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In this paper all digraphs are finite without loops and multiple arcs. The vertex set
and arc set of a digraph D are denoted by V(D) and E(D), respectively. If zy is
an arc of a digraph D, then we write x — y and say that x dominates y, and if X
and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X
dominates every vertex of Y, then we say that X dominates Y, denoted by X — Y.
Furthermore, X ~» Y denotes the fact that there is no arc leading from Y to X. For
the number of arcs from X to Y we write d(X,Y). If D is a digraph, then the out-
neighborhood N7 (z) = N*(z) of a vertex x is the set of vertices dominated by x and
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Abstract

If = is a vertex of a digraph D, then we denote by d*(z) and d~(x) the
outdegree and the indegree of z, respectively. The global irregularity of a
digraph D is defined by i,(D) = max{d" (z),d” (z)} —min{d* (y),d (y)}
over all vertices z and y of D (including z = y). If 4,(D) = 0, then D is
regular and if 4,(D) < 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph.
In 1998, Y. Guo showed, if every arc of a regular c-partite tournament
is contained in a directed cycle of length 3, then every arc belongs to a
directed cycle of length n for each n € {4,5,...,c}. Recently, L. Volk-
mann generalized this result for ¢ > 6. He showed, if V;, V5, ..., V, are
the partite sets of an almost regular c-partite tournament with ¢ > 6 and
[Vi| = |Va| = ... = |VL| > 2, then every arc of D is contained in a directed
cycle of length n for each n € {4,5,...,c}. In this paper we shall extend
this theorem to all almost regular c-partite tournaments with ¢ > 7 such
that there are at least two vertices in each partite set. Examples will
show that this result is not valid for the case that ¢ = 6 or that ¢ = 7
and there is only one vertex in at least one partite set.
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the in-neighborhood Np(z) = N~(z) is the set of vertices dominating x. Therefore,
if there is an arc zy € F(D), then y is an outer neighbor of x and x is an inner
neighbor of y. The numbers df,(z) = d*(z) = |[N*(2)| and dp(z) = d~(z) = [N~ ()]
are called the outdegree and indegree of x, respectively. For a vertex set X of D, we
define D[X] as the subdigrah induced by X. If we speak of a cycle, then we mean a
directed cycle, and a cycle of length n is called an n-cycle. If we replace in a digraph
D every arc zy by yx, then we call the resulting digraph the converse of D, denoted
by DL

There are several measures of how much a digraph differs from being regular. In
[14], Yeo defines the global irregularity of a digraph D by

(D) = max {d* (z),d(x)} = min {d*(y).d" W)},

If iy(D) = 0, then D is regular and if i,(D) < 1, then D is called almost reqular.

A c-partite or multipartite tournament is an orientation of a complete c-partite
graph. A tournament is a c-partite tournament with exactly ¢ vertices. If Vi, V5, ...,
V. are the partite sets of a c-partite tournament D and the vertex x of D belongs to
the partite set V;, then we define V() = V;. If D is a c-partite tournament with the
partite sets Vi, Va, ..., V. such that |V;]| < |V, < ... < |V.|, then |V.| = a(D) is the
independence number of D, and we define y(D) = |V4].

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle.
The next example shows that this is not valid for regular multipartite tournaments
in general.

Example 1.1 Let C,C’, and C" be three induced cycles of length 4 such that C —
C" — C" — C. The resulting 6-partite tournament Dy is 5-regular, but no arc of the
three cycles C,C',C" is contained in a 3-cycle.

Let H, Hy, and Hs be three copies of Dy such that H — Hy — Hy — H. The
resulting 18-partite tournament is 17-reqular, but no arc of the cycles corresponding
to the cycles C,C", and C" is contained in a 3-cycle.

If we continue this process, we arrive at regqular c-partite tournaments with arbi-
trary large ¢ which contain arcs that do not belong to any 3-cycle.

In 1998, Guo [3] proved the following generalization of Alspach’s classical result
[1] that every regular tournament is arc pancyclic.

Theorem 1.2 (Guo [3]) Let D be a regular c-partite tournament with ¢ > 3. If
every arc of D is contained in a 3-cycle, then every arc of D is contained in an
n-cycle for each n € {4,5,...,c}.

Now, the aim was to carry this result forward to almost regular multipartite
tournaments. To reach this, Volkmann [10], [12] started with the following theorems.

Theorem 1.3 (Volkmann [12]) Let D be an almost regular multipartite tournament
with ¢ partite sets.
If ¢ > 8, then every arc of D is contained in a 4-cycle.
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If c =7 and there are at least two vertices in every partite set, then every arc of
D is contained in a 4-cycle.

Theorem 1.4 (Volkmann [10]) Let D be an almost reqular multipartite tournament
with the partite sets Vi, Va, ..., V. such that |V1| = |Vo| = ... = |V =r > 2. Ifc > 6,
then every arc of D is contained in an n-cycle for each n € {4,5,...,c}.

The main theorem of this paper is the following extension and supplement of
Theorems 1.3 and 1.4.

Theorem 1.5 Let D be an almost regular c-partite tournament with at least two
vertices in every partite set. If ¢ > 7, then every arc of D is contained in an n-cycle
for each n € {4,5,...,c}.

