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Abstract

If x is a vertex of a digraph D, then we denote by d+(x) and d−(x) the
outdegree and the indegree of x, respectively. The global irregularity of a
digraph D is defined by ig(D) = max{d+(x), d−(x)}−min{d+(y), d−(y)}
over all vertices x and y of D (including x = y). If ig(D) = 0, then D is
regular and if ig(D) ≤ 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph.
In 1998, Y. Guo showed, if every arc of a regular c-partite tournament
is contained in a directed cycle of length 3, then every arc belongs to a
directed cycle of length n for each n ∈ {4, 5, . . . , c}. Recently, L. Volk-
mann generalized this result for c ≥ 6. He showed, if V1, V2, . . . , Vc are
the partite sets of an almost regular c-partite tournament with c ≥ 6 and
|V1| = |V2| = . . . = |Vc| ≥ 2, then every arc of D is contained in a directed
cycle of length n for each n ∈ {4, 5, . . . , c}. In this paper we shall extend
this theorem to all almost regular c-partite tournaments with c ≥ 7 such
that there are at least two vertices in each partite set. Examples will
show that this result is not valid for the case that c = 6 or that c = 7
and there is only one vertex in at least one partite set.

1 Terminology and introduction

In this paper all digraphs are finite without loops and multiple arcs. The vertex set
and arc set of a digraph D are denoted by V (D) and E(D), respectively. If xy is
an arc of a digraph D, then we write x → y and say that x dominates y, and if X
and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X
dominates every vertex of Y , then we say that X dominates Y , denoted by X → Y .
Furthermore, X � Y denotes the fact that there is no arc leading from Y to X . For
the number of arcs from X to Y we write d(X, Y ). If D is a digraph, then the out-
neighborhood N+

D (x) = N+(x) of a vertex x is the set of vertices dominated by x and
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the in-neighborhood N−
D (x) = N−(x) is the set of vertices dominating x. Therefore,

if there is an arc xy ∈ E(D), then y is an outer neighbor of x and x is an inner
neighbor of y. The numbers d+

D(x) = d+(x) = |N+(x)| and d−
D(x) = d−(x) = |N−(x)|

are called the outdegree and indegree of x, respectively. For a vertex set X of D, we
define D[X ] as the subdigrah induced by X . If we speak of a cycle, then we mean a
directed cycle, and a cycle of length n is called an n-cycle. If we replace in a digraph
D every arc xy by yx, then we call the resulting digraph the converse of D, denoted
by D−1.

There are several measures of how much a digraph differs from being regular. In
[14], Yeo defines the global irregularity of a digraph D by

ig(D) = max
x∈V (D)

{d+(x), d−(x)} − min
y∈V (D)

{d+(y), d−(y)}.

If ig(D) = 0, then D is regular and if ig(D) ≤ 1, then D is called almost regular.
A c-partite or multipartite tournament is an orientation of a complete c-partite

graph. A tournament is a c-partite tournament with exactly c vertices. If V1, V2, . . . ,
Vc are the partite sets of a c-partite tournament D and the vertex x of D belongs to
the partite set Vi, then we define V (x) = Vi. If D is a c-partite tournament with the
partite sets V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|, then |Vc| = α(D) is the
independence number of D, and we define γ(D) = |V1|.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle.
The next example shows that this is not valid for regular multipartite tournaments
in general.

Example 1.1 Let C, C ′, and C ′′ be three induced cycles of length 4 such that C →
C ′ → C ′′ → C. The resulting 6-partite tournament D1 is 5-regular, but no arc of the
three cycles C, C ′, C ′′ is contained in a 3-cycle.

Let H, H1, and H2 be three copies of D1 such that H → H1 → H2 → H. The
resulting 18-partite tournament is 17-regular, but no arc of the cycles corresponding
to the cycles C, C ′, and C ′′ is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbi-
trary large c which contain arcs that do not belong to any 3-cycle.

In 1998, Guo [3] proved the following generalization of Alspach’s classical result
[1] that every regular tournament is arc pancyclic.

Theorem 1.2 (Guo [3]) Let D be a regular c-partite tournament with c ≥ 3. If
every arc of D is contained in a 3-cycle, then every arc of D is contained in an
n-cycle for each n ∈ {4, 5, . . . , c}.

Now, the aim was to carry this result forward to almost regular multipartite
tournaments. To reach this, Volkmann [10], [12] started with the following theorems.

Theorem 1.3 (Volkmann [12]) Let D be an almost regular multipartite tournament
with c partite sets.

If c ≥ 8, then every arc of D is contained in a 4-cycle.
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If c = 7 and there are at least two vertices in every partite set, then every arc of
D is contained in a 4-cycle.

Theorem 1.4 (Volkmann [10]) Let D be an almost regular multipartite tournament
with the partite sets V1, V2, . . . , Vc such that |V1| = |V2| = . . . = |Vc| = r ≥ 2. If c ≥ 6,
then every arc of D is contained in an n-cycle for each n ∈ {4, 5, . . . , c}.

The main theorem of this paper is the following extension and supplement of
Theorems 1.3 and 1.4.

Theorem 1.5 Let D be an almost regular c-partite tournament with at least two
vertices in every partite set. If c ≥ 7, then every arc of D is contained in an n-cycle
for each n ∈ {4, 5, . . . , c}.

This result is also a supplement to a theorem of Jacobson [5], which states that
in an almost regular tournament with c ≥ 7 vertices, every arc is contained in an
n-cycle for each n ∈ {4, 5, . . . , c}. An example will show that the main theorem is
not valid for c = 6 in general. A further example will demonstrate that the condition
that there are at least two vertices in every partite set is necessary, at least for c = 7,
the most difficult case.

According to Tewes, Volkmann and Yeo [7], the following lemma holds.

Lemma 1.6 If V1, V2, . . . , Vc are the partite sets of an almost regular c-partite tour-
nament D such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|, then |Vc| ≤ |V1| + 2.

Hence, using Theorem 1.3 as the basis of induction, we will distinguish between
the two cases that |Vc| = |V1| + 1 and |Vc| = |V1| + 2 in the main theorem. Then
Theorem 1.5 follows immediately from Theorem 1.4.

For more information on multipartite tournaments, see [2, 3, 4, 6, 11, 13].

2 Preliminary results

The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann, Yeo [7]) Let D be an almost regular multipartite
tournament. Then for every vertex x of D we have

|V (D)| − α(D) − 1

2
≤ d+(x), d−(x) ≤ |V (D)| − γ(D) + 1

2
.

If we know the cardinality of the partite set V (x), then we can improve the
previous lemma.

Lemma 2.2 If D is an almost regular multipartite tournament and x a vertex of D
with |V (x)| = p, then

|V (D)| − p − 1

2
≤ d+(x), d−(x) ≤ |V (D)| − p + 1

2
.
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Proof. Firstly, suppose that d+(x) ≤ |V (D)|−p−2
2

. The fact that d+(x) + d−(x) =

|V (D)|−|V (x)| = |V (D)|−p implies that d−(x) ≥ |V (D)|−p+2
2

, which leads to d−(x)−
d+(x) ≥ 2, a contradiction to ig(D) ≤ 1.

Now suppose that d+(x) ≥ |V (D)|−p+2
2

. Since d+(x) + d−(x) = |V (D)| − |V (x)| =

|V (D)|−p, we obtain d−(x) ≤ |V (D)|−p−2
2

, and thus, it follows that d+(x)−d−(x) ≥ 2,
a contradiction to ig(D) ≤ 1.

Consequently, we have |V (D)|−p−1
2

≤ d+(x) ≤ |V (D)|−p+1
2

. The results for d−(x)
follow analogously. �

In this article we treat the case of an almost multipartite tournament D with
α(D) = r + 1 or α(D) = r + 2 and γ(D) = r for any r ≥ 2. This leads to the
following remark.

Remark 2.3 If α(D) = r + 2, γ(D) = r and ig(D) ≤ 1, then |V (D)| − r is even.
So the bounds in Lemma 2.2 can be improved by

d+(x), d−(x) =
|V (D)| − r − 2

2
if |V (x)| = r + 2

or

d+(x), d−(x) =
|V (D)| − r

2
if |V (x)| = r.

