when i is even x = a4; when i is odd x = a5;
[1, 5, 7, 10, 11, 0] + i, i ∈ [0, 3], [6, 4, 0, 2, 3, 10], [5, 9, 11, 1, 2, 3], [3, 8, 5, 0, 2, 10], [2, 7, 4, 1, 9,
11], [1, 3, 6, 9, 10, 11].

For G9: [1, x, 0, 4, a1, a2] + i, i ∈ Z12, when i is even x = a3; when i is odd x =
a4; [a5, 6, 0, 5, 2, 3] + i, i ∈ [0, 5]\[3, 4], [3, a5, 9, 0, 2, 7] + i, i ∈ [0, 1], [1, 4, 11, 9, 6, 7],
[10, 0, 3, 8, 5, 6], [9, 4, 2, 11, 6, 8].

w = 6 For G3: [x, 0, 1, y, 2, 5] + i, i ∈ Z12, when i is even x = a1, y = a3; when
i is odd x = a2, y = a4; [a5, 6, 0, 3, 8, 2] + i, i ∈ [0, 5], [8, 6, a6, 7, 10, 1], [a6, 5, 0, 9, 6, 10],
[a6, 2, 9, 11, 8, 7], [a6, 3, 10, 1, 6, 8], [a6, 4, 11, 2, 7, 1].

For G4: [a1, 0, x, 1, 5, a2] + i, i ∈ Z12, when i is even x = a3; when i is odd x = a4;
[11, 6, a5, 0, 2, 5] + i, i ∈ [0, 5], [1, 4, a6, 7, 9, 10], [2, 5, a6, 8, 6, 11], [0, 9, a6, 11, 1, 2], [3, 0, a6,
10, 1, 8], [9, 6, 3, a6, 1, 2].

For G5: [1, x, 0, 4, y, 5] + i, i ∈ Z12, when i is even x = a1, y = a3; when i is odd x =
a2, y = a4; [6, a5, 0, 2, 7, 4]+ i, i ∈ [0, 5], [2, a6, 5, 0, 3, 10], [3, a6, 6, 8, 1, 4], [10, 0, a6, 11, 1, 6],
[7, 9, a6, 8, 10, 1], [2, 9, 11, 4, a6, 1].

For G6: [2, x, 1, y, 0, 4] + i, i ∈ Z12, when i is even x = a1, y = a3; when i is odd x =
a2, y = a4; [5, 3, 0, a5, 6, 1]+ i, i ∈ [0, 5], [1, 11, 9, 0, 2, a6], [1, 10, 7, 0, a6, 9], [2, 11, 8, a6, 1, 3],
[0, 5, a6, 11, 4, 2], [9, 6, a6, 3, 10, 0].

For G7: [a1, 1, 0, a2, 3, a3] + i, i ∈ Z12, [a6, 4, a5, 0, 8, 2] + i, i ∈ [0, 1], [7, 0, a4, 8, 4, 11] +
i, i ∈ [0, 2], [a6, 6, a5, 3, 10, 4], [3, 7, a5, 2, 11, 5], [7, a4, 3, 10, 11, 6], [6, 0, a6, 7, 8, 3], [4, 9, a6, 3,
1, 7], [5, 10, a6, 11, 2, 7].

For G8: [x, 0, 1, a1, a2, a3] + i, i ∈ Z12, when i is even x = a4; when i is odd x = a5;
[6, a6, 0, 3, 4, 5] + i, i = 2, 4, 5, [9, a6, 3, 5, 7, 8], [7, a6, 1, 3, 4, 5], [11, 6, 9, 0, 1, 2] + i, i = 0, 2,
[10, 0, 7, 5, 9, 11], [6, 8, 10, 1, 2, 3], [4, 2, 0, 3, 5, 8], [0, a6, 6, 1, 3, 4].