This result is also a supplement to a theorem of Jacobson [5], which states that
in an almost regular tournament with ¢ > 7 vertices, every arc is contained in an
n-cycle for each n € {4,5,...,¢c}. An example will show that the main theorem is
not valid for ¢ = 6 in general. A further example will demonstrate that the condition
that there are at least two vertices in every partite set is necessary, at least for ¢ = 7,
the most difficult case.

According to Tewes, Volkmann and Yeo [7], the following lemma holds.

Lemma 1.6 If V1, Vs, ..., V, are the partite sets of an almost reqular c-partite tour-
nament D such that |Vi| < |Va| < ... <|V4|, then |V.| < V4| + 2.

Hence, using Theorem 1.3 as the basis of induction, we will distinguish between
the two cases that |V.| = [Vi| + 1 and |V.| = |Vi| 4+ 2 in the main theorem. Then
Theorem 1.5 follows immediately from Theorem 1.4.

For more information on multipartite tournaments, see [2, 3, 4, 6, 11, 13].

2 Preliminary results

The following results play an important role in our investigations.

Lemma 2.1 (Tewes, Volkmann, Yeo [7]) Let D be an almost reqular multipartite
tournament. Then for every vertex x of D we have

_ V(D) —A(D)+1

< 5 .

V(D) - (D) -1

; < d* (), (a)

If we know the cardinality of the partite set V(z), then we can improve the
previous lemma.

Lemma 2.2 If D is an almost regular multipartite tournament and x o vertex of D
with |V (x)| = p, then

VD) -p-1
2

V(D) ~p+1

<d"(z),d () 5

IN
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Proof. Firstly, suppose that d*(z) < W The fact that dt(z) + d~(z) =
[V(D)|—|V ()| = |V(D)| —p implies that d~ (a) > VPU2¥2 'which leads to d~ () —
d*(z) > 2, a contradiction to i,(D) < 1.

Now suppose that d*(z) > M Since d*(z) +d~(z) = |[V(D)| — |V (z)| =
|V (D)|—p, we obtain d~ (x) < W, and thus, it follows that d*(z) —d~(z) > 2,
a contradiction to i,(D) < 1.

Consequently, we have W < dt(z) < W. The results for d~(x)
follow analogously. |

In this article we treat the case of an almost multipartite tournament D with
a(D) =r+1or a(D) =r+2and y(D) = r for any r > 2. This leads to the
following remark.

Remark 2.3 If (D) =r+ 2, v(D) = r and i4(D) < 1, then |V(D)| — r is even.
So the bounds in Lemma 2.2 can be improved by
V(D) —r—2

0 (@), d"(a) = =

if |V(x)=r+2

or
VD) —r
2

dt(z),d (z) = | if |V(x)|=r.

Consequently, for the case that a(D) = r + 2, instead of Lemma 2.1, we can use the
following result:

7\V(D)|2— r-2 <d"(z),d (z) < 7|V(D2)‘ —

Now let us summarize some results of Lemma 2.2 and Remark 2.3.

Corollary 2.4 If D is an almost regular c-partite tournament with the partite sets
Vi, Vay ..o, Vi such that r = V1| < |Vo| < ... < |Vi| < r+2, then for every vertex x
of D we have
V(D) —r—2
% < d+(:r)7d’(:x)_
The next result is a well-known theorem of Turdn [8] (see also [9], p. 212).

Theorem 2.5 Let D be a digraph without 2-cycles. If the underlying graph of D
has no clique of order p+ 1, then

E(D)| < %W(D)P.

3 Main result

Theorem 3.1 Let D be an almost reqular c-partite tournament with the partite sets
Vi, Vo, .o, Ve such that 2 <r = |Vi| < |Vo| < ... < Vi <r+2and |V >r+ 1. If
¢ >17, then every arc of D 1is contained in an n-cycle for each n € {4,5,... c}.
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Proof. We prove the theorem by induction on n. For n = 4 the result follows
from Theorem 1.3. Now let e be an arc of D and assume that e is contained in an
n-cycle C' = ayaias . .. a,_1a, with e = a,a; and 4 < n < ¢. Suppose that e = a,a;
is not contained in any (n + 1)-cycle.

Obviously, V(D) =cr+kwith1 <k <c—1if |[V|]=r+1land2 <k <2c—2,
if V.| = 7+ 2. Firstly, we observe that N*(v) — V(C) # @ for each v € V(C) =
{a1,as,...,a,}, because otherwise Corollary 2.4, the fact that r > 2 and k > 1 yield
the contradiction

= V(O) > d*(v) + 2> cr+k2—r—2+2: (c—l)r2+k:+2 e
Analogously, one can show that N~ (v) — V(C) # 0 for each v € V(C).