Consequently, for the case that α(D) = r + 2, instead of Lemma 2.1, we can use the
following result:

|V (D)| − r − 2

2
≤ d+(x), d−(x) ≤ |V (D)| − r

2
.

Now let us summarize some results of Lemma 2.2 and Remark 2.3.

Corollary 2.4 If D is an almost regular c-partite tournament with the partite sets
V1, V2, . . . , Vc such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| ≤ r + 2, then for every vertex x
of D we have

|V (D)| − r − 2

2
≤ d+(x), d−(x).

The next result is a well-known theorem of Turán [8] (see also [9], p. 212).

Theorem 2.5 Let D be a digraph without 2-cycles. If the underlying graph of D
has no clique of order p + 1, then

|E(D)| ≤ p − 1

2p
|V (D)|2.

3 Main result

Theorem 3.1 Let D be an almost regular c-partite tournament with the partite sets
V1, V2, . . . , Vc such that 2 ≤ r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| ≤ r + 2 and |Vc| ≥ r + 1. If
c ≥ 7, then every arc of D is contained in an n-cycle for each n ∈ {4, 5, . . . , c}.
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Proof. We prove the theorem by induction on n. For n = 4 the result follows
from Theorem 1.3. Now let e be an arc of D and assume that e is contained in an
n-cycle C = ana1a2 . . . an−1an with e = ana1 and 4 ≤ n < c. Suppose that e = ana1

is not contained in any (n + 1)-cycle.
Obviously, |V (D)| = cr+k with 1 ≤ k ≤ c−1, if |Vc| = r+1 and 2 ≤ k ≤ 2c−2,

if |Vc| = r + 2. Firstly, we observe that N+(v) − V (C) �= ∅ for each v ∈ V (C) =
{a1, a2, . . . , an}, because otherwise Corollary 2.4, the fact that r ≥ 2 and k ≥ 1 yield
the contradiction

n = |V (C)| ≥ d+(v) + 2 ≥ cr + k − r − 2

2
+ 2 =

(c − 1)r + k + 2

2
> c.

Analogously, one can show that N−(v) − V (C) �= ∅ for each v ∈ V (C).
Next let S be the set of vertices that belong to partite sets not represented on C

and define
X = {x ∈ S | C → x}, Y = {y ∈ S | y → C}.

Assume that X �= ∅ and let x ∈ X . If there is a vertex w ∈ N−(an)−V (C) such that
x → w, then ana1a2 . . . an−2xwan is an (n+1)-cycle through ana1, a contradiction. If
(N−(an)−V (C)) → x, then |N−(x)| ≥ |N−(an)−V (C)|+ |V (C)| ≥ |N−(an)|+2, a
contradiction to the hypothesis that ig(D) ≤ 1. If there exists a vertex b ∈ (N−(an)−
V (C)) such that V (b) = V (x), then b is adjacent to all vertices of C. In the case
that N−(b) ∩ V (C) �= ∅, let l = max1≤i≤n−1{i|ai → b}. Then ana1 . . . albal+1 . . . an

is an (n + 1)-cycle through ana1, a contradiction. It remains to consider the case
that N−(b)∩ V (C) = ∅. If there is a vertex u ∈ (N−(b)− V (C)) = N−(b) such that
x → u, then ana1a2 . . . an−3xuban is an (n + 1)-cycle through ana1, a contradiction.
Otherwise, N−(b) → x, and we arrive at the contradiction d−(x) ≥ d−(b) + |V (C)|.
Altogether, we have seen that X �= ∅ is not possible, and analogously we find that
Y �= ∅ is impossible. Consequently, from now on we shall assume that X = Y = ∅.

By the definition of S, every vertex of V (C) is adjacent to every vertex of S, and
from our assumption n < c, we deduce that S �= ∅. Now we distinguish different
cases.

Case 1. There exists a vertex v ∈ S with v → an. Since Y = ∅, there is a vertex
ai ∈ V (C) such that ai → v. If l = max1≤i≤n−1{i|ai → v}, then ana1 . . . alval+1 . . . an

is an (n + 1)-cycle through ana1, a contradiction. This implies an → S.
Case 2. There exists a vertex v ∈ S with a1 → v. Since X = ∅, there is a vertex

ai ∈ V (C) such that v → ai. If l = min2≤i≤n−1{i|v → ai}, then ana1 . . . al−1val . . . an

is an (n + 1)-cycle through ana1, a contradiction. This implies S → a1.

If C = ana1a2 . . . an and v ∈ S, then the following three sets play an important
role in our investigations

H = N+(a1) − V (C), F = N−(an) − V (C), Q = N−(v) − V (C).

Case 3. There exists a vertex v ∈ S such that v → an−1. If there is a vertex
ai ∈ V (C) with 2 ≤ i ≤ n − 2 such that ai → v, then we obtain as above an
(n + 1)-cycle through ana1, a contradiction. Thus, we investigate now the case that
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v → {a1, a2, . . . , an−1}. Because of S → a1, we note that every vertex of N+(a1) is
adjacent to v. If there is a vertex x ∈ H such that x → v, then ana1xva3a4 . . . an

is an (n + 1)-cycle through ana1, a contradiction. Therefore we assume now that
v → (N+(a1) − V (C)). This leads to d+(v) ≥ d+(a1) + 1, and thus, because of
ig(D) ≤ 1, it follows that N+(v) = N+(a1) ∪ {a1} and a1 → {a2, a3, . . . , an−1}.

It is a simple matter to verify that H ∩Q = ∅, S ∩H = ∅ and R = V (D)− (H ∪
Q ∪ V (v) ∪ V (C)) = ∅.

If there is an arc xa2 with x ∈ H, then ana1xa2a3 . . . an is an (n+1)-cycle through
ana1, a contradiction.

Subcase 3.1. Firstly, let H consist of vertices of only one partite set Vz. At least
one vertex of Vz belongs to V (C), that means |H| ≤ r + 1, if |Vz| = r + 2, |H| ≤ r,
if |Vz| = r + 1 and |H| ≤ r − 1, if |Vz| = r.

Because of Corollary 2.4 and n ≤ c − 1, we have

cr + k − r − 2

2
− (c − 3) ≤ d+(a1) − (n − 2) = |H|. (1)

If |Vz| = r, then because of |H| ≤ r − 1, (1) yields (c − 3)r + k + 6 ≤ 2c. Since
r ≥ 2 and k ≥ 1, this leads to the contradiction 2c + 1 ≤ 2c.

If n = 4, then we observe that n ≤ c − 3, and this implies

cr + k − r − 2

2
− (c − 5) ≤ d+(a1) − (n − 2) = |H| ≤ r + 1.

This leads again to (c − 3)r + k + 6 ≤ 2c, a contradiction. Consequently, it remains
to treat the cases with |Vz| ≥ r + 1 and n ≥ 5.

Subcase 3.1.1. Assume that |Vc| = r + 1 and |Vz| = r + 1. If |V (a1)| = r + 1 (and
therefore k ≥ 2), then (1) leads to r = 2, |H| = r = 2 and k = 2.

If |V (a1)| = r, then together with Lemma 2.2 and n ≤ c − 1, we arrive at

cr + k − r − 1

2
− (c − 3) ≤ d+(a1) − (n − 2) = |H| ≤ r,

and hence (c− 3)r + k + 5 ≤ 2c. This leads to no contradiction, only if r = 2, |H| =
r = 2 and k = 1.

Consequently, it remains to consider the case that |H| = r = 2 and k = 1 or
k = 2 and |V (a1)| = r + 1. Therefore, we observe that |V (v)| = r.

Since n ≥ 5, we have Q � H, because otherwise, if there are vertices q ∈ Q and
h ∈ H such that h → q, then ana1hqva4 . . . an is an (n + 1)-cycle, a contradiction.
Thus, for every vertex h ∈ H, we conclude that d+(h) ≤ r− 1+n− 2 = n− 1. Since
d+(v) = d+(a1) + 1 = r + n − 1 = n + 1, this is a contradiction to ig(D) ≤ 1.

Subcase 3.1.2. Now let |Vc| = r + 2. If |Vz| = r + 1, then, because of |H| ≤ r, (1)
leads to (c − 3)r + k + 4 ≤ 2c. Since in this case k ≥ 3 and r ≥ 2, this yields the
contradiction 2c + 1 ≤ 2c.

