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Abstract

For an interger l > 1, the l-edge-connectivity λl(G) of G is defined to be
the smallest number of edges whose removal leaves a graph with at least
l components, if |V (G)| ≥ l; and λl(G) = |V (G)| if |V (G)| ≤ l. A graph
G is (k, l)-edge-connected if the l-edge-connectivity of G is at least k. A
sufficient and necessary condition for G to be minimally (k, k − 1)-edge-
connected is obtained in the paper. Bounds of size of such graphs with
given order are discussed.

1 Introduction

Graphs in this paper are simple and finite. See [2] for undefined terminology and
notations in graph theory. Let P be a path and C a cycle; the length of P and
C, denoted by l(P ) and l(C), are defined to be the number of edges of P and C,
respectively. If S ⊆ V (G), we define N(S) = ∪v∈SN(v). If G is a connected graph,
we define B(G) = {e : e is a cut edge of G}. For an edge subset X ⊆ E(G), the
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contraction G/X is the graph obtained from G by identifying the two ends of each
edge in X and then deleting the resulting loops. Let G′ = G/(E(G)−B(G)), called
the B-reduction of G. Let e(G) = |E(G)|, |G| = |V (G)|, and ω(G) denote the
number of components of G.

We define the generalized edge connectivity λ(G) of graph G to be the minimum
integer k for which G has a k-edge set T such that ω(G−T ) = ω(G) + 1. Therefore,
if graph G is connected, the generalized edge connectivity of G is just the edge
connectivity of G.

For an integer l > 2, the l-edge-connectivity λl(G), which was introduced by
Boesch and Chen [1], is defined to be the smallest number of edges whose removal
leaves a graph with at least l components, if |V (G)| ≥ l; and λl(G) = |V (G)| if
|V (G)| < l.

A graph G is called (k, l)-edge-connected if λl(G) ≥ k. A graph G is minimally
(k, l)-edge-connected if λl(G) ≥ k but for any edge e ∈ E(G), λl(G − e) < k.

Following [9], for a graph G, define a relation on E(G) as follows: ∀e, e′ ∈
E(G), e ∼ e′ if and only if either e = e′, or {e, e′} is a minimal edge cut of G.
One can verify that the relation ∼ is an equivalence relation. Let [e]G denote the
equivalence class that contains e ∈ E(G). If there is no confusion, we simply denote
[e]G by [e]. For any e ∈ E(G), define G[e] = G/(E(G) − [e]). Note that G[e] is
obtained from G by contracting each component of G − [e] into a single vertex.

If e, e′ ∈ E(G), e ∼ e′, then we call e is equivalent to e′ in G. If for any equiv-
alence class [e′] that contains e′ ∈ E(G), |[e]| ≥ |[e′]|, then [e] is called a maximum
equivalence class of the graph G,

Let µ(G) = max{|[e]| : e ∈ E(G)}.
A sequence of edge sets S1, S2, . . . , St is called an ordered edge-cut-set decompo-

sition of E(G), if it satisfies each of the following.
(i) S1 ⊆ E(G), |S1| = λ(G) and ω(G − S1) = ω(G) + 1.
(ii) Sm+1 ⊆ E(G − ∪m

i=1Si), |Sm+1| = λ(G − ∪m
i=1Si) and ω(G − ∪m+1

i=1 Si) =
ω(G − ∪m

i=1Si) + 1, where m = 1, 2, . . . , t − 1.
(iii) E(G) = ∪t

i=1Si.
Note: If |G| = n, and if S1, S2, . . . , St is an ordered edge-cut-set decomposition of
E(G), then |St| = 1 and t = n − ω(G).

Let G be a connected graph, k ≥ 3 and S ⊆ E(G). If |S| = k and ω(G− S) = l,
then S is called a (k, l)-edge-cut set of G.

Theorem 1 [11] Let G be a minimally k-edge-connected graph, |G| = n, k ≥ 2 and
n ≥ 3k; then e(G) ≤ k(n−k). Furthermore, equality holds if and only if G ∼= Kk,n−k.

Theorem 2 [15] Let G be a minimally k-edge-connected graph, |G| = n, k ≥ 2 and
k + 2 ≤ n < 3k; then e(G) ≤ �(n + k)2/8	.