For G9: [1, x, 0, 4, a1, a2] + i, i ∈ Z12, when i is even x = a3; when i is odd x = a4;
[a5, 7, 1, 6, 3, 4]+ i, i ∈ [0, 4], [a5, 0, 6, a6, 5, 7], [2, a6, 9, 11, 1, 6], [3, a6, 10, 0, 7, 9], [11, a6, 8, 1,
3, 10], [1, 4, a6, 0, 2, 3], [4, 11, 2, 5, 0, 3].

w = 7 For G3: [x, 0, 1, y, 2, 5] + i, i ∈ Z12, [z, 5, 0, 2, a7, t] + i, (i, t) ∈ {(1, 7), (3, 9),
(4, 10), (5, 11)}∪ {(6, 9) + j| j ∈ [0, 5]}, when i is even x = a1, y = a3, z = a5; when i is
odd x = a2, y = a4, z = a6; [2, a7, 4, 7, a5, 1], [3, 6, 0, 5, a5, 2], [5, 8, 2, a5, 0, 7].

For G4: [a1, 0, x, 5, a2, a3] + i, i ∈ Z12, when i is even x = a4; when i is odd x = a5;
[a7, 3, 6, 2, 8, a6]+ i, i ∈ [0, 3], [a7, 7, 10, 6, 8, a6]+ i, i ∈ [0, 5], [6, 4, 0, 2, 5, a7], [7, 5, 3, 1, 2, 4],
[6, 0, a6, 1, 7, a7].

For G5: [0, x, 1, y, 2, a5] + i, i ∈ Z12, when i is even x = a1, y = a3; when i is odd
x = a2, y = a4; [8, a6, 2, 7, 5, 9] + i, i ∈ [0, 2], [6, 11, 9, 1, a7, 7] + i, i ∈ [0, 4], [0, 6, a6, 1, 7, 4],
[1, 4, 6, 3, 7, a6], [3, 5, 0, a7, 6, 2], [11, a6, 5, 10, 8, 4], [11, 4, 2, 5, 8, 0].

For G6: [1, x, 2, y, 9, 5] + i, i ∈ Z∗
12, [7, 1, 3, z, 0, a7] + i, i ∈ [0, 5]\{2}, [8, 7, 9, z, 6, a7] +

i, i ∈ [0, 5], when i is even x = a1, y = a2, z = a5; when i is odd x = a3, y = a4, z = a6;
[1, a1, 2, a2, 9, 3], [7, 6, 5, a5, 2, a7], [1, 2, 3, 4, 5, 9].

For G7: [a1, 0, x, 8, 4, a2] + i, when i ∈ [0, 3], x = a3; when i ∈ [4, 7], x = a4; when
i ∈ [8, 11], x = a5; [a7, 0, 2, a6, 5, 11] + i, i ∈ [0, 5], [11, 0, 9, 8, a6, 1], [7, 8, a6, 10, 11, 6],
[5, 6, a7, 8, 7, 9]; [6, 8, 10, 9, 1, 2]; [a7, 9, 11, 10, 2, 3], [a7, 10, 0, 7, 3, 4], [a7, 11, 1, 0, 4, 5].



GRAPH DESIGNS, PACKINGS AND COVERINGS 65

For G8: [0, x, 5, a1, a2, a3] + i, i ∈ Z12, when i is even x = a4; when i is odd x = a5;
[5, a7, 6, 8, 9, 10] + i, i ∈ [0, 5], [9, a6, 3, 5, 6, 7] + i, i ∈ [0, 2], [2, 3, 0, 1, 4, 11], [4, 5, 2, 1, 8, 6],
[3, 4, 1, a6, 7, 5], [0, 6, a6, 2, 7, 8].

For G9: [x, 7, 2, 6, a1, a2]+i, i ∈ Z∗
12, [3, y, 0, 2, a7, 8]+i, i ∈ [0, 5]\{3}, [9, y, 6, 8, a7, 7]+

i, i ∈ [0, 5], when i is even x = a3, y = a5; when i is odd x = a4, y = a6; [a3, 2, 7, 6, a2, a1],
[3, a6, 6, 5, 11, a7], [5, 4, 3, 2, 1, 6].

w = 8 For G3: [x, 1, 0, y, 11, 2] + i, i ∈ Z12, [z, 8, 3, t, 0, 7] + i, i ∈ Z12\{0, 1, 2, 4, 5, 6},
[z, 8, 3, 9, 6, 7] + i, i ∈ [0, 2], [z, 0, 7, t, 3, 11] + i, i ∈ [0, 2], [6, 3, 0, t, 4, 9] + i, i ∈ [0, 2], when
i is even x = a1, y = a2, z = a5, t = a6; when i is odd x = a3, y = a4, z = a7, t = a8.