Next let S be the set of vertices that belong to partite sets not represented on C

and define

X={zeS|C—zx} Y={yeS|y—C}

Assume that X # () and let z € X. If there is a vertex w € N~ (a,) — V(C) such that
x — w, then aya1ay . .. ap_sxwa, is an (n+1)-cycle through a,a1, a contradiction. If
(N~ (an) = V(C)) = x, then [N~ (z)| = [N~ (an) = V(C)|+[V(C)] 2 [N~ (an)| +2, a
contradiction to the hypothesis that iy(D) < 1. If there exists a vertex b € (N~ (a,)—
V(C)) such that V(b) = V(z), then b is adjacent to all vertices of C. In the case
that N=(b) N V(C) # 0, let | = maxj<j<p_1{ila; — b}. Then aya;...aqbajyy ... ap
is an (n + 1)-cycle through a,ai, a contradiction. It remains to consider the case
that N=(b) N V(C) = 0. If there is a vertex u € (N~ (b) — V(C)) = N~ (b) such that
x — u, then ayaias . ..a,_sxuba, is an (n + 1)-cycle through a,a;, a contradiction.
Otherwise, N~ (b) — z, and we arrive at the contradiction d~(z) > d~(b) + |V (C)].
Altogether, we have seen that X # () is not possible, and analogously we find that
Y # ) is impossible. Consequently, from now on we shall assume that X =Y = {).

By the definition of S, every vertex of V(C) is adjacent to every vertex of S, and
from our assumption n < ¢, we deduce that S # @. Now we distinguish different
cases.

Case 1. There exists a vertex v € S with v — a,,. Since Y = (), there is a vertex
a; € V(C) such that a; — v. If | = maxy<;<p—1{i|a; — v}, then aya; ... quay; ... a,
is an (n + 1)-cycle through a,aq, a contradiction. This implies a, — S.

Case 2. There exists a vertex v € S with a; — v. Since X = (), there is a vertex
a; € V(C) such that v — a;. If | = ming<;<,,—1{ilv — a;}, then anay ... a_1va ... a,
is an (n + 1)-cycle through a,a1, a contradiction. This implies S — a;.

If C = ayaias...a, and v € S, then the following three sets play an important
role in our investigations

H = N*(a;) = V(C), F =N (a,) —V(0O), Q=N"(v)=V(O).
Case 3. There exists a vertex v € S such that v — a,_;. If there is a vertex

a; € V(C) with 2 < i < n — 2 such that a; — v, then we obtain as above an
(n + 1)-cycle through a,a,, a contradiction. Thus, we investigate now the case that
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v — {a1,as,...,a,_1}. Because of S — a;, we note that every vertex of N*(a;) is
adjacent to v. If there is a vertex x € H such that * — v, then a,a1zvazay ... a,
is an (n + 1)-cycle through a,aq, a contradiction. Therefore we assume now that
v — (N*t(a;) — V(C)). This leads to d*(v) > d*(a;) + 1, and thus, because of
ig(D) <1, it follows that N*(v) = N™(a1) U{a1} and a1 — {as, as,...,a,-1}.

It is a simple matter to verify that HNQ =0, SNH =0 and R =V (D) — (HU
QUV()UV(C)) =0.

If there is an arc zay with € H, then a,a;xazas . . . a, is an (n+1)-cycle through
anay, a contradiction.

Subcase 3.1. Firstly, let H consist of vertices of only one partite set V,. At least
one vertex of V, belongs to V(C'), that means |H| < r+ 1, if |V,| =r+2, |H| <,
if |Vo]=r+1and |H| <r—1,if |V,|] =r.

Because of Corollary 2.4 and n < ¢ — 1, we have

cr+k—r—2

2 —(c=3) <d"(a1) — (n—2) = |H|. (1)

If |V,| = r, then because of |H| < r —1, (1) yields (¢ — 3)r + k + 6 < 2¢. Since
r > 2 and k > 1, this leads to the contradiction 2c + 1 < 2c.
If n = 4, then we observe that n < ¢ — 3, and this implies

cr+k—r—2

S (=5 <dT (@)~ (-2 = [H| <7+ 1.

This leads again to (¢ — 3)r + k + 6 < 2¢, a contradiction. Consequently, it remains
to treat the cases with |[V,| > 7+ 1 and n > 5.

Subcase 8.1.1. Assume that |V.|=r+1and |V, =r+1. If |V(a1)| =7+1 (and
therefore k£ > 2), then (1) leads tor =2, |H| =r =2 and k = 2.

If |V (a1)| = r, then together with Lemma 2.2 and n < ¢ — 1, we arrive at

er+k—r—1

ST -3 <d () - (-2 = H] <,

and hence (¢ —3)r + k+5 < 2¢. This leads to no contradiction, only if r = 2, |H| =
r=2and k=1.

Consequently, it remains to consider the case that |H| = r = 2 and k = 1 or
k=2 and |V (a1)| = r + 1. Therefore, we observe that |V (v)| = r.

Since n > 5, we have (Q ~ H, because otherwise, if there are vertices g € @) and
h € H such that h — ¢, then a,ai1hquay . ..a, is an (n + 1)-cycle, a contradiction.
Thus, for every vertex h € H, we conclude that d*(h) <r—1+n—2=mn—1. Since
dt(v) =d"(m1) + 1 =7r+n—1=n+1, this is a contradiction to i4(D) < 1.

Subcase 3.1.2. Now let |V.| =r+2. If |V,| =r+ 1, then, because of |[H| < r, (1)
leads to (¢ — 3)r + k +4 < 2¢. Since in this case k > 3 and r > 2, this yields the
contradiction 2¢ + 1 < 2¢.