By Theorem 1 and Theorem 2, one can obtain the following proposition imme-
diately:

Proposition 1 Let G be a minimally 2-edge-connected graph and |G| = n ≥ 4. Then
e(G) ≤ 2n − 4.
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Proposition 2 [9] Each of the following holds:
(i) If G has a cut edge, then G′ is a tree with edge set B(G).
(ii) If G has no cut edges, then G[e] is a cycle with edge set [e].
(iii) If G has no cut edges, then for any e′ ∈ [e], B(G− e′) is a path in (G− e′)′

with edge set [e] − {e′}.
Furthermore, we get the following proposition:

Proposition 2′ Let G be a connected graph, e ∈ E(G) and |[e]| ≥ 2. Then G[e] is a
cycle with edge set [e].

2 A sufficient and necessary condition

Proposition 3 Let G be a connected graph. The following are equivalent.
(i) For any edge e ∈ E(G), λl(G − e) = k − 1.
(ii) G is mimimally (k, l)-edge-connected.

Proof. To show that Proposition 3 (i) implies Proposition 3 (ii), it suffices to show
λl(G) ≥ k. Since λl(G − e) = k − 1, λl(G) ≤ k. Assume λl(G) ≤ k − 1. Then there
exists a T ⊆ E(G) such that |T | ≤ k − 1 and ω(G − T ) = l. Thus for each e ∈ T ,
ω(G − e − (T − e)) = ω(G − T ) = l. However |T − e| ≤ k − 2, contrary to the
assumption that λl(G − e) = k − 1.

Conversely, assume Proposition 3 (ii). By definition, λl(G) ≥ k and for any
e ∈ E(G), λl(G−e) < k. Assume there exists an edge e ∈ E(G) such that λl(G−e) ≤
k − 2; then there exists a T ⊆ E(G − e) with |T | ≤ k − 2 and ω(G − e − T ) = l.
However, |T ∪ {e}| ≤ k − 1, contrary to λl(G) ≥ k. Thus for any edge e ∈ E(G),
λl(G − e) = k − 1. �

Theorem 3 Let G be a connected graph, |G| ≥ k−1. Then G is minimally (k, k−1)-
edge-connected if and only if each of the following holds.

(i) |B(G)| ≤ k − 3;
(ii) µ(G) ≤ k − |B(G)| − 2;
(iii) for any e ∈ E(G) − B(G), µ(G − e) ≥ k − |B(G)| − |[e]G|.

Proof. Let G be a minimally (k, k − 1)-edge-connected graph; then λk−1(G) ≥ k.
Assume |B(G)| ≥ k − 2. Then one can choose some T ⊆ B(G) with |T | = k − 2

and ω(G − T ) = k − 1, contrary to λk−1(G) ≥ k. So |B(G)| ≤ k − 3.
Assume µ(G) ≥ k−|B(G)|− 1. Then we can choose S ⊆ E(G) which consists of

all edges in B(G) and k − |B(G)| − 1 edges in some maximum equivalence class of
the graph G. Then |S| = k−1 and ω(G−S) = 1+ |B(G)|+(k−|B(G)|−2) = k−1,
contrary to λk−1(G) ≥ k. Therefore µ(G) ≤ k − |B(G)| − 2.

Assume for some edge e ∈ E(G) − B(G), µ(G − e) ≤ k − |B(G)| − |[e]G| − 1.
By Proposition 3, λk−1(G − e) = k − 1, so there exists an edge set T ⊆ E(G − e)
with |T | = k − 1 and ω((G − e) − T ) = k − 1. Let T = {e1, e2, . . . , ek−1}. Let
J = {ei|ω(G−e−{e1, e2, . . . , ei}) = ω(G−e−{e1, e2, . . . , ei−1}), 1 ≤ i ≤ k−1}, then
T−J = {ei|ω(G−e−{e1, e2, . . . , ei}) = ω(G−e−{e1, e2, . . . , ei−1})+1, 1 ≤ i ≤ k−1}.
So |J | = |T | − |T − J | = |T | − [ω((G − e) − T ) − 1] = 1. Without loss of generality,



42 XIANGFENG PAN, JINGZHONG MAO AND HUIQING LIU

assume J = {e1}. By Proposition 2′, T must consist of edges in B(G − e) ∪ [e1]G−e.
Then, by µ(G− e) ≤ k − |B(G)| − |[e]G| − 1, |T | ≤ |B(G− e)∪ [e1]G−e| ≤ (|B(G)|+
|[e]G| − 1) + (k − |B(G)| − |[e]G| − 1) = k − 2, contrary to |T | = k − 1. Thus for any
e ∈ E(G) − B(G), µ(G − e) ≥ k − |B(G)| − |[e]G|.