For G4: [a1, 3, x, 4, 6, a2]+ i, i ∈ Z12\[0, 2], [8, 0, y, 5, a5, a6]+ i, i ∈ Z12\[0, 2], [8, 0, 3, 6,
4, 9] + i, i ∈ [0, 2], [a2, 4, x, 3, a1, 9] + i, i ∈ [0, 2], [9, 0, y, 5, a5, a6] + i, i ∈ [0, 2], when i is
even x = a3, y = a7; when i is odd x = a4, y = a8.

For G5: [x, 1, 0, 2, y, 3]+i, i ∈ Z12, [z, 11, 4, 0, t, 9]+i, i ∈ Z12\{0, 1, 2, 4, 5, 6}, [0, 6, 3, 9,
t, 1] + i, i ∈ [0, 2], [11, z, 4, 0, 9, 6] + i, i ∈ [0, 2], [11, z, 4, 0, t, 8] + i, i ∈ [4, 6], when i is even
x = a1, y = a2, z = a5, t = a6; when i is odd x = a3, y = a4, z = a7, t = a8.

For G6: [1, x, 0, y, 5, 9]+i, i ∈ Z12, [11, z, 0, t, 1, 3]+i, i ∈ Z12\{0, 1, 2}, [11, z, 0, 6, 3, 9]+
i, i ∈ [0, 2], [6, 9, 0, t, 1, 3] + i, i ∈ [0, 2], when i is even x = a1, y = a2, z = a5, t = a6;
when i is odd x = a3, y = a4, z = a7, t = a8.

For G7: [a1, 0, 4, a2, x, 8] + i, when i ∈ [0, 3], x = a3; when i ∈ [4, 7], x = a4; when
i ∈ [8, 11], x = a5; [a7, 6, 11, a6, 8, a8] + i, i ∈ [0, 5]\{1}, [0, 1, a7, 4, 2, 3], [4, 5, a6, 8, 6, 7],
[3, 9, a6, 0, 10, 11]; [a7, 0, 5, 11, 2, a8], [7, 1, 6, 0, 3, a8], [8, 2, 7, a6, 4, a8], [a7, 3, 8, 7, 5, a8], [3, 4,
9, 8, 6, a8], [a7, 5, 10, 4, 7, a8], [a7, 7, 0, 11, 9, a8].

For G8: [2, x, 0, a1, a2, a3] + i, when i = 4j, 4j + 1, x = a4, when i = 4j + 2, 4j +
3, x = a5, j ∈ [0, 2], [1, 9, 2, a6, a7, a8] + i, i ∈ Z12\{0, 1, 2}, [1, 2, 9, 0, 3, 6] + i, i ∈ [0, 2],
[6, 0, 3, a6, a7, a8] + i, i ∈ [0, 1], [5, 8, 2, a6, a7, a8].

For G9: [1, x, 0, 2, a1, a2]+i, i ∈ Z12, [5, y, 0, 4, a5, a6]+i, i ∈ Z12\{0, 1, 2}, [5, y, 0, 9, 3, 6]
+ i, i ∈ [0, 2], [6, 3, 0, 4, a5, a6] + i, i ∈ [0, 2], when i is even x = a3, y = a7, when i is odd
x = a4, y = a8.

w = 10 For G3: [0, 3, x, 9, a1, 6] + i, when i ∈ [0, 2], x = a2, when i ∈ [3, 5], x = a3,
when i ∈ [6, 8], x = a4, when i ∈ [9, 11], x = a5; [5, y, 0, z, 1, 2] + i, i ∈ Z12, when i is
even y = a6, z = a7, when i is odd y = a8, z = a9; [3, 7, 11, 10, 6, 0], [11, a10, 5, 9, 10, 1],
[6, a10, 0, 8, 7, 4], [7, a10, 1, 9, 8, 0], [8, a10, 2, 6, 7, 1], [9, a10, 3, 2, 10, 4], [10, a10, 4, 5, 6, 8].