Finally, let |V,| = r + 2. Then (1) leads to the contradiction ¢ < 5, if r > 3, and
to the contradiction 1 < 0, if » = 2 and k > 5. Therefore, let r = 2 and k € {2, 3,4}.
Since ¢r + k — r is even, the case k = 3 is not possible.
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Furthermore, we have a contradiction in (1), if |[H| < r. Therefore, let |H| =
r 4+ 1. Since d*(v) = d*(a1) + 1, we conclude that |V (v)] < r + 1. Because of
n > 5, analogously as in Subcase 3.1.1, we see that (Q U {a1,as,v}) ~ H, and
thus d*(h) < r+mn—2=mn, if h € H. On the other hand, we have seen that
dt(w)=d"(m)+1=r+14n—1=n+2, acontradiction to iy(D) < 1.

Subcase 3.2. Let n > 5 and let H consist of more than one partite set. Then
there is at least one arc pq € E(D[H]). Let L be the set of all vertices in H with
an inner neighbor in H, and M = H — L. Then we note that L # (). M consists
of vertices of at most one partite set and M ~» L. If we take a vertex ¢ € L with
an inner neighbor p € H, then it cannot be that gas € E(D), because otherwise
ana1pqag . .. an is an (n 4+ 1)-cycle, a contradiction. Therefore let ag ~ L. If there
is an arc xy with x € H and y € @, then a,a1xyvagas . ..a, is an (n + 1)-cycle, a
contradiction. Altogether, we have seen that (Q U M U {ay,as,as}) ~ L.

First, let |V (v)| = r 4+ 2. Then, because of d*(v) > d*(a;) + 1, Remark 2.3 yields
the contradiction

cr+k—r—2
2

cr+k—r—2

+1<d(a)+1<d"(v) = 5

Now let |V(v)] < r+ 1. Since |R| = 0, for every vertex ¢ € L, we conclude
that d(¢,V(D) — L) < n+r — 3, and thus, it follows with Corollary 2.4 that
dhy (@) = d*(q) — d(g, V(D) — L) > ertkhor—2 _ p —p 4 3. This implies

|LI(IL] = 1)

1Y = o)
er+k—r—2 (2)
= Zd},m(q) > |L] {f —r—n+3}.
q€L
The conditions d*(v) > d*(a1) + 1, a1 — {as,as,...,a,_1}, and Lemma 2.1 (respec-

tively, Remark 2.3, if |V.| = r + 2) yield |L| = |H| — |M| =d"(a;) —n+2 — |M]| <
dt(v)—1—n+2—|M| < eHertl _p 41— | M| (respectively, |L| < <= —p41—|M],
if |V.] =7+ 2). Combining this with inequality (2), we obtain

k— 1 k—r—2
ertkortl s —1selo =2 sl
2 2
if [Vo|=r+1 and
v+ k— otk —r—2
TRz o1 22 { TR s

if |[Ve| = r+2. This leads to 2n > (¢ — 5)r + k + 7 + 2|M| (respectively, 2n >
(c=5)r+k+8+2|M| if |V] =r+2). Because of k > 1, r > 2 and n < ¢ — 1, this
is a contradiction, if [M| > 1 (a contradiction, if |V,| = r + 2).

Consequently, it remains to consider the case that |M| = 0. This means that
every vertex in H = L has an inner neighbor in H. Therefore, |L| = |H| > 3,
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and every vertex in H is the last point of a path of length 2. If a4 ~» H, then,
because of d(¢q, V(D) — L) < r 4+ n — 4, we obtain a contradiction as above. Thus,
let gsay € E(D) with g3 € H, and let g3 be the last point of the path ¢1¢2q3 in H,
then a,a1¢192q3a4 . . . a, is an (n + 1)-cycle through a,aq, a contradiction.

Subcase 3.3. Finally, let n = 4 and let H consist of more than one partite set.
Let us define the set G by G = N*t(az) — V(C). If there is a vertex w € F NG, then
agaia0a3way is a 5-cycle through agaq, a contradiction. If there is an arc xy with
xz € G and y € F, then aqaas3ryay is a 5-cycle, a contradiction. Consequently, it
remains to consider the case that F NG =0 and F ~ (G U {as, a4}).

According to Corollary 2.4, we have

cr+k—r—2 otk —r—4

= |N*(a3)| —1> —1=
1G] = IN*(ag)] - 12 T =

and thus, it follows for every vertex = € F that

d(V(D) - F, z)

IN

cr+k—|F|—|G| -2

cr+k2+r+47|F|72:cr+2k+r

IN

—|Fl.

This leads to

cr+kfr727cr+k’+r
2 2

dppgy () 2 +IF=F[-r—1

for every x € F. Hence, we conclude on the one hand that

|E(DIFD| = 3_ dppy(x) = [FI(1F] =7 = 1).

zeF

On the other hand, since SN F = 0, the subdigraph D[F] is 3-partite, and thus,
Theorem 2.5 yields

B(DIF)| < §|FP

The last two inequalities imply r > 2|F| — 1. Since |F| = [N~ (as) — V(O)| >
d~(a4) — 2, we deduce from Corollary 2.4 that

> 2|F|_12c7’+k—r—6_1:cr+k—r—9
3 3 3 (3)
< 3r > (c—1r+k-09.

r

Subcase 3.3.1. Let |V.] = r + 1. Then, (3) leads to no contradiction, only if
c=8r=2andk=1orifc=7,r=2and k <3.
Firstly, let ¢ = 8, 7 = 2 and k = 1. Then we note that |H| < 4, and thus, it
follows that
9<[S|+1<d(a) <d"(a1)+1=|H|+3<T,

a contradiction.
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Therefore, it remains to consider the case that c =7, r = 2 and k < 3. If D[V (C)]
is no tournament (that means that V(as) = V(a4)), then we have |S| > 4r = 8 and
|H| < 3, and therefore we arrive at the contradiction

9< S| +1<dt(aq) <dT () +1=|H|+3<6.