Conversely, assume Theorem 3 (i), (ii) and (iii). We first show that λk−1(G) ≥ k.
Let T = {f1, f2, . . . , fk−1} ⊆ E(G) be a k−1 edge set. since |B(G)|+µ(G) ≤ k−2, T
includes at least two edges(without loss of generality, assume they are f1, f2) which
belong to different equivalence classes and are not cut edge. By Proposition 2′,
ω(G) = ω(G − f1) = ω(G − f1 − f2). Then, for any {f1, f2, . . . , fk−1} ⊆ E(G),
ω(G − {f1, f2, . . . , fk−1}) ≤ 1 + (k − 3) = k − 2. So λk−1(G) ≥ k. To show that G
is minimally (k, k − 1)-edge-connected, it suffices to show that, for any e ∈ E(G),
λk−1(G − e) < k. Assume there exists an edge f ∈ E(G), λk−1(G − f) ≥ k. Choose
some S ⊆ E(G) which consists of all edges in B(G)∪[f ]G and k−|B(G)|−|[f ]G| edges
in some maximum equivalence class of G−f . Then |S| = |B(G)|+|[f ]G|+k−|B(G)|−
|[f ]G| = k and ω(G−S) = 1+ |B(G)|+ |[f ]G|− 1+(k−|B(G)|− |[f ]G|− 1) = k− 1.
Thus ω(G − f − (S − f)) = k − 1 and |S − f | = k − 1, contrary to the assumption
that λk−1(G − f) ≥ k. So G is minimally (k, k − 1)-edge-connected. �

Corollary 1 Let G be a 2-edge-connected graph, |G| ≥ k − 1. The following are
equivalent.

(i) G is minimally (k, k − 1)-edge connected.
(ii) µ(G) ≤ k − 2, and for any e ∈ E(G), µ(G − e) ≥ k − |[e]G|.

Corollary 2 Let G be a connected graph, |G| ≥ k − 1, |B(G)| = k − 3, and k ≥
4. Then G is minimally (k, k − 1)-edge connected if and only if every nontrivial
component of G − B(G) is minimally 3-edge-connected.

Proof. By Theorem 3 and |B(G)| = k − 3, G is minimally (k, k − 1)-edge-connected
⇔ µ(G) ≤ k − |B(G)| − 2 = 1 and for any e ∈ E(G) − B(G), µ(G − e) ≥ k −
|B(G)| − |[e]G| = 2 ⇔ every nontrivial component of G−B(G) is minimally 3-edge-
connected. �

It is easy to obtain the following.

Corollary 3 If G is 2-edge-connected and µ(G) ≤ k − 2, then G is (k, k − 1)-edge-
connected.

3 Bounds of size of minimally(k, k−1)-edge-connected graphs
with given order

Lemma 1 If H ⊆ G is 2-edge-connected, e ∈ E(H), and λ(H − e) ≥ 2, then
µ(G − e) ≤ max{µ(G), µ(H − e)}.
Proof. We claim that for any f ∈ E(H − e), f is not equivalent to any edge in
E(G−e)−E(H−e) in G−e. Assume there exists an edge f = uv ∈ E(H−e) which
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is equivalent to some g ∈ E(G)−E(H) in G− e; then G−{e, g} is connected. Since
λ(H − e) ≥ 2, H −{e, f} is connected. Then G−{e, g, f} is connected. (Otherwise,
f is a cut edge of G − {e, g}. Thus there is no (u, v)-path in G − {e, g, f}. Then,
by H − {e, f} ⊆ G − {e, g, f}, there is no (u, v)-path in H − {e, f}. So H − {e, f}
is not connected, a contradiction.) However, by the assumption that f is equivalent
to g in G − e, G − {e, g, f} is not connected. So the claim must hold. Then,
for any h ∈ E(G − e) − E(H − e), [h]G−e = [h]G and |[h]G−e| ≤ µ(G). And for any
i ∈ E(H−e), [i]G−e ⊆ [i]H−e and |[i]G−e| ≤ µ(H−e). Thus µ(G−e) = max{|[f ]G−e| :
f ∈ E(G − e)} = max{max{|[f ]G−e| : f ∈ E(G − e) − E(H − e)}, max{|[i]G−e| : i ∈
E(H − e)}} ≤ max{µ(G), µ(H − e)}. �

Lemma 2 Let G be a 2-edge-connected graph, e ∈ E(G), and µ(G) = k. Then
µ(G − e) ≤ 2k.