For G4: [a1, 0, 3, x, 9, 6] + i, when i ∈ [0, 2], x = a2, when i ∈ [3, 5], x = a3, when
i ∈ [6, 8], x = a4, when i ∈ [9, 11], x = a5; [10, 6, y, 1, a6, a7] + i, i ∈ Z∗

12, when i is
even y = a8, when i is odd y = a9; [8, 6, a10, 0, 1, 2] + i, i = 1, 3, 4, [7, 8, 9, 10, 11, 6],
[5, 6, a8, 1, a6, a7], [7, 6, a10, 0, 1, 2], [6, 8, a10, 2, 3, 4], [7, 5, a10, 11, 0, 1].

For G5: [0, 4, x, 8, y, 9] + i, when i ∈ [0, 3], x = a1, when i ∈ [4, 7], x = a2, when
i ∈ [8, 11], x = a3; [9, z, 6, t, 5, 7] + i, i ∈ Z∗

12, when i is even y = a4, z = a6, t = a7,
when i is odd y = a5, z = a8, t = a9; [6, a10, 0, 11, 4, 9] + i, i = 0, 1, 2, 4, [9, a6, 6, a7, 5, 4],
[5, a10, 11, 10, 3, 2], [5, 6, 7, 8, 9, 10], [3, a10, 9, 2, 7, 0].

For G6: [1, x, 0, 4, y, 8] + i, when i ∈ [0, 3], y = a3, when i ∈ [4, 7], y = a4, when
i ∈ [8, 11], y = a5; [10, z, 11, t, 2, 9] + i, i ∈ Z∗

12, when i is even x = a1, z = a6, t = a7,
when i is odd x = a2, z = a8, t = a9; [3, 2, 0, a10, 6, 8] + i, i = 0, 1, 2, 4, 5, [6, 5, 3, a10, 9, 8],
[10, a6, 11, a7, 2, 1], [1, 0, 11, 10, 9, 2].

For G7: [a1, 0, y, 8, 4, a2] + i, when i ∈ [0, 3], y = a3, when i ∈ [4, 7], y = a4, when
i ∈ [8, 11], y = a5; [a6, 0, 2, a7, 11, a8] + i, i ∈ Z12\[0, 4], [1, 4, 6, a7, 3, a8], [a8, 1, a6, 4, 2, 0],
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[a8, 2, a7, 4, 3, 5], [a8, 0, 3, a6, 1, 7], [a6, 0, 5, a7, 11, a8], [2, 5, a9, 3, 10, a10], [9, 4, a9, 6, 11, a10],
[11, 2, a9, 0, 7, a10], [7, 0, a10, 1, 6, 11], [10, 3, a10, 8, 9, 2], [8, 2, a10, 5, 4, 10], [3, 8, a9, 9, 1, 6].

For G8: [0, x, 5, a1, a2, a3] + i, i ∈ Z12, [0, y, 3, a8, a9, a10] + i, i ∈ Z12, when i is even,
x = a4, y = a6, when i is odd, x = a5, y = a7, [6, 4, 0, 8, 10, 11]+i, i = 0, 1, [8, 9, 10, 11, 4, 6],
[11, 9, 5, 3, 4, 6], [1, 2, 3, 4, 9, 11], [4, 8, 2, 0, 6, 10], [6, 8, 7, 3, 9, 11].

For G9: [0, 4, x, 8, a1, a2] + i, when i ∈ [0, 3], x = a3, when i ∈ [4, 7], x = a4, when
i ∈ [8, 11], x = a5; [3, y, 0, 5, a7, a6] + i, i ∈ Z12, when i is even, y = a8, when i is odd,
y = a9, [6, a10, 0, 1, 2, 3]+2i, i ∈ [1, 2], [3, a10, 9, 8, 7, 10], [5, a10, 11, 9, 7, 10], [1, a10, 7, 6, 4, 8],
[6, a10, 0, 1, 11, 3], [10, 11, 0, 2, 1, 4].

w = 11 For G3: [5, x, 0, y, 1, a1] + i, i ∈ Z12, [3, z, 0, t, 1, a2] + i, i ∈ Z∗
12, when i

is even x = a3, y = a4, z = a5, t = a6, when i is odd x = a7, y = a8, z =
a9, t = a10; [6, a11, 0, 4, 5, 2]+ i, i ∈ [0, 5], [3, a5, 0, a6, 1, 8], [6, 8, 10, 0, a2, 2], [11, 0, 1, 2, 3, 9],
[7, 9, 11, 3, 4, 10].