Consequently, we investigate the case that D[V(C')] is a tournament. Then we see
that
7T<IS|+1<d(ay) <d¥(ay)+1=|H|+3,

and this yields |H| > 4. If |H| = 4, then we have equality in the last inequality
chain, which implies H ~ a4 and as — a4. Let x € N*(h) — V(C) with h € H
such that x — as, then agaihxasay is a 5-cycle, a contradiction. Consequently,
as ~ N*t(h) — V(C) for every vertex h € H. If every element of H has an outer
neighbor in H, then there exists a 3-cycle or a 4-cycle in H. Now, we take a vertex
hs € H — V(ay4) such that hs is contained in a cycle hghihohs or hyhihohshy in
H. This leads to the 5-cycle aqaihihohsay, a contradiction. Hence, there exists
a vertex hg € H such that Ng[H](ho) = (. Since ay ~ H, as — {as,as} and
Nt (ho) NV(C) C {as,as}, it follows that

d™(az) = |H|+2+ [N (ho) = V(C)| = [V(az) = {az}|
> 4+ |NT(ho) = V(C)| = d"(ho) +2,

a contradiction to i,(D) < 1.

Therefore, let 5 < |H| < 6. Then H contains vertices of exactly three partite
sets and k > 2. In the case that |[H| = 5 (respectively, |H| = 6), the vertex ay has
at most one (respectively, two, if |[H| = 6) further outer neighbors except S and aj.
If ay — a4, then H; = H — N*(a4) consists of at least four elements and Hy ~ aq.
Then, analogously to the case |H| = 4, we arrive at a contradiction.

Consequently, let ay — ao. Then, because |F| = [N~ (a4)—V(C)| > d™(a4)—1, we
get instead of (3) the better bound r > mﬁ Since ¢ = 7, this yields 7 > 3r + k,
a contradiction to k > 2.

Subcase 3.3.2. Now let |V.| = r + 2. Then (3) leads to no contradiction, only if
c=7,r=2and 2 <k < 3. Since, with respect to Remark 2.3, k = 3 is impossible,
it remains to treat the cases when |V (a3)| = r or |V (a4)| = r.

If |V (a3)| = r, then we obtain with Remark 2.3 that

cr+k—r cr+k—r—2

_ + 1 = _ 1=
Gl = IN*(ag)| -1 = T2 =L 1 -

Following the same lines as above, we arrive at the inequality (¢ —4)r + k < 6 which
leads to the contradiction ¢ < 6.
If |V (a4)| = r, then, according to Remark 2.3, we obtain the estimation
cr+k—r 9 — cr+k—r—4
2 B 2 ‘
In this case, following the same way as above, we get the inequality (¢ —4)r+k <7,
which leads to the contradiction ¢ < 13/2.

[F| = [N(as) = V(C)| = d"(as) =2 =
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Summarizing the investigations of Case 3, we see that it remains to consider the
case that a,_; — S.

Case 4. There exists a vertex v € S such that a; — v. If we consider the
converse of D, then, analogously to Case 3, it remains to treat the case that S — a,.

Summarizing the investigations in the Cases 1 — 4, we can assume in the following,
usually without saying so, that

{an_1,a,} — S — {a1, a9} ~ H. (4)

Case 5. Let n = 4. Because of (4), we have ay — S and thus SU{a;} C N*(ay).
If D[V(C)] is 3-partite or 2-partite, then, in the case that |V.| = r + 1, we see that

14+ (c=3)r <|S|+1<d(as) <d"(a1)+1 < |H|+3<2r+3,
and in the case that |V,| = r + 2, we obtain

L+ (c=3)r < |S|+1<d(ag) <d%(ay)+1<|H|+2<2r+4
if V(a1) =V(az) and

1+ (c—3)r IS|+1<d(ag) <dT(a) + 1< |H|+3<2r +4
if V(az) = V(aa).

IN

All these cases yield a contradiction to ¢ > 7. Consequently, it remains to consider
the case that D[V (C)] is a tournament.

Firstly, let as — a4. If a3 — a3 and v € S, then agaiazvasay is a 5-cycle,
a contradiction. Now let a3 — a;. If there are vertices v € S and ¢ € H such
that * — v, then ayai;xvasas is a 5-cycle, a contradiction. Otherwise, we have
S — H. If we choose v,w € S such that v — w, then N*(a;) = H U {as} and
NT(v) 2 HU{ay,as,w}, a contradiction to iy(D) < 1.