Proof. Assume µ(G − e) ≥ 2k + 1 and [f ]G−e is a maximum equivalence class of
G − e. Then |[f ]G−e| = µ(G − e). Let C1, C2, . . . , Cµ(G−e) denote the components of
G − e − [f ]G−e. Let u and v denote the ends of e. There are two cases.

Case 1 For some Ci, i ∈ {1, . . . , µ(G − e)}, u ∈ Ci and v ∈ Ci. Then µ(G) =
µ(G − e) ≥ 2k + 1.

Case 2 For some Ci and Cj , i, j ∈ {1, . . . , µ(G − e)}(i �= j), u ∈ Ci and v ∈ Cj.

Then, by Propsition 2′, µ(G) ≥ µ(G−e)
2

> k.
So µ(G) > k, contrary to the assumption µ(G) = k. Thus µ(G − e) ≤ 2k. �

Lemma 3 Let G be a minimally (k, k − 1)-edge-connected graph, |G| ≥ k − 1,
|B(G)| ≤ k − 4, k ≥ 5. Then for any H ⊆ G, λ(H) ≤ 2.

Proof. Assume there exists a H ⊆ G, λ(H) ≥ 3. Without loss of generality, assume
H is connected. Then µ(H) = 1, and for some e ∈ E(H), [e]G = 1 and λ(H−e) ≥ 2.
Obviously H is 2-edge-connected. Thus, by Lemma 2, µ(H − e) ≤ 2. By Theorem
3, µ(G) ≤ k − |B(G)| − 2. And, by |B(G)| ≤ k − 4, k − |B(G)| − 2 ≥ 2. Then, by
Lemma 1, µ(G−e) ≤ max{µ(G), µ(H−e)} ≤ k−|B(G)|−2. However, by Theorem
3, µ(G − e) ≥ k − |B(G)| − |[e]G| = k − |B(G)| − 1, a contradiction. �

Proposition 4 If H ⊆ G is connected and e ∈ E(H) − B(H), then [e]G ⊆ [e]H .

Proof. The proof is similar to that of Lemma 1. �

Lemma 4 If G is 2-edge-connected and minimally (k, k − 1)-edge-connected, k ≥ 6,
then G does not contain such a subgraph H that satisfies each of the following.

(i) µ(H) ≤ 2.
(ii) H is 2-edge-connected but not minimally 2-edge-connected.

Proof. Assume there exists some H ⊆ G which satisfies both (i) and (ii). Then
for some e ∈ E(H), λ(H − e) ≥ 2. Obviously, |[e]H | = 1 and e /∈ B(H). Then,
by Proposition 4, [e]G ⊆ [e]H . By Proposition 2 (iii), B(G − e) ⊆ [e]H − {e} = ∅.
Therefore G−e is 2-edge-connected. Now we show G−e is (k, k−1)-edge-connected.
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Since µ(H) ≤ 2, by Lemma 2, µ(H − e) ≤ 4. By Lemma 1 and Corollary 1,
µ(G− e) ≤ max{µ(G), µ(H − e)} ≤ {µ(G), 4} ≤ k − 2. Then, by Corollary 3, G− e
is (k, k− 1)-edge-connected, contrary to the fact that G is minimally (k, k− 1)-edge-
connected. �

Let Et denote an edgeless graph with order t. Let Et ∨ H denote the join of Et

and H.

Corollary 4 Let G be a 2-edge-connected and minimally (k, k − 1)-edge-connected
graph; then E2 ∨ K2 �⊆ G.

Proof. Assume H ∼= E2 ∨ K2 ⊆ G, then H satisfies Lemma 4 (i) and (ii), a contra-
diction. �

Proposition 5 Let G be a 2-edge-connected and minimally (k, k−1)-edge-connected
graph with k ≥ 4; then µ(G) ≥ 2.

Proof. Assume µ(G) = 1, by Lemma 2, then for any e ∈ E(G), µ(G − e) ≤ 2.
However, by Corollary 1, µ(G − e) ≥ k − |[e]| ≥ 4 − 1 = 3, a contradiction. �

Theorem 4 Let G be a 2-edge-connected and minimally (k, k − 1)-edge-connected
graph, |G| = n, n ≥ k + 2, and k ≥ 6. Then e(G) ≤ 2n − k.