Finally, let |Vz| = r + 2. Then (1) leads to the contradiction c ≤ 5, if r ≥ 3, and
to the contradiction 1 ≤ 0, if r = 2 and k ≥ 5. Therefore, let r = 2 and k ∈ {2, 3, 4}.
Since cr + k − r is even, the case k = 3 is not possible.
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Furthermore, we have a contradiction in (1), if |H| ≤ r. Therefore, let |H| =
r + 1. Since d+(v) = d+(a1) + 1, we conclude that |V (v)| ≤ r + 1. Because of
n ≥ 5, analogously as in Subcase 3.1.1, we see that (Q ∪ {a1, a2, v}) � H, and
thus d+(h) ≤ r + n − 2 = n, if h ∈ H. On the other hand, we have seen that
d+(v) = d+(a1) + 1 = r + 1 + n − 1 = n + 2, a contradiction to ig(D) ≤ 1.

Subcase 3.2. Let n ≥ 5 and let H consist of more than one partite set. Then
there is at least one arc pq ∈ E(D[H]). Let L be the set of all vertices in H with
an inner neighbor in H, and M = H − L. Then we note that L �= ∅. M consists
of vertices of at most one partite set and M � L. If we take a vertex q ∈ L with
an inner neighbor p ∈ H, then it cannot be that qa3 ∈ E(D), because otherwise
ana1pqa3 . . . an is an (n + 1)-cycle, a contradiction. Therefore let a3 � L. If there
is an arc xy with x ∈ H and y ∈ Q, then ana1xyva4a5 . . . an is an (n + 1)-cycle, a
contradiction. Altogether, we have seen that (Q ∪ M ∪ {a1, a2, a3}) � L.

First, let |V (v)| = r +2. Then, because of d+(v) ≥ d+(a1)+1, Remark 2.3 yields
the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 ≤ d+(v) =

cr + k − r − 2

2
.

Now let |V (v)| ≤ r + 1. Since |R| = 0, for every vertex q ∈ L, we conclude
that d(q, V (D) − L) ≤ n + r − 3, and thus, it follows with Corollary 2.4 that
d+

D[L](q) = d+(q) − d(q, V (D) − L) ≥ cr+k−r−2
2

− r − n + 3. This implies

|L|(|L| − 1)

2
≥ |E(D[L])|

=
∑
q∈L

d+
D[L](q) ≥ |L|

{
cr + k − r − 2

2
− r − n + 3

}
.

(2)

The conditions d+(v) ≥ d+(a1)+1, a1 → {a2, a3, . . . , an−1}, and Lemma 2.1 (respec-
tively, Remark 2.3, if |Vc| = r + 2) yield |L| = |H| − |M | = d+(a1) − n + 2 − |M | ≤
d+(v)−1−n+2−|M | ≤ cr+k−r+1

2
−n+1−|M | (respectively, |L| ≤ cr+k−r

2
−n+1−|M |,

if |Vc| = r + 2). Combining this with inequality (2), we obtain

cr + k − r + 1

2
− n − |M | ≥ |L| − 1 ≥ 2

{
cr + k − r − 2

2
− r − n + 3

}
,

if |Vc| = r + 1 and

cr + k − r

2
− n − |M | ≥ |L| − 1 ≥ 2

{
cr + k − r − 2

2
− r − n + 3

}
,

if |Vc| = r + 2. This leads to 2n ≥ (c − 5)r + k + 7 + 2|M | (respectively, 2n ≥
(c− 5)r + k + 8 + 2|M |, if |Vc| = r + 2). Because of k ≥ 1, r ≥ 2 and n ≤ c− 1, this
is a contradiction, if |M | ≥ 1 (a contradiction, if |Vc| = r + 2).

Consequently, it remains to consider the case that |M | = 0. This means that
every vertex in H = L has an inner neighbor in H. Therefore, |L| = |H| ≥ 3,
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and every vertex in H is the last point of a path of length 2. If a4 � H, then,
because of d(q, V (D) − L) ≤ r + n − 4, we obtain a contradiction as above. Thus,
let q3a4 ∈ E(D) with q3 ∈ H, and let q3 be the last point of the path q1q2q3 in H,
then ana1q1q2q3a4 . . . an is an (n + 1)-cycle through ana1, a contradiction.

Subcase 3.3. Finally, let n = 4 and let H consist of more than one partite set.
Let us define the set G by G = N+(a3)− V (C). If there is a vertex w ∈ F ∩G, then
a4a1a2a3wa4 is a 5-cycle through a4a1, a contradiction. If there is an arc xy with
x ∈ G and y ∈ F , then a4a1a3xya4 is a 5-cycle, a contradiction. Consequently, it
remains to consider the case that F ∩ G = ∅ and F � (G ∪ {a3, a4}).

According to Corollary 2.4, we have

|G| = |N+(a3)| − 1 ≥ cr + k − r − 2

2
− 1 =

cr + k − r − 4

2
,

and thus, it follows for every vertex x ∈ F that

d(V (D) − F, x) ≤ cr + k − |F | − |G| − 2

≤ cr + k + r + 4

2
− |F | − 2 =

cr + k + r

2
− |F |.

This leads to

d−
D[F ](x) ≥ cr + k − r − 2

2
− cr + k + r

2
+ |F | = |F | − r − 1

for every x ∈ F . Hence, we conclude on the one hand that

|E(D[F ])| =
∑
x∈F

d−
D[F ](x) ≥ |F |(|F | − r − 1).

On the other hand, since S ∩ F = ∅, the subdigraph D[F ] is 3-partite, and thus,
Theorem 2.5 yields

|E(D[F ])| ≤ 1

3
|F |2.

The last two inequalities imply r ≥ 2
3
|F | − 1. Since |F | = |N−(a4) − V (C)| ≥

d−(a4) − 2, we deduce from Corollary 2.4 that

r ≥ 2|F |
3

− 1 ≥ cr + k − r − 6

3
− 1 =

cr + k − r − 9

3
⇔ 3r ≥ (c − 1)r + k − 9.

(3)

Subcase 3.3.1. Let |Vc| = r + 1. Then, (3) leads to no contradiction, only if
c = 8, r = 2 and k = 1 or if c = 7, r = 2 and k ≤ 3.

Firstly, let c = 8, r = 2 and k = 1. Then we note that |H| ≤ 4, and thus, it
follows that

9 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3 ≤ 7,

a contradiction.
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Therefore, it remains to consider the case that c = 7, r = 2 and k ≤ 3. If D[V (C)]
is no tournament (that means that V (a2) = V (a4)), then we have |S| ≥ 4r = 8 and
|H| ≤ 3, and therefore we arrive at the contradiction

9 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3 ≤ 6.

Consequently, we investigate the case that D[V (C)] is a tournament. Then we see
that

7 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3,

and this yields |H| ≥ 4. If |H| = 4, then we have equality in the last inequality
chain, which implies H � a4 and a2 → a4. Let x ∈ N+(h) − V (C) with h ∈ H
such that x → a2, then a4a1hxa2a4 is a 5-cycle, a contradiction. Consequently,
a2 � N+(h) − V (C) for every vertex h ∈ H. If every element of H has an outer
neighbor in H, then there exists a 3-cycle or a 4-cycle in H. Now, we take a vertex
h3 ∈ H − V (a4) such that h3 is contained in a cycle h3h1h2h3 or h4h1h2h3h4 in
H. This leads to the 5-cycle a4a1h1h2h3a4, a contradiction. Hence, there exists
a vertex h0 ∈ H such that N+

D[H](h0) = ∅. Since a2 � H, a2 → {a3, a4} and

N+(h0) ∩ V (C) ⊆ {a3, a4}, it follows that

d+(a2) ≥ |H| + 2 + |N+(h0) − V (C)| − |V (a2) − {a2}|
≥ 4 + |N+(h0) − V (C)| ≥ d+(h0) + 2,

a contradiction to ig(D) ≤ 1.
Therefore, let 5 ≤ |H| ≤ 6. Then H contains vertices of exactly three partite

sets and k ≥ 2. In the case that |H| = 5 (respectively, |H| = 6), the vertex a4 has
at most one (respectively, two, if |H| = 6) further outer neighbors except S and a1.
If a2 → a4, then H1 = H − N+(a4) consists of at least four elements and H1 � a4.
Then, analogously to the case |H| = 4, we arrive at a contradiction.