Now assume that ay — as. Firstly, let a1 — asz. If there are vertices v € S
and z € F = N~ (ag) — V(C) such that v — z, then ayajasvzray is a 5-cycle, a
contradiction. Otherwise, we have F' — S. If we choose v, w € S such that v — w,
then we see that N~ (as) = FU{az} and N~ (w) 2 F U {as,a4,v}, a contradiction
to 44(D) < 1. In the remaining case that az — a1, it follows from Corollary 2.4 that

cr+k [V(D)| > |H|+ |F|+|S|+ |[V(C)| - |[HN F|
cr+k—r—2 cr+k—r—2
- 4 =
2 2
+e—4)r+4—|HNF

= 2cr+k—5r—|HNF].

1

%

Consequently, |H N F| > (¢ — 5)r > 2r and thus, H N F consists of at least two
partite sets. If we choose uy,uz € H N F such that us — us3, then C" = aya,ususzay
is also a 4-cycle through a4a;. Since uy — a4, we arrive, analogously to above, at a
contradiction.

Altogether, we have shown in the meantime that every arc of D belongs to a
5-cycle.
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Case 6. Let n > 5 and assume that there exists a vertex v € S such that
v — Gp_o. If there is a vertex a; € V(C) with 3 < i < n — 3 such that a; —
v, then we obtain, as in Case 1, an (n + 1)-cycle through a,a;, a contradiction.
Thus, we investigate now the case that v — {ai,as,...,a,_2}. If there is a vertex
h € H such that h — v, then a,aihvasay .. .a, is an (n 4 1)-cycle through a,a,
a contradiction. Therefore, we assume now that v — H. This leads to d*(v) >

d*(a1), and thus, because of iy(D) < 1, it follows that a; — {a2,as,...,an_1}
or ag — {as,as,...,an—1} — {a;} for some j € {3,4,...,n — 1} and a; — a1 or
V(al) = V(aj).

Subcase 6.1. Assume that ay — {ag,as,...,a,—1}. If there is a vertex h € H

such that h — a,, then a,aiazay...an—_1vha, is an (n + 1)-cycle, a contradiction.
Therefore, we may assume now that a, — (H—V(a,)). If a;_1 — a, for3 <i <n-—1,
then a,aia;a;,1 ... a,_1va2a3 ... a;_1a, is an (n + 1)-cycle, a contradiction. Hence,
it remains to treat the case that a, — a;_1 or a;_1 € V(a,) for 2 < i < n—1.
Let {ai,as,...,a, 2} = AU B such that a, — A and B C V(a,). Then N*(a;) =
HU{as,as,...,a,—1} and N*(a,) 2 AUSU(H — (V(a,) — (BU{a,}))). This leads
to
d(an) > [A[+ S|+ [H| = (r + 1= (|B| + 1)) = d"(a1) + |S| = 7,

if Vo] =r+1 (and d*(a,) > d"(a1) + S| — (r + 1), if |V.] = r+2). To get no
contradiction, S has to consist of only one partite set, which means n = ¢—1, D[V (C')]
is a tournament, B = () and a,, — {a1, as, ..., a,—o} (vespectively, n = c—1, D[V (C)]
is a tournament or n = c— 2,71 =2, |S| = 2r =4, |[V(a,)| =7+ 2 =4, d*(a,) =
d*(a;) +1). Now define R = V(D) — (HUFUSUV(C)). Since HNF = ), we
obtain by Corollary 2.4

cr+k—r—2 cr+k—r—2

This yields |R| < 1, if |[S| =7, |[R| =0, if |S| =r+1, and |R| < —1, if |S| = 2r or
|S| = r+2. Thus, it follows that n = ¢—1 and |S| < r+1 in all cases. Furthermore,
we see that |S]|+ |R| < r+ 1.

If there is an arc h — y with h € H and y € F, then we observe that
Uy Q104 . . . Gn_10hyay, is an (n+1)-cycle, a contradiction. Hence let (FU{a1, ag, a,, v})
~» H. Now let L be the set of vertices in H having an inner neighbor in H, and
let M = H — L. In the case that L # @) and b € L, it cannot be that bay € E(D),
because otherwise a,ajabazay . . . a, is an (n+ 1)-cycle, if a € H is an inner neighbor
of b, a contradiction. Furthermore, we note that M ~» L and that M consists of
vertices of at most one partite set.

Hence, for every vertex b € L, we conclude that d(b, V(D) — L) <n—4+|S| —
1+ R <r+n—4=r+c—>5. Now it follows from Corollary 2.4 that

|R|§cr+k{ 1+|S+n}.

—r—2
Aby(0) = d*(B) — o, V(D) ~ 1) > TEEZTZE g
This implies
LI(|L| -1
w > |E(D[L])| = ZdB[L](b)
bel
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cr+k—r—2
IL{i

—r—c+5;.
5 r(’-i-}

Furthermore, because of Lemma 2.1, we observe that |L| = |H| — |[M| = d*(a;) —
(n—2) — |M| < et M| — ¢+ 3. Combining these results, we arrive at

cr+k—r+

1 k—r—2
: _|M|_C+2>L|_1>2{CT+7T

5 —r—c+5}.

The last inequality is equivalent to (¢c—5)r < —k—2|M|+2c—11 < —2|M|+2c—12.
Since r > 2, this leads to the contradiction |M]| < —1.