Proof. Since G is minimally (k, k − 1)-edge-connected, by Proposition 3, there ex-
ists a (k, k − 1)-edge-cut set S of G. Then |S| = k and ω(G − S) = k − 1.
Choose an ordered edge-cut-set decomposition S1, S2, . . . , St of E(G − S), then
t = n−ω(G−S) = n−k+1 and |Sn−k+1| = 1. By Lemma 3, for all i = 1, 2, . . . , n−k,
|Si| ≤ 2. So e(G) = |S| + ∑n−k+1

i=1 |Si| ≤ k + (n − k) × 2 + 1 = 2n − k + 1. Assume
e(G) = 2n − k + 1, then for all i = 1, 2, . . . , n − k, |Si| = 2 and |Sn−k+1| = 1.
Hence all graphs G−S, G− S −∪m

i=1Si, where m = 1, 2, . . . , n− k, have only a non-
trivial component. Let H0 and Hm denote the nontrivial component of G − S and
G−S−∪m

i=1Si respectively. Since n ≥ k+2, |Sn−k−1| = |Sn−k| = 2 and |Sn−k+1| = 1,
Hn−k−2

∼= E2 ∨ K2. Then, by Hn−k−2 ⊆ G and Corollary 4, a contradiction. �

Let n and k be two positive integers with n ≥ k + 4 and k ≥ 6. Let G1,n, G2,n

or G3,n denote the union of a complete bipartite graph Kn−k+1,2 with bipartition
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({u1, u2, . . . , un−k+1}, {v1, v2}) and a path v2y1y2 . . . yk−3v1, u1y1y2 . . . yk−3un−k+1 or
u1y1y2 . . . yk−3v2 of length k − 2 respectively (see Figure 1).

Theorem 5 Let G be a 2-edge-connected and minimally (k, k − 1)-edge-connected
graph, |G| = n, n ≥ k + 4 and k ≥ 6. Then e(G) = 2n − k if and only if G ∼=
G1,n, G2,n, or G3,n.

Proof. Let G be a 2-edge-connected and minimally (k, k − 1)-edge-connected graph
with e(G) = 2n − k. (The existence of G can be seen in Figure 1.)

Let S be a (k, k−1)-edge-cut set of G. Let S1, S2, . . . , St be an ordered edge-cut-
set decomposition of E(G−S). Then t = n− k + 1, |Sn−k+1| = 1 and, by Lemma 3,
for any i ∈ {1, 2, . . . , n − k}, |Si| ≤ 2.

Firstly, we show that G − S has only one nontrivial component. Assume that
G − S has more than one nontrivial components. There are two cases.

Case 1 Assume G − S has at least three nontrivial components. Then there exist
at least two edge sets Si, Sj such that |Si| = |Sj | = 1 and i, j �= n − k + 1. So

e(G) = |S| + ∑n−k+1
i=1 |Si| ≤ k + 3 × 1 + (n − k − 2) × 2 = 2n − k − 1, contrary to

e(G) = 2n − k.

Case 2 Assume G − S has exactly two nontrivial components. Then one of these
two nontrivial components, denoted by G1, satisfies |V (G1)| ≥ [n − (k − 3)]/2 ≥
[k + 4 − (k − 3)]/2 > 3. Then there exists some i0 �= n − k + 1 with |Si0 | = 1 and
for all j �= i0, n − k + 1, |Sj| = 2. There must exist 1 ≤ i1 < i2 < . . . < il ≤
n − k + 1 such that ∪l

j=1Sij = E(G1). Then Si1 , Si2 , . . . , Sil is an ordered edge-
cut-set decomposition of E(G1), l = |V (G1)| − ω(G1) = |V (G1)| − 1 ≥ 4 − 1 = 3
and for each m ∈ {1, 2, . . . , l − 1}, G1 − ∪m

j=1Sij has only one nontrivial component.

Since |Sil−2
| = |Sil−1

| = 2 and |Sij | = 1, the nontrvial component of G1 − ∪l−3
j=1Sij is

isomorphic to E2 ∨ K2, by Corollary 4, a contradiction.