For G4: [a1, 0, x, 3, a2, a3] + i, i ∈ Z12, [a4, 0, y, 5, a6, a5] + i, i ∈ Z12, when i is even
x = a7, y = a8, when i is odd x = a9, y = a10; [5, 6, a11, 0, 2, 4]+i, i = 0, 1, 2, [3, 11, 0, 1, 2, 9],
[0, 8, 6, 10, 9, 2], [8, 9, 11, 7, 3, 5], [5, 9, a11, 3, 2, 4], [10, 11, a11, 5, 3, 4], [0, 10, a11, 4, 6, 8].

For G5: [5, x, 0, y, 1, a1] + i, i ∈ Z12, [3, z, 0, t, 1, a2] + i, i ∈ Z12, when i is even x =
a3, y = a4, z = a5, t = a6, when i is odd x = a7, y = a8, z = a9, t = a10; [0, 4, 6, 5, a11, 11] +
i, i = 0, 2, 5, [7, 5, 1, 9, 8, 0], [2, 10, 0, 11, 1, 3], [3, 11, 7, 9, 10, 6], [10, 4, 8, a11, 6, 7], [5, 3, 4, 2,
a11, 0], [9, a11, 3, 2, 1, 0].

For G6: [1, x, 0, y, 3, a1] + i, i ∈ Z12, [1, z, 0, t, 5, a2] + i, i ∈ Z12, when i is even x =
a3, y = a4, z = a5, t = a6, when i is odd x = a7, y = a8, z = a9, t = a10; [2, 4, 0, a11, 6, 10] +
i, i = 1, 2, 3, 4, [6, 10, 0, 1, 2, 3], [5, 4, 3, 1, 11, 0], [6, 7, 8, 10, 9, 11], [2, 4, 0, a11, 6, 5], [7, 9, 5,
a11, 11, 10].

For G7: [a1, 0, x, 8, 4, a2] + i, when i ∈ [0, 3], x = a3, when i ∈ [4, 7], x = a4, when
i ∈ [8, 11], x = a5; [a6, 0, 5, a7, 2, a8] + i, i ∈ Z12, [a10, 0, a9, 5, 6, 7], [a10, 7, a9, 9, 1, a11],
[1, 2, a9, 11, 8, 7], [a11, 2, a10, 1, 3, a9], [a9, 4, a10, 8, 10, 11], [a11, 6, a10, 9, 5, 11], [9, 3, a11, 8,
4, 5], [a9, 10, a11, 7, 9, 8], [a10, 11, a11, 5, 0, 1].

For G8: [0, x, 5, a1, a2, a3] + i, i ∈ Z12, [0, y, 3, a8, a9, a10] + i, i ∈ Z12, when i is
even, x = a4, y = a6, when i is odd, x = a5, y = a7, [6, a11, 0, 1, 2, 4] + i, i = 0, 3, 4, 5,
[7, a11, 1, 9, 3, 5], [8, a11, 2, 3, 4, 1], [6, 7, 8, 9, 10, 0], [7, 9, 11, 0, 1, 3], [2, 6, 10, 0, 9, 11].

For G9: [8, x, 5, y, 1, 9] + i, i ∈ Z∗
12, [5, z, 0, t, 4, 8] + i, i ∈ Z12, when i is even, x =

a1, z = a2, when i is odd, x = a3, z = a4, when i ∈ [0, 3], y = a5, t = a6, when i ∈ [4, 7], y =
a7, t = a8, when i ∈ [8, 11], y = a9, t = a10; [6, a11, 0, 4, 2, 3]+i, i ∈ [1, 3], [10, a11, 4, 8, a1, 6],
[7, 8, 9, 5, a11, 11], [1, 9, a5, 5, a1, 8], [0, 6, a11, 11, 3, 7], [1, 11, 0, 4, 2, 3], [11, 9, 10, 0, 2, 8],
[1, 3, 2, 10, 8, 6].
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