Consequently, it remains to consider the case that L = (), which means that
H consists of vertices of only one partite set. This partite set has to be V(a,),
because otherwise, we observe that N*(a,) 2 {ai,..., a2} UHUS and N*(a;) =
HuU{as,...,a,_1}, a contradiction to ¢,(D) < 1. This implies that a; — H and even

{asg,...,an_1} — H, because otherwise, let i = ming<;<,—1{l|h — a;} with h € H,
then anai...a;_1ha;...a, is an (n 4+ 1)-cycle, a contradiction. Therefore, we have
({ar,az,...,an_1,a,,v} UF) ~ H. Then we conclude for every vertex h € H that

ertkor=2 < dt(h) = d(h, V(D) — H) < |S| =1+ |R| < r, a contradiction to ¢ > 7.

Subcase 6.2. Assume that there exists exactly one j € {3,4,...,n — 1} such
that a; — ({ag,as,...,a,—1} — {a;}) and a; — a; or V(a;) = V(a1) and that
n > 6. This condition implies d*(v) > d*(a1) + 1 and thus, because of i,(D) < 1,
d*(v) = d*(a1) + 1. Furthermore, we note that H N Q =0 and R = V(D) — (H U
QUV()UV(C)) =0.

If there are vertices * € H and y € @ such that x — y, then, because of
n > 6, a,a1xYyvauas. .. a, is an (n + 1)-cycle, a contradiction. Hence, we assume
that (@ U {ai1,a2,v}) ~ H. Let L be the set of vertices ¢ in H which have an
inner neighbor p in H. Furthermore, let M = H — L and |L| # 0. Then we have
(QUM U {ay,as,as,v}) ~ L.

Firstly, let |V (v)| = + 2. Then Remark 2.3 yields the contradiction

k- —2 k- —2
7”“27 +1§d+(a1)+1:d+(v):7ﬂ+k27 .

Secondly, let |V (v)| = r 4+ 1. Then, for every vertex ¢ € L, we conclude that
d(q, V(D)= L) <|V(v)|+|V(C)| —4 =r +n— 3, and thus, it follows from Lemma
2.2 and Corollary 2.4 that

dpyyla) = d"(q) —d(q,V(D) - L)

. - —_92
> %—r—n—i—& if k>2
k—r—1
and dE[L](q) > CT+#rfrfn+3, if k=1
This implies
ILI(IL] = 1)
FEEY S 1mom) = X dhy)
qeL
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v

cr+k—r—2
|L{f

r+k—r—1
T s,

—r—n—i—S}

[LI(L[ - 1)
2

and

v

respectively. The conditions d*(v) = d¥(a1) + 1, a1 — ({az,as,...,an-1} — {a;})
and Lemma 2.2 yield |L| = |H|—|M| = d"(a;) —n+3—|M| =dt(v)—n+2—|M| <

% — |M| —n+ 2. Combining these results, we arrive at the inequalities
k— k—r—2
CT+27T_|M|_H1Z‘L|_1 > Q{CHQT_T_H?,}
k— k—r—1
md IS nn o TEEEESL ),

respectively. A transformation leads to 2n > (¢ — 5)r + k + 2|M| + 6 and 2n >
(¢ = 5)r + k + 2|M| + 8, respectively. Since n < ¢— 1, k > 2 (respectively, k = 1)
and r > 2, this yields a contradiction, if |M]| > 1.

Thirdly, let |V (v)] = r. Then, for every vertex ¢ € L, we conclude (|R| = 0)
that d(q, V(D) — L) < r+n—4, and analogously to above, we get the contradiction
M| < -1,

The case that |M| = 0 yields a contradiction, analogously as in Subcase 3.2.

Consequently it remains to consider the possibility that |L| = 0, which means
that H consists of vertices of only one partite set V,. Firstly, let |V,| = r + 2 and
|[V(a1)| > r + 1 (this means k > 3). Since [N*(a;) NV(C)|=n—-3,n <c¢—1and
Corollary 2.4, this leads to

cr+k—r—2

: —(c—4) < d"(a) - (n—3)=|H| <r+1,

which is equivalent to 2¢ > (¢ — 3)r + k + 4, a contradiction, because of r > 2 and
k> 3. Now let |V.| =7+ 2 and |V (a1)| = r. Then Remark 2.3 yields

cr+k—r

s (=4 <di@)—(n=-3)=H| <r+1,

hence 2¢ > (¢ — 3)r + k + 6, a contradiction. Finally, let |V,| < 7+ 1; then we arrive
at
cr+k—r—2
2
hence 2¢ > (¢ — 3)r + k + 6, a contradiction.

Subcase 6.3. Assume that n = 5 and there is exactly one j € {3,4} such that
a; — ({as, a3,a4} — {a;}) and a; — ay or V(a;) = V(ay).