Secondly, we show that |S1| = 2. Assume |S1| = 1, then for each i ∈ {2, 3, . . . , n−
k}, |Si| = 2. Hence, for each m ∈ {1, 2, . . . , n − k}, G − S − ∪m

i=1Si has only
one nontrivial component. Thus the nontrvial component of G − S − ∪n−k−2

i=1 Si is
isomorphic to E2 ∨ K2, by Corollary 4, a contradiction.

Thirdly, let H denote the nontrivial component of G − S, we show that H ∼=
Kn−k,2.

Claim: For any e ∈ E(H), |[e]H | = 2.

Assume there exists some edge e ∈ E(H), |[e]H | ≥ 3. By λ(G − S) = |S1| = 2
and Proposition 2′, we can choose an ordered edge-cut-set decomposition T1, T2, . . . ,
Tn−k+1 of E(H) with T1 ⊆ [e]H , |T1| = 2 and T2 ⊆ [e]H−T1, |T2| = λ(G−S−T1) = 1.
By e(G) = |S| + ∑n−k+1

i=1 |Ti| = 2n − k, for all i ∈ {3, 4, . . . , n − k}, |Ti| = 2. So the
nontrivial component of G−S −∪n−k−2

i=1 Ti is isomorphic to E2 ∨K2, by Corollary 4,
a contradiction.

Assume there exists an edge f ∈ E(H), |[f ]H | = 1. Since λ(G − S) = 2, H is
2-edge-connected and f is not cut edge of H. Then, by |[f ]H | = 1, H − f is still
2-edge-connected. And µ(H) = max{|[e]H | : e ∈ E(H)} ≤ 2. So H ⊆ G satisfies
both Lemma 4 (i) and Lemma 4 (ii), a contradiction. Thus the claim must hold.
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Then H is minimally 2-edge-connected. By Proposition 1, e(H) ≤ 2|V (H)|−4 =
2(n − (k − 2)) − 4 = 2n − 2k. So e(G) = |S| + e(H) ≤ k + 2n − 2k = 2n − k. By
e(G) = 2n − k, e(H) = 2n − 2k. Since |V (H)| = n − (k − 2) ≥ 6, by Theorem 1,
H ∼= Kn−k,2.

Fourthly, we show µ(G) = k − 2. Let H still denote the nontrivial component of
G − S. Then ∼= Kn−k,2. Choose some e ∈ E(H), by |[e]H | = 2 and Proposition 4,
|[e]G| ≤ |[e]H | = 2. There are two cases.

Case 1 |[e]G| = 2, then [e]G = [e]H . For any f ∈ S = E(G− e) −E(H − e), since f
is not equivalent to e in G, [f ]G−e ⊇ [f ]G. Similar to the proof of Proposition 4, one
can show [f ]G−e ∩ E(H − e) = ∅. Then [f ]G−e ⊆ [f ]G. Thus [f ]G−e = [f ]G

Claim: for any h ∈ E(H − e), |[h]G−e| ≤ 2.
If h ∈ B(H − e), by |[e]G| = 2, then {h} = B(G − e). Thus |[h]G−e| = 1 < 2. If

h /∈ B(H − e), by Proposition 4, |[h]G−e| ≤ |[h]H−e| ≤ 2. So the claim must hold.
By Proposition 5 and Corollary 1, µ(G − e) = max{|[f ]G−e| : f ∈ E(G − e)} =

max{max{|[f ]G−e| : f ∈ S}, max{|[h]G−e| : h ∈ E(H − e)}} ≤ max{max{|[f ]G| :
f ∈ S}, 2} ≤ µ(G) ≤ k − 2. By Corollary 1, µ(G − e) ≥ k − |[e]G| = k − 2, so
µ(G) = µ(G − e) = k − 2.

Case 2 |[e]G| = 1. By H ∼= Kn−k,2, let {g} = B(H − e). For any f ∈ S, by
Proposition 4, [f ]G−e ⊆ [f ]G∪{g}. Then |[f ]G−e| ≤ |[f ]G|+1. By Corollary 1, µ(G−
e) = max{|[f ]G−e| : f ∈ E(G − e)} = max{max{|[f ]G−e| : f ∈ S}, max{|[f ]G−e| :
f ∈ E(H − e)}} ≤ max{max{|[f ]G| + 1 : f ∈ S}, 2} ≤ µ(G) + 1 ≤ k − 1. And, by
Corollary 1, µ(G − e) ≥ k − |[e]G| = k − 1. So µ(G) = k − 2.