Consequently, let a4 → a2. Then, because |F | = |N−(a4)−V (C)| ≥ d−(a4)−1, we
get instead of (3) the better bound r ≥ cr+k−r−7

3
. Since c = 7, this yields 7 ≥ 3r + k,

a contradiction to k ≥ 2.
Subcase 3.3.2. Now let |Vc| = r + 2. Then (3) leads to no contradiction, only if

c = 7, r = 2 and 2 ≤ k ≤ 3. Since, with respect to Remark 2.3, k = 3 is impossible,
it remains to treat the cases when |V (a3)| = r or |V (a4)| = r.

If |V (a3)| = r, then we obtain with Remark 2.3 that

|G| = |N+(a3)| − 1 =
cr + k − r

2
− 1 =

cr + k − r − 2

2
.

Following the same lines as above, we arrive at the inequality (c− 4)r + k ≤ 6 which
leads to the contradiction c ≤ 6.

If |V (a4)| = r, then, according to Remark 2.3, we obtain the estimation

|F | = |N−(a4) − V (C)| ≥ d−(a4) − 2 ≥ cr + k − r

2
− 2 =

cr + k − r − 4

2
.

In this case, following the same way as above, we get the inequality (c− 4)r + k ≤ 7,
which leads to the contradiction c ≤ 13/2.
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Summarizing the investigations of Case 3, we see that it remains to consider the
case that an−1 → S.

Case 4. There exists a vertex v ∈ S such that a2 → v. If we consider the
converse of D, then, analogously to Case 3, it remains to treat the case that S → a2.

Summarizing the investigations in the Cases 1 – 4, we can assume in the following,
usually without saying so, that

{an−1, an} → S → {a1, a2} � H. (4)

Case 5. Let n = 4. Because of (4), we have a4 → S and thus S∪{a1} ⊆ N+(a4).
If D[V (C)] is 3-partite or 2-partite, then, in the case that |Vc| = r + 1, we see that

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 3 ≤ 2r + 3,

and in the case that |Vc| = r + 2, we obtain

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 2 ≤ 2r + 4

if V (a1) = V (a3) and

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 3 ≤ 2r + 4

if V (a2) = V (a4).

All these cases yield a contradiction to c ≥ 7. Consequently, it remains to consider
the case that D[V (C)] is a tournament.

Firstly, let a2 → a4. If a1 → a3 and v ∈ S, then a4a1a3va2a4 is a 5-cycle,
a contradiction. Now let a3 → a1. If there are vertices v ∈ S and x ∈ H such
that x → v, then a4a1xva2a4 is a 5-cycle, a contradiction. Otherwise, we have
S → H. If we choose v, w ∈ S such that v → w, then N+(a1) = H ∪ {a2} and
N+(v) ⊇ H ∪ {a1, a2, w}, a contradiction to ig(D) ≤ 1.

Now assume that a4 → a2. Firstly, let a1 → a3. If there are vertices v ∈ S
and x ∈ F = N−(a4) − V (C) such that v → x, then a4a1a3vxa4 is a 5-cycle, a
contradiction. Otherwise, we have F → S. If we choose v, w ∈ S such that v → w,
then we see that N−(a4) = F ∪ {a3} and N−(w) ⊇ F ∪ {a3, a4, v}, a contradiction
to ig(D) ≤ 1. In the remaining case that a3 → a1, it follows from Corollary 2.4 that

cr + k = |V (D)| ≥ |H| + |F | + |S| + |V (C)| − |H ∩ F |
≥ cr + k − r − 2

2
− 1 +

cr + k − r − 2

2
− 1

+(c − 4)r + 4 − |H ∩ F |
= 2cr + k − 5r − |H ∩ F |.

Consequently, |H ∩ F | ≥ (c − 5)r ≥ 2r and thus, H ∩ F consists of at least two
partite sets. If we choose u2, u3 ∈ H ∩ F such that u2 → u3, then C ′ = a4a1u2u3a4

is also a 4-cycle through a4a1. Since u2 → a4, we arrive, analogously to above, at a
contradiction.

Altogether, we have shown in the meantime that every arc of D belongs to a
5-cycle.

232



Case 6. Let n ≥ 5 and assume that there exists a vertex v ∈ S such that
v → an−2. If there is a vertex ai ∈ V (C) with 3 ≤ i ≤ n − 3 such that ai →
v, then we obtain, as in Case 1, an (n + 1)-cycle through ana1, a contradiction.
Thus, we investigate now the case that v → {a1, a2, . . . , an−2}. If there is a vertex
h ∈ H such that h → v, then ana1hva3a4 . . . an is an (n + 1)-cycle through ana1,
a contradiction. Therefore, we assume now that v → H. This leads to d+(v) ≥
d+(a1), and thus, because of ig(D) ≤ 1, it follows that a1 → {a2, a3, . . . , an−1}
or a1 → {a2, a3, . . . , an−1} − {aj} for some j ∈ {3, 4, . . . , n − 1} and aj → a1 or
V (a1) = V (aj).

Subcase 6.1. Assume that a1 → {a2, a3, . . . , an−1}. If there is a vertex h ∈ H
such that h → an, then ana1a3a4 . . . an−1vhan is an (n + 1)-cycle, a contradiction.
Therefore, we may assume now that an → (H−V (an)). If ai−1 → an for 3 ≤ i ≤ n−1,
then ana1aiai+1 . . . an−1va2a3 . . . ai−1an is an (n + 1)-cycle, a contradiction. Hence,
it remains to treat the case that an → ai−1 or ai−1 ∈ V (an) for 2 ≤ i ≤ n − 1.
Let {a1, a2, . . . , an−2} = A ∪ B such that an → A and B ⊆ V (an). Then N+(a1) =
H ∪{a2, a3, . . . , an−1} and N+(an) ⊇ A∪S ∪ (H − (V (an)− (B∪{an}))). This leads
to

d+(an) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) = d+(a1) + |S| − r,

if |Vc| = r + 1 (and d+(an) ≥ d+(a1) + |S| − (r + 1), if |Vc| = r + 2). To get no
contradiction, S has to consist of only one partite set, which means n = c−1, D[V (C)]
is a tournament, B = ∅ and an → {a1, a2, . . . , an−2} (respectively, n = c−1, D[V (C)]
is a tournament or n = c − 2, r = 2, |S| = 2r = 4, |V (an)| = r + 2 = 4, d+(an) =
d+(a1) + 1). Now define R = V (D) − (H ∪ F ∪ S ∪ V (C)). Since H ∩ F = ∅, we
obtain by Corollary 2.4

|R| ≤ cr + k −
{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 1 + |S| + n

}
.

This yields |R| ≤ 1, if |S| = r, |R| = 0, if |S| = r + 1, and |R| ≤ −1, if |S| = 2r or
|S| = r+2. Thus, it follows that n = c−1 and |S| ≤ r+1 in all cases. Furthermore,
we see that |S| + |R| ≤ r + 1.

If there is an arc h → y with h ∈ H and y ∈ F , then we observe that
ana1a4 . . . an−1vhyan is an (n+1)-cycle, a contradiction. Hence let (F∪{a1, a2, an, v})
� H. Now let L be the set of vertices in H having an inner neighbor in H, and
let M = H − L. In the case that L �= ∅ and b ∈ L, it cannot be that ba3 ∈ E(D),
because otherwise ana1aba3a4 . . . an is an (n + 1)-cycle, if a ∈ H is an inner neighbor
of b, a contradiction. Furthermore, we note that M � L and that M consists of
vertices of at most one partite set.

Hence, for every vertex b ∈ L, we conclude that d(b, V (D) − L) ≤ n − 4 + |S| −
1 + |R| ≤ r + n − 4 = r + c − 5. Now it follows from Corollary 2.4 that

d+
D[L](b) = d+(b) − d(b, V (D) − L) ≥ cr + k − r − 2

2
− r − c + 5.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑
b∈L

d+
D[L](b)
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≥ |L|
{

cr + k − r − 2

2
− r − c + 5

}
.

Furthermore, because of Lemma 2.1, we observe that |L| = |H| − |M | = d+(a1) −
(n − 2) − |M | ≤ cr+k−r+1

2
− |M | − c + 3. Combining these results, we arrive at

cr + k − r + 1

2
− |M | − c + 2 ≥ |L| − 1 ≥ 2

{
cr + k − r − 2

2
− r − c + 5

}
.

The last inequality is equivalent to (c−5)r ≤ −k−2|M |+2c−11 ≤ −2|M |+2c−12.
Since r ≥ 2, this leads to the contradiction |M | ≤ −1.

Consequently, it remains to consider the case that L = ∅, which means that
H consists of vertices of only one partite set. This partite set has to be V (an),
because otherwise, we observe that N+(an) ⊇ {a1, . . . , an−2} ∪H ∪ S and N+(a1) =
H∪{a2, . . . , an−1}, a contradiction to ig(D) ≤ 1. This implies that a2 → H and even
{a3, . . . , an−1} → H, because otherwise, let i = min3≤l≤n−1{l|h → al} with h ∈ H,
then ana1 . . . ai−1hai . . . an is an (n + 1)-cycle, a contradiction. Therefore, we have
({a1, a2, . . . , an−1, an, v} ∪ F ) � H. Then we conclude for every vertex h ∈ H that
cr+k−r−2

2
≤ d+(h) = d(h, V (D) − H) ≤ |S| − 1 + |R| ≤ r, a contradiction to c ≥ 7.

Subcase 6.2. Assume that there exists exactly one j ∈ {3, 4, . . . , n − 1} such
that a1 → ({a2, a3, . . . , an−1} − {aj}) and aj → a1 or V (aj) = V (a1) and that
n ≥ 6. This condition implies d+(v) ≥ d+(a1) + 1 and thus, because of ig(D) ≤ 1,
d+(v) = d+(a1) + 1. Furthermore, we note that H ∩ Q = ∅ and R = V (D) − (H ∪
Q ∪ V (v) ∪ V (C)) = ∅.

If there are vertices x ∈ H and y ∈ Q such that x → y, then, because of
n ≥ 6, ana1xyva4a5 . . . an is an (n + 1)-cycle, a contradiction. Hence, we assume
that (Q ∪ {a1, a2, v}) � H. Let L be the set of vertices q in H which have an
inner neighbor p in H. Furthermore, let M = H − L and |L| �= 0. Then we have
(Q ∪ M ∪ {a1, a2, a3, v}) � L.

Firstly, let |V (v)| = r + 2. Then Remark 2.3 yields the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(v) =

cr + k − r − 2

2
.

Secondly, let |V (v)| = r + 1. Then, for every vertex q ∈ L, we conclude that
d(q, V (D)− L) ≤ |V (v)|+ |V (C)| − 4 = r + n− 3, and thus, it follows from Lemma
2.2 and Corollary 2.4 that

d+
D[L](q) = d+(q) − d(q, V (D) − L)

≥ cr + k − r − 2

2
− r − n + 3, if k ≥ 2

and d+
D[L](q) ≥ cr + k − r − 1

2
− r − n + 3, if k = 1.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑
q∈L

d+
D[L](q)
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≥ |L|
{

cr + k − r − 2

2
− r − n + 3

}

and
|L|(|L| − 1)

2
≥ |L|

{
cr + k − r − 1

2
− r − n + 3

}
,

respectively. The conditions d+(v) = d+(a1) + 1, a1 → ({a2, a3, . . . , an−1} − {aj})
and Lemma 2.2 yield |L| = |H|−|M | = d+(a1)−n+3−|M | = d+(v)−n+2−|M | ≤
cr+k−r

2
− |M | − n + 2. Combining these results, we arrive at the inequalities

cr + k − r

2
− |M | − n + 1 ≥ |L| − 1 ≥ 2

{
cr + k − r − 2

2
− r − n + 3

}

and
cr + k − r

2
− |M | − n + 1 ≥ 2

{
cr + k − r − 1

2
− r − n + 3

}
,

respectively. A transformation leads to 2n ≥ (c − 5)r + k + 2|M | + 6 and 2n ≥
(c − 5)r + k + 2|M | + 8, respectively. Since n ≤ c − 1, k ≥ 2 (respectively, k = 1)
and r ≥ 2, this yields a contradiction, if |M | ≥ 1.

Thirdly, let |V (v)| = r. Then, for every vertex q ∈ L, we conclude (|R| = 0)
that d(q, V (D)−L) ≤ r + n− 4, and analogously to above, we get the contradiction
|M | ≤ −1.

The case that |M | = 0 yields a contradiction, analogously as in Subcase 3.2.
Consequently it remains to consider the possibility that |L| = 0, which means

that H consists of vertices of only one partite set Vz. Firstly, let |Vz| = r + 2 and
|V (a1)| ≥ r + 1 (this means k ≥ 3). Since |N+(a1) ∩ V (C)| = n − 3, n ≤ c − 1 and
Corollary 2.4, this leads to

cr + k − r − 2

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r + 1,

which is equivalent to 2c ≥ (c − 3)r + k + 4, a contradiction, because of r ≥ 2 and
k ≥ 3. Now let |Vz| = r + 2 and |V (a1)| = r. Then Remark 2.3 yields

cr + k − r

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r + 1,

hence 2c ≥ (c− 3)r + k + 6, a contradiction. Finally, let |Vz| ≤ r + 1; then we arrive
at

cr + k − r − 2

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r,

hence 2c ≥ (c − 3)r + k + 6, a contradiction.
Subcase 6.3. Assume that n = 5 and there is exactly one j ∈ {3, 4} such that

a1 → ({a2, a3, a4} − {aj}) and aj → a1 or V (aj) = V (a1).
Subcase 6.3.1. Let a1 → {a2, a3} and a4 → a1 or V (a4) = V (a1). If there is a

vertex h ∈ H such that h → a5, then a5a1a3a4vha5 is a 6-cycle, a contradiction.
Therefore, we may assume that a5 → (H − V (a5)). If a2 → a5, then a5a1a3a4va2a5

is a 6-cycle, a contradiction. Hence, it remains to treat the case that a5 → a2 or
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V (a5) = V (a2). Let {a1, a2} = A ∪ B such that a5 → A and B ⊆ V (a5). Then
N+(a1) = H ∪{a2, a3} and N+(a5) ⊇ A∪S∪ (H − (V (a5)− (B∪{a5}))). This leads
to

d+(a5) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) = d+(a1) + |S| − r,

if |V (a5)| = r + 1 and

d+(a5) ≥ |A| + |S| + |H| − (r + 2 − (|B| + 1)) = d+(a1) + |S| − (r + 1), (5)

if |V (a5)| = r + 2. Since ig(D) ≤ 1, the set S consists of one (n = c − 1, if
|V (a5)| = r +1) or of at most two (n = c− 2, if |V (a5)| = r +2) partite sets. Firstly,
let n = c − 1. Then, since n = 5, this leads to a contradiction to c ≥ 7. In the
remaining case that n = c − 2 and |V (a5)| = r + 2, we have |Vc| = r + 2, r = 2
and |S| = 2r = 4. In this case, because of (5) and Remark 2.3, we arrive at the
contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(a5) =

cr + k − r − 2

2
.

Subcase 6.3.2. Let n = 5 and assume that a1 → {a2, a4} and a3 → a1 or
V (a3) = V (a1). Analogously to Subcase 6.2, H consists of at least two partite sets.
Hence, there exist vertices x, y ∈ H such that x → y. If y → a5, then a5a1a4vxya5 is
a 6-cycle, a contradiction. Now let W = H − V (a5) and U = {x ∈ W |d−

D[H](x) = 0}.
It follows that U is a subset of one partite set, which means |U | ≤ r (respectively,
|U | ≤ r + 1, if |Vc| = r + 2), and a5 → (W − U). If a3 → a5, then a5a1a4va2a3a5

is a 6-cycle, a contradiction. Hence, it remains to consider the case that a5 → a3

or V (a5) = V (a3). Let {a1, a3} = A ∪ B such that a5 → A and B ⊆ V (a5). Then
N+(a1) = H ∪ {a2, a4} and N+(a5) ⊇ A∪S ∪ (H − ((V (a5)− (B ∪ {a5}))∪U)) and
therefore

d+(a5) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) − |U | ≥ d+(a1) + |S| − 2r,

if |Vc| ≤ r + 1 and

d+(a5) ≥ |A| + |S| + |H| − (r + 2 − (|B| + 1)) − |U | ≥ d+(a1) + |S| − 2(r + 1),

if |Vc| = r + 2. Since ig(D) ≤ 1, this yields a contradiction, if S consists of more
than two (respectively, three, if |Vc| = r + 2) partite sets. Let |Vc| = r + 2 and let
S consist of three partite sets; then we get a contradiction, if r ≥ 4. If r = 3 and
|V (a5)| = r + 2, then, because of Remark 2.3, we arrive at the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(a5) =

cr + k − r − 2

2
.