Lastly, let [i]G be a maximum equivalence class of G, then |[i]G| = µ(G) = k − 2.
Similar to the proof of that G − S has only one nontrivial component, we can show
that G − [i]G has only one nontrivial component. And similar to the proof of that
H ∼= Kn−k,2, one can prove that the nontrivial component of G − [i]G is isomorphic
to Kn−k+1,2. So G ∼= G1,n, G2,n or G3,n. �

Theorem 6 Let G be a connected and minimally (k, k − 1)-edge-connected graph,
|G| ≥ k − 1, 1 ≤ |B(G)| ≤ k − 4, k ≥ 5. Then e(G) ≤ 2n − k + 1.

Proof. The proof is similar to that of Theorem 4. �

Theorem 7 Let G be a 2-edge-connected and minimally (k, k − 1)-edge-connected
graph, |G| = n, k ≥ 4. Then each of the following holds.

(i) If k − 1 ≤ n ≤ 3k − 7, then e(G) ≥ n + 1.
(ii) If (m−1)(3k−7) < n ≤ m(3k−7) for some integer m ≥ 2, then e(G) ≥ n+m.

Proof. Assume k − 1 ≤ n ≤ 3k − 7. Since G is 2-edge-connected, e(G) =
(
∑

v∈V (G) d(v))/2 ≥ 2n/2 = n. Assume e(G) = n, then G must be a cycle. Thus

µ(G) = n ≥ k − 1. However, by Corollary 1, µ(G) ≤ k − 2, a contradiction. So
e(G) ≥ n + 1.

Assume (m − 1)(3k − 7) < n ≤ m(3k − 7) for some integer m ≥ 2.
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Let Gi denote a 2-edge-connected and minimally (k, k− 1)-edge-connected graph
which satisfies that e(Gi) − |V (Gi)| = i and |V (Gi)| reachs maximum, where i =
1, 2, . . .. (For their existence, see Qi following Theorem 7.)

Let us first study Gi.

Claim 1 Gi has no cut vertex.
Assume there exists a cut vertex v of Gi. Then Gi−v has at least two components

C1, C2. Since G is 2-edge-connected, there are some u1, u2 ∈ V (C1) and v1, v2 ∈
V (C2) with {u1, u2, v1, v2} ⊆ N(v). Let G′

i denote the graph obtained from Gi

by splitting v into two vertices v′, v′′, and connecting u1, v1 with v′ and the others
in N(v) with v′′ and joining v′, v′′ by a path v′y1y2 . . . yk−3v

′′ of length k − 2. By
Proposition 5 and Corollary 1, it is not difficult to show that G′

i is also a 2-edge-
connected and minimally (k, k−1)-edge-connected graph. However, e(G′

i)−|V (G′
i)| =

(e(Gi) + k − 2) − (|V (Gi)| + k − 2) = i, and |V (G′
i)| = |V (Gi)| + k − 2 > |V (Gi)|,

contrary to the choice of Gi.

Claim 2 For any v ∈ V (Gi), d(v) ≤ 3.
Assume there exists a vertex v ∈ V (Gi) with d(v) ≥ 4. Let {u1, u2, u3, u4} ⊆

N(v).

Case 1 Gi − v is 2-edge-connected. Then let G′
i denote the graph obtained from Gi

by splitting v into two vertices v′, v′′, and connecting u1, u2 with v′ and the others in
N(v) with v′′ and joining v′, v′′ by a path v′y1y2 . . . yk−3v

′′ of length k − 2.

Case 2 B(Gi−v) �= ∅. By Proposition 2, (Gi −v)′ is a tree with edge set B(Gi−v).
Let C1, C2, . . . , Ct(t ≥ 2) denote all components of Gi−v−B(Gi−v) and vj ∈ (Gi−v)′

denote the vertex obtained from Cj in the course of transforming Gi−v into (Gi−v)′,
where j = 1, 2, . . . , t. Let F = {u : u ∈ V ((Gi − v)′) and d(u) = 1}.
Case 2A |F | = 2. Without loss of generality, assume F = {v1, v2} and u1 ∈ C1,
u2 ∈ C2 (because Gi is 2-edge-connected).

Case 2B|F | ≥ 4. Without loss of generality, assume {v1, v2, v3, v4} ⊆ F , uj ∈
Cj,where j = 1, 2, 3, 4, and there exists exactly one vertex with degree more than
two in (v1, v3)-path in (Gi − v)′.