If r = 3 and |V (a5)| ≤ r + 1, then we have the contradiction

d+(a5) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) − |U | ≥ d+(a1) + r − 1 = d+(a1) + 2.

Consequently, it remains to treat the cases n = c − 2, |B| = 0, D[V (C)] is a tourna-
ment or |Vc| = r+2, n = c−3 and r = 2. If we define U ′ = (N+(a1)∩N−(a5))−V (C),
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then U ′ ⊆ U and U ′ consists of vertices of only one partite set Vy. Now let
J = N−(a5) − (U ′ ∪ V (C)) and G = N+(a1) − (Vy ∪ {a2, a4}). In this case, we
note that G �= ∅, because otherwise H = N+(a1) − {a2, a4} ⊆ Vy, hence, it follows
from Corollary 2.4 that

cr + k − r − 2

2
− 2 ≤ d+(a1) − 2 = |H| ≤ r + 1,

a contradiction to c ≥ 7. Therefore, assume that G �= ∅. If there are vertices x ∈ G
and y ∈ J ∪ U ′ such that x → y, then a5a1a4vxya5 is a 6-cycle, a contradiction.

Suppose next that there exist vertices b ∈ G and w ∈ S such that b → w. If w →
a3, then a5a1bwa3a4a5 is a 6-cycle, a contradiction. So, we can assume that a3 → w.
If there is a vertex x ∈ (N−(a5)−V (C)) such that w → x, then a5a1a2a3wxa5 is a 6-
cycle, a contradiction. Thus, we can assume that (N−(a5)−V (C)) → w. Altogether,
we see that N−(a5) ⊆ (N−(a5)−V (C))∪{a2, a4} and N−(w) ⊇ (N−(a5)−V (C))∪
{a3, a4, a5, b} and this yields the contradiction d−(w) ≥ d−(a5) + 2. Consequently, it
remains to treat the case that S → G. If we define R = V (D)− (H ∪J ∪S ∪V (C)),
then, because of

|J | ≥ |N−(a5)| − |U ′| − 2 ≥ cr + k − r − 2

2
− |U ′| − 2

=

{
6r+k−2

2
− |U ′| − 2, if n = c − 2 = 5

7r+k−2
2

− |U ′| − 2, if n = c − 3 = 5
,

we obtain |R| ≤

 7r + k −

{
6r+k−2

2
− |U ′| − 2 + 6r+k−2

2
− 2 + 2r + 5

}
, if n = c − 2

16 + k −
{

12+k
2

− |U ′| − 2 + 12+k
2

− 2 + 6 + 5
}

, if n = c − 3

=

{ |U ′| − r + 1, if n = c − 2
|U ′| − 3, if n = c − 3

.

Thus, we also see that U ′ �= ∅. Let there be a vertex y ∈ G such that y → a3.
Because of U ′ ⊆ U and Vy ⊆ V (D) − G, there exists a vertex x ∈ U ′ such that
x → y. This leads to the 6-cycle a5a1xya3a4a5, a contradiction. Hence, it remains
that (S ∪ J ∪ U ′ ∪ {a1, a2, a3, a5}) � G.

Firstly, let us observe the case that n = c−2. Then, for every vertex x ∈ G, we get
d(x, V (D)−G) ≤ |R|+1+|Vy∩H|−|U ′| ≤ 2−r+|Vy|−|Vy∩V (C)| ≤ 1−r+|Vy| ≤ 3
and thus, it follows that

d+
D[G](x) = d+(x) − d(x, V (D) − G) ≥ 6r + k − 2

2
− 3 =

6r + k − 8

2
.

This implies

|G|(|G| − 1)

2
≥ |E(D[G])| =

∑
x∈G

d+
D[G](x) ≥ |G|6r + k − 8

2
.
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In view of Lemma 2.1, we have |G| = d+(a1) − |Vy ∩ H| − 2 ≤ d+(a1) − 2 ≤ 6r+k−3
2

.
Altogether, this leads to 6r+k−5

2
≥ |G| − 1 ≥ 6r + k − 8, and thus, we obtain the

inequality 6r + k ≤ 11, a contradiction.
Now let n = c − 3. Then, for every vertex x ∈ G, we conclude that d(x, V (D) −

G) ≤ |R| + 1 + |Vy ∩H| − |U ′| ≤ −2 + |Vy| − |Vy ∩ V (C)| ≤ −3 + |Vy| ≤ 1 and thus,
it follows that d+(x) ≤ |G| = d+(a1) − |Vy ∩H| − 2 ≤ d+(a1) − 2, a contradiction to
ig(D) ≤ 1.

Summarizing the investigations of Case 6, we see that it remains to treat the case
when an−2 → S.

Case 7. Let n = 5. If we consider the cycle C−1 = a1a5a4a3a2a1 = b5b1b2b3b4b5

in the converse D−1 of D, then {b4, b5} → S → {b1, b2, b3}. Since this is exactly the
situation of Case 6, there exists in D−1 a 6-cycle, containing the arc b5b1 = a1a5, and
hence there exists in D a 6-cycle through a5a1.

Case 8. Let n ≥ 6. Assume that there exists a vertex v ∈ S such that a3 → v.
If we consider the converse of D, then in view of Case 6, it remains to consider the
case that S → a3.

Case 9. Let c > n ≥ 6. If there exist vertices y ∈ S and x ∈ H such that x → y,
then ana1xya3a4 . . . an is an (n + 1)-cycle, a contradiction. Consequently, we assume
now that S → H. Let y ∈ S. If there exists a vertex x ∈ H such that x → an, then
ana1a2 . . . an−2yxan is an (n + 1)-cycle, a contradiction. Hence, it remains to treat
the case that (S ∪ {a1, a2, an}) � H.

If a1 → ai and ai−1 → an for i ∈ {3, 4, . . . , n − 1}, then the (n + 1)-cycle
ana1ai . . . an−1ya2 . . . ai−1an yields a contradiction. Thus, if a1 → ai for some i ∈
{3, 4, . . . , n − 1}, then we may assume that an → ai−1 or V (ai−1) = V (an). Let
N = {ai1 , ai2 , . . . , aik} be exactly the subset of V (C) − {a2} with the property that
a1 → N . Then we define A ∪ B = {ai1−1, ai2−1, . . . , aik−1} such that an → A
and B ⊆ V (an). This definition and the fact that an → (H − V (an)) lead to
N+(a1) = {a2} ∪N ∪H and N+(an) ⊇ {a1} ∪A ∪ S ∪ (H − (V (an) − (B ∪ {an}))).
This implies

d+(an) ≥ |A| + |S| + 1 + |H| − (r + 1 − (|B| + 1))

= |A| + |B| + |H| + |S| − r + 1

= d+(a1) + |S| − r,

(6)

if |V (an)| ≤ r + 1 and

d+(an) ≥ d+(a1) + |S| − (r + 1), (7)

if |V (an)| = r + 2. If |V (an)| = r + 2 and S consists of two partite sets, then by
(7), we conclude that r = 2 and |S| = 2r = 4, and thus, Remark 2.3 leads to the
contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 ≤ d+(an) =

cr + k − r − 2

2
.

Hence, because of the bounds (6) and (7), we conclude that the case n = c−1, |B| = 0
and D[V (C)] is a tournament, remains to be considered.
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Subcase 9.1. There exists a vertex v ∈ S such that v → an−3. If there is a vertex
ai ∈ V (C) with 4 ≤ i ≤ n − 4 such that ai → v, then we obtain, as in Case 1, an
(n + 1)-cycle through ana1, a contradiction. Thus, we investigate now the case that
v → {a1, a2, . . . , an−3}. If R1 = V (D) − (H ∪ Q ∪ V (v) ∪ V (C)), then because of
|H| = |N+(a1) − V (C)| ≥ d+(a1) − (n − 2) and |Q| = |N−(v) − V (C)| ≥ d−(v) − 3,
we see with respect to Lemma 2.2 and Corollary 2.4 that

|R1| ≤ cr + k

−
{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 1

2
− 3 + r + n

}
=

5

2
,

if |V (v)| = r,

|R1| ≤ cr + k

−
{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 3 + r + 1 + n

}
= 2,

if |V (v)| = r + 1, and

|R1| ≤ cr + k

−
{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 3 + r + 2 + n

}
= 1,

if |V (v)| = r + 2. Altogether, we see that |R1| ≤ 2, if |V (v)| ≤ r + 1 and |R1| ≤ 1, if
|V (v)| = r + 2.

Subcase 9.1.1. Firstly, let H consist of vertices of only one partite set. Because
of |B| = 0, according to (6) (respectively, (7)), this partite set has to be V (an). If
there are vertices h ∈ H and y ∈ F such that h → y, then ana1a4 . . . an−1vhyan is
an (n + 1)-cycle, a contradiction. Hence, F → H. Since H ⊆ V (an) − {an}, we
even have a2 → H and thus {a3, a4, . . . , an−1} → H. Consequently, (N−(an)∪ S) →
H. Therefore, for x ∈ H, it follows that d−(x) ≥ d−(an) + |S| ≥ d−(an) + 2, a
contradiction to ig(D) ≤ 1.

Subcase 9.1.2. Now we assume that H consists of vertices of more than one
partite set. Let L be the set of vertices in H which have an inner neighbor in H and
M = H − L. If there are vertices q ∈ L and p ∈ H such that p → q → a3, then
ana1pqa3 . . . an is an (n + 1)-cycle, a contradiction. Consequently, a3 � L.

Firstly, let n ≥ 7. Then, we have Q � L, because otherwise, if there are vertices
x ∈ Q and q ∈ L such that q → x, then ana1qxva4a5 . . . an is an (n + 1)-cycle, a
contradiction. Altogether, we observe that (Q ∪ V (v) ∪ M ∪ {a1, a2, a3, an}) � L.
Since |R1| ≤ 2, for every vertex q ∈ L, it follows that d(q, V (D)−L) ≤ n−2 = c−3,
and thus Corollary 2.4 leads to

d+
D[L](q) = d+(q) − d(q, V (D) − L) ≥ cr + k − r − 2

2
− c + 3.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑
q∈L

d+
D[L](q) ≥ |L|

{
cr + k − r − 2

2
− c + 3

}
.
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Since d+(v) ≥ |H| + (n − 3) = |H| + (c − 4), we conclude together with Lemma 2.1
that |L| ≤ d+(v) − (n − 3) − |M | = d+(v) − c + 4 − |M | ≤ cr+k−r+1

2
− c + 4 − |M |.

Combining these results, we arrive at

cr + k − r + 1

2
− c + 3 − |M | ≥ |L| − 1 ≥ 2

{
cr + k − r − 2

2
− c + 3

}
.

This results in (c − 1)r + k + 2|M | + 1 ≤ 2c, a contradiction, if |M | ≥ 1.
The case |M | = 0 leads to a contradiction, analogously to Subcase 3.2.
It remains to treat the case that n = 6 and c = n + 1 = 7. We remember that

{a4, a5, a6} → S → {a1, a2, a3}. We note that H∩F = ∅, since F → a6 � H. If there
are vertices f ∈ F and w ∈ S such that w → f then a6a1a2a3a4wfa6 is a 7-cycle, a
contradiction. Therefore, we have F → S. Since H ∩ F = ∅, we see that F � a1.
Let R2 = V (D) − (H ∪ F ∪ S ∪ V (C)). Since |B| = 0 and a6 → ai−1, if a1 → ai for
2 ≤ i ≤ n − 1, we observe that |N+(a1) ∩ V (C)| + |N−(a6) ∩ V (C)| ≤ l + 5 − l = 5,
if |N+(a1) ∩ V (C)| = l. Hence, Corollary 2.4 yields

|R2| ≤ cr + k −
{

cr + k − r − 2

2
+

cr + k − r − 2

2
− 5 + |S| + n

}
≤ 1.

From the fact that v → H and N+(v) ∩ V (C) = {a1, a2, a3}, we deduce that
|N+(a1) ∩ V (C)| ≥ 2. If {a3} ⊆ N+(a1) or {a4} ⊆ N+(a1), then F � H, because
otherwise, if there are vertices h ∈ H and f ∈ F such that h → f , then either
a6a1a3a4vhfa6 or a6a1a4a5vhfa6 is a 7-cycle, a contradiction. Let L be the set of
vertices in H which have an inner neighbor in H and let M = H−L. Then it follows
that (M ∪ F ∪ S ∪ {a1, a2, a3, a6}) � L, and thus, since |R2| ≤ 1, for every vertex
q ∈ L, we observe that d(q, V (D) − L) ≤ 3 = n − 3 = c − 4 and, analogously as
above, we get a contradiction. Consequently, let N+(a1)∩V (C) = {a2, a5}, and thus
a6 → a4 and d+(a1) = d+(v) − 1.

Assume that F consists of vertices of only one partite set Vb. In this case, we
observe that N−(a6) ⊆ F ∪ (N−(a6) ∩ V (C)). Since |N+(a6) ∩ V (C)| ≥ |N+(a1) ∩
V (C)| = 2, it follows that |N−(a6)∩ V (C)| ≤ 3 and thus 6r+k−2

2
≤ d−(a6) ≤ r + 3, if

|Vc| = r + 1. This yields the contradiction 4r + k ≤ 8. Hence, let us investigate the
case that |Vc| = r+2. If |Vb| = r+2 and |V (a6)| ≥ r+1 (that means k ≥ 3), then we
arrive at the contradiction 6r+k−2

2
≤ d−(a6) ≤ r+4. On the other hand, if |Vb| ≤ r+1

or |V (a6)| = r, we see that 6r+k−2
2

≤ d−(a6) ≤ r + 3 or 6r+k
2

≤ d−(a6) ≤ r + 4, in
both cases a contradiction.

Consequently, it remains to consider the case that F consists of more than one
partite set. Hence, there exists an arc f1f2 ∈ E(D[F ]), and the set F1 of vertices
in F having an outer neighbor in F is non-empty. Let F2 = F − F1. If there are
vertices f1 ∈ F1, h ∈ H and f2 ∈ F such that h → f1 → f2, then a6a1a5vhf1f2a6 is a
7-cycle, a contradiction. Therefore, we may assume that F1 � H. Furthermore, we
see that F1 � a4, because otherwise a6a1a2a3a4f1f2a6 is a 7-cycle, a contradiction.
Because of H ∩ F = ∅, we conclude that F � a1. It is also easy to see that F � a5

and F → S, since otherwise we are able to construct a 7-cycle, a contradiction.
Summarizing, we see that F1 � (H ∪S∪F2∪{a1, a4, a5, a6}). Hence, since |R2| ≤ 1,
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for every vertex f1 ∈ F1, we conclude that d(V (D)−F1, f1) ≤ 3, and thus, it follows
from Corollary 2.4 that

d−
D[F1](f1) = d−(f1) − d(V (D) − F1, f1) ≥ 6r + k − 2

2
− 3.

This implies

|F1|(|F1| − 1)

2
≥ |E(D[F1])| =

∑
f1∈F1

d−
D[F1](f1) ≥ |F1|

{
6r + k − 2

2
− 3

}
.

We see that d−(a6) ≥ |F | + 2, because otherwise, we arrive at the contradiction
d+(a6) ≥ 4 + |H| − |V (a6) − {a6}| + |S| ≥ d+(a1) + 2 + |S| − r ≥ d+(a1) + 2, if
|V (a6)| ≤ r+1. If |V (a6)| = r+2, then we obtain d+(a6) ≥ d+(a1)+1, a contradiction
to Remark 2.3. Thus, it follows that |F1| ≤ d−(a6) − 2 − |F2| ≤ 6r+k+1

2
− 2 − |F2|.