Case 2C |F | = 3. Then there exists just one vertex with degree three in (Gi − v)′.
Without loss of generality, assume F = {v1, v2, v3} and v4 ∈ (Gi − v)′, d(v4) = 3.

Case 2C1 For some j ∈ {1, 2, 3}, |V (Cj) ∩ N(v)| ≥ 2. Without loss of generality,
assume |V (C1) ∩ N(v)| ≥ 2 and u1, u4 ∈ C1, u2 ∈ C2, u3 ∈ C3.

Case 2C2 For any j ∈ {1, 2, 3}, |V (Cj) ∩ N(v)| = 1 and |V (C4) ∩ N(v)| ≥ 1.
Without loss of generality, assume uj ∈ Cj, where j = 1, 2, 3, 4.

Case 2C3 For any j ∈ {1, 2, 3}, |V (Cj) ∩ N(v)| = 1 and |V (C4) ∩ N(v)| = 0. Since
d(v) ≥ 4, for some j0 ∈ {5, 6, . . . , t}, V (Cj0) ∩ N(v) �= ∅. Without loss of generality,
assume uj ∈ Cj, where j = 1, 2, 3, u4 ∈ Cj0 and there is no internal vertex with
degree more than 2 in (v1, vj0)-path in (Gi − v)′.

For all subcases in case 2, similar to case 1, let G′
i denote the graph obtained

from Gi by splitting v into two vertices v′, v′′, and connecting u1, u2 with v′ and the
others in N(v) with v′′ and joining v′, v′′ by a path v′y1y2 . . . yk−3v

′′ of length k − 2.
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Obviously, G′
i is 2-edge-connected. Moreover, by Proposition 4, Propsition 5 and

Corollary 1, G′
i is minimally (k, k − 1)-edge-connected. However, e(G′

i) − |V (G′
i)| =

e(Gi) + k − 2 − (|V (Gi)| + k − 2) = i and |V (G′
i)| = |V (Gi)| + k − 2 > |V (Gi)|,

contrary to the choice of Gi.

Claim 3 |V (Gi)| ≤ i(3k − 7).
Since Gi is 2-edge-connected, by Claim 2, d(v) = 2 or 3. Let S = {v : v ∈

V (Gi) and d(v) = 3}; then |S| =
∑

v∈V (Gi)

d(v) − 2|V (Gi)| = 2e(Gi) − 2|V (Gi)| = 2i.

Let T = {(u, v) ∈ E(Gi) : u ∈ S or v ∈ S}; then each of the following holds.
(i) For any e ∈ E(Gi)−T , there exists an edge f ∈ T such that e is connected with

f in Gi by some path which has no internal vertex in S. So for any e ∈ E(Gi) − T ,
there exists an edge f ∈ T such that e is equivalent to f in Gi.

(ii) For any e = (u, v) ∈ T , if {u, v} �⊆ S, then there exists an edge f( �= e) ∈ T
such that e is connected with f in Gi by some path which has no internal vertex in
S. Thus for any e = (u, v) ∈ T , if {u, v} �⊆ S, then there exists an edge f( �= e) ∈ T
such that f is equivalent to e in Gi.

Since |S| = 2i, |T | ≤ 3×2i = 6i. By (i) and (ii), there are no more than 6i/2 = 3i
equivalence classes in Gi. By Corollary 1, the number of edges in each equivalence
class of E(Gi) is no more than k − 2. Thus |V (Gi)| ≤ 3i × (k − 3) + 2i = i(3k − 7).

When (m − 1)(3k − 7) < n ≤ m(3k − 7), for all i ∈ {1, 2, . . . , m − 1}, |V (Gi)| ≤
i× (3k − 7) ≤ (m− 1)× (3k − 7) < n. By the choice of Gi, e(G)− |V (G)| > m− 1.
Then e(G) ≥ n + m. �

For any integer m(≥ 2), let Hm denote the graph obtained from two independent
cycles u1u2 . . . umu1 and v1v2 . . . vmv1 by adding n edges u1v1, u2v2, . . . , umvm (see
Figure 2). Let Qm denote the graph obtained from Hm by replacing every edge
in Hm with a path of length k − 2. Obviously, Qm is 2-edge-connected, and by
Corollary 1, Qm is minimally (k, k − 1)-edge-connected. Since |V (Qm)| = m(3k − 7)
and e(Qm) = 3m(k−2) = |V (Qm)|+m, the result of Theorem 7 is the best possible.
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