Combining these results, we obtain

6r + k + 1

2
− 3 − |F2| ≥ |F1| − 1 ≥ 2

{
6r + k − 2

2
− 3

}
,

which can be transformed to 6r + k + 2|F2| ≤ 11, a contradiction.
Subcase 9.2. Finally, we assume that an−3 → S. Then we see that n = c− 1 ≥ 7.

Let R = V (D) − (H ∪ F ∪ S ∪ V (C)). If there is a vertex w ∈ H ∩ F , then
ana1a2 . . . an−2vwan is an (n+1)-cycle, a contradiction. Consequently, let H∩F = ∅.
We have seen above that |H| = d+(a1) − |N | − 1 and |N+(an) ∩ V (C)| ≥ |N | + 1.
Hence |N−(an)∩ V (C)| ≤ n− |N | − 2, and thus |F | = |N−(an)− V (C)| ≥ d−(an)−
(n − 2 − |N |). It follows from Corollary 2.4 that

|R| ≤ cr + k

−
{

cr + k − r − 2

2
− |N | − 1 +

cr + k − r − 2

2
− n + 2 + |N | + |S| + n

}
,

and thus |R| ≤ 1, if |S| = r; |R| = 0, if |S| = r + 1; and |R| ≤ −1, if |S| =
r + 2. If there is an arc xy with x ∈ H and y ∈ F , then ana1a2 . . . an−3vxyan is an
(n + 1)-cycle, a contradiction. If there is an arc uy with u ∈ S and y ∈ F , then
ana1a2 . . . an−2uyan is an (n+1)-cycle, a contradiction. Furthermore, if there is an arc
xan−1 with x ∈ H, then ana1a2 . . . an−3vxan−1an is an (n + 1)-cycle, a contradiction.
Consequently, it remains to treat the case that (F ∪ S ∪ {a1, a2, an−1, an}) � H and
F � ({a1, an−1, an} ∪ S ∪ H).

Subcase 9.2.1. Firstly, we investigate the case that r = 2. As seen above, for
every vertex h ∈ H, we conclude that d(h, V (D) − H) ≤ n − 3 = c − 4 and thus
d+

D[H](h) ≥ cr+k−r−2
2

− c + 4 = k+4
2

≥ 5
2

and therefore d+
D[H](h) ≥ 3. Hence, H

contains at least 7 vertices. Furthermore, there is at least one vertex h1 in H such
that d+

D[H](h1) ≤ |H|−1
2

. Since N+(a1) = H ∪ N ∪ {a2} and ig(D) ≤ 1, we conclude

that d+(h1) ≥ |H| + |N |. In addition, (F ∪ S ∪ {a1, a2, an−1, an}) � H, and thus
N+(h1) ⊆ V (C) ∪ R ∪ H, which leads to

|N+(h1) ∩ V (C)| + |R| + |H| − 1

2
≥ d+(h1) ≥ |H| + |N |.
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This implies

|N+(h1) ∩ V (C)| ≥ |H| + 1

2
+ |N | − |R| ≥ |N | + 3.

Let ai ∈ N+(h1) ∩ V (C) (3 ≤ i ≤ n − 2). If ai−1 → an, then we observe that
ana1h1ai . . . an−2va2 . . . ai−1an is an (n+1)-cycle, a contradiction. Therefore, in V (C),
an has at least |N | + 3 further outer neighbors except a1. According to (6) and (7),
this yields

d+(an) ≥ |N | + 4 + |H| + |S| − (r + 1) = d+(a1) + 2 + |S| − r ≥ d+(a1) + 2,

a contradiction to ig(D) ≤ 1.
Subcase 9.2.2. Assume that |N | ≥ c−6

2
and r ≥ 3. Since |R| ≤ 1, for every vertex

h ∈ H, we conclude that d(h, V (D) − H) ≤ n − 3 = c − 4 and thus, it follows from
Corollary 2.4 that

d+
D[H](h) = d+(h) − d(h, V (D) − H) ≥ cr + k − r − 2

2
− c + 4.

This implies

|H|(|H| − 1)

2
≥ |E(D[H])| =

∑
h∈H

d+
D[H](h)

≥ |H|
{

cr + k − r − 2

2
− c + 4

}
.

Since |H| = d+(a1)− |N | − 1 ≤ cr+k−r+1
2

− |N | − 1 ≤ cr+k−r+1
2

− c
2
+ 2 = cr+k−r−c+5

2
,

we obtain

cr + k − r − c + 3

2
≥ |H| − 1 ≥ cr + k − r − 2 − 2c + 8.

This inequality is equivalent to (c − 1)r + k ≤ 3c − 9, a contradiction to r ≥ 3.
Subcase 9.2.3. Now assume that |N | ≤ c−7

2
and r ≥ 3. Since |R| ≤ 1, for every

vertex y ∈ F , we conclude that d(V (D) − F, y) ≤ n − 2 = c − 3 and thus, it follows
from Corollary 2.4 that

d−
D[F ](y) = d−(y) − d(V (D) − F, y) ≥ (c − 1)r + k + 4

2
− c.

This implies

|F |(|F | − 1)

2
≥ |E(D[F ])| =

∑
y∈F

d−
D[F ](y) ≥ |F |

{
(c − 1)r + k + 4

2
− c

}
.

Since ig(D) ≤ 1, we conclude from (6) and (7) that |N+(an)∩ V (C)| ≤ |N |+ 3, and
thus |N−(an)∩V (C)| ≥ n−|N |−4. Hence, it follows that |F | = |N−(an)−V (C)| ≤
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d−(an) − (n − |N | − 4) ≤ cr+k−r+1
2

− (c − 1) + 4 + c−7
2

= (c−1)r+k+4−c
2

. Combining
these results, we observe that

(c − 1)r + k + 2 − c

2
≥ |F | − 1 ≥ (c − 1)r + k + 4 − 2c.

A transformation of this inequality leads to 3c ≥ (c − 1)r + k + 6 ≥ (c − 1)r + 7, a
contradiction to r ≥ 3. This completes the proof of the theorem. �

From Theorem 1.4 and the theorem in this section we can immediately deduce
the main theorem.

The following example, which can also be found in [12], shows that the condition
c ≥ 7 in Theorem 1.5 is best possible.

Example 3.2 Let V1 = {u} ∪ V ′
1 with |V ′

1 | = 2, V2 = {v} ∪ V ′
2 with |V ′

2 | = 2,
V3 = V ′

3 ∪ V ′′
3 with |V ′

3 | = |V ′′
3 | = 2, and V4, V5, V6 with |V4| = |V5| = |V6| = 2 and

V4 = {x, y} be the partite sets of a 6-partite tournament such that u → v → V ′
1 →

(V4 ∪ V5 ∪ V6) → V ′
2 → u → (V4 ∪ V5 ∪ V6) → v, V ′

2 → V3 → u, v → V3 → V ′
1 ,

V ′
2 → V ′

1 , V4 → V5 → V6 → V4, and V ′
3 → (V6 ∪ {x}) → V ′′

3 → (V5 ∪ {y}) → V ′
3

(see Figure 1). The resulting 6-partite tournament is almost regular with at least two
vertices in every partite set; however, the arc uv is not contained in a 4-cycle.
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Figure 1: An almost regular 6-partite tournament with the property
that the arc uv is not contained in a 4-cycle

The next example (cf. [12]) shows that the condition r ≥ 2 is necessary for c = 7.
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Example 3.3 Let V1 = {u, u2}, V2 = {v, v2}, V3 = {w1, w2, w3}, V4 = {x}, V5 =
{y}, V6 = {z}, and V7 = {a} be the partite sets of a 7-partite tournament such that
u → v → u2 → {a, x, y, z} → v2 → u → {a, x, y, z} → v → V3 → u, v2 → u2,
v2 → V3 → u2, w1 → a → x → y → z → a → y → w1 → z → x → w1,
w2 → z → w3 → a → w2 → x → w3 → y → w2 (see Figure 2). The resulting
7-partite tournament is almost regular, however, the arc uv is not contained in a
4-cycle. Consequently, the condition r ≥ 2 in Theorem 3.1 is necessary, at least for
c = 7.
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Figure 2: An almost regular 7-partite tournament with the property
that the arc uv is not contained in a 4-cycle
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