Subcase 6.5.1. Let a; — {ag,as} and ay — ay or V(ay) = V(aq). If there is a
vertex h € H such that h — a5, then asaiasasvhas is a 6-cycle, a contradiction.
Therefore, we may assume that a5 — (H — V(a3)). If az — a5, then asajazagvasas
is a 6-cycle, a contradiction. Hence, it remains to treat the case that as — ay or

—(c—4)<d"(a) - (n=3)=[H| <,
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V(as) = V(az). Let {ai,as} = AU B such that as — A and B C V(as). Then
Nt(a1) = HU{ag,a3} and N*(as) 2 AUSU(H — (V(as) — (BU{as}))). This leads
to

d*(as) > |A|+ S|+ |H| = (r+ 1= (|B| + 1)) =d"(a1) +|S| — 7,

if [V(as)] =7+ 1 and
d*(as) = [Al +[S|+ [H| = (r+2 = (B +1)) =d"(a) +|S| = (r+1),  (5)

if [V(as)| = r+ 2. Since i4(D) < 1, the set S consists of one (n = ¢ — 1, if
|V (as)| = r+1) or of at most two (n = c¢—2, if |V (a5)| = r + 2) partite sets. Firstly,
let n = ¢ — 1. Then, since n = 5, this leads to a contradiction to ¢ > 7. In the
remaining case that n = ¢ — 2 and |V(as)| = r + 2, we have |V,| = r+2,r = 2
and |S| = 2r = 4. In this case, because of (5) and Remark 2.3, we arrive at the
contradiction

cr+k—r—2
2

cr+k—r—2

+1<d"(a1)+1=d"(a5) = 5

Subcase 6.3.2. Let n = 5 and assume that a; — {a2,a4} and a3 — a; or
V(az) = V(a1). Analogously to Subcase 6.2, H consists of at least two partite sets.
Hence, there exist vertices z,y € H such that © — y. If y — as, then asa,aqvzyas is
a 6-cycle, a contradiction. Now let W = H —V/(as) and U = {z € Wldp(z) = 0}.
It follows that U is a subset of one partite set, which means |U| < r (respectively,
U <r+1,if |V, =r+2),and a5 — (W = U). If a3 — a5, then asajasvasasas
is a 6-cycle, a contradiction. Hence, it remains to consider the case that a5 — as
or V(as) = V(az). Let {a1,a3} = AU B such that a5 — A and B C V(as). Then
Nt(a1) = HU{ag, a4} and N*(as) 2 AUSU(H — ((V(as) — (BU{as}))UU)) and
therefore

d*(as) > [A| +|S| + [H] = (r+ 1= (IB| + 1)) = |U] = d"(a1) + S| — 2,
if [V <r+1and
d*(as) = [A+ S|+ [H| = (r + 2= (B +1)) = [U| = d"(a1) + |S| = 2(r + 1),

if |V.| = r+ 2. Since i,(D) < 1, this yields a contradiction, if S consists of more
than two (respectively, three, if |V.| = r + 2) partite sets. Let |V.| = r + 2 and let
S consist of three partite sets; then we get a contradiction, if » > 4. If r = 3 and
|V (as)| = r + 2, then, because of Remark 2.3, we arrive at the contradiction

er+k—r—2
2
If r =3 and |V (a5)| < r + 1, then we have the contradiction

et k—r—2

+1 §d+(a1)+1:d+(a5) 5

d*(as) > [A|+ S|+ |H| = (r+1—(|B|+1)) = |U| > d*(a1) +r — 1 =d" (a1) + 2.

Consequently, it remains to treat the cases n = c—2, |B| =0, D[V(C)] is a tourna-
ment or |V,| =r+2, n =c—3 and r = 2. If we define U’ = (N*(a;)NN"(as5))—V(C),
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then U" C U and U’ consists of vertices of only one partite set V. Now let
J = N(as) — (U'UV(C)) and G = N(a1) — (V, U {as,as}). In this case, we
note that G # (), because otherwise H = N*(a;) — {az, as} C V,, hence, it follows
from Corollary 2.4 that

cr+k—r—2

e dt (@)~ 2= [H <+ 1,

a contradiction to ¢ > 7. Therefore, assume that G # (). If there are vertices z € G
and y € JU U’ such that © — y, then asa;avzyas is a 6-cycle, a contradiction.

Suppose next that there exist vertices b € G and w € S such that b — w. If w —
ag, then asa;bwasagas is a 6-cycle, a contradiction. So, we can assume that ag — w.
If there is a vertex € (N~ (a5) — V(C)) such that w — z, then asa;asa3wzas is a 6-
cycle, a contradiction. Thus, we can assume that (N~ (as) —V (C)) — w. Altogether,
we see that N~ (as) C (N~ (a5) — V(C))U{az,as} and N~ (w) 2D (N~ (as) —V(C))U
{as, as, a5, b} and this yields the contradiction d~(w) > d~(as) + 2. Consequently, it
remains to treat the case that S — G. If we define R = V(D) — (HUJUSUV(C)),
then, because of

Il 2 IV ()| - ) -2 TR

{ brtkh=2 _ ' -2, if n=c—2=5

2
T2 U] -2, if n=c¢—-3=5"

we obtain |R| <

Trbk— {22 U 24 S22 4 2 45}, if n=c—2
164k — {1 — U] -2+ 12 — 24+ 6+ 5}, if n=c—3

_J WU =r+1, if n=c—2
) U -3, if n=c—3"

Thus, we also see that U’ # (). Let there be a vertex y € G such that y — as.
Because of U’ C U and V,, C V(D) — G, there exists a vertex € U’ such that
x — y. This leads to the 6-cycle asaixyasaqas, a contradiction. Hence, it remains
that (SUJUU U {a1,as,as3,a5}) ~ G.

Firstly, let us observe the case that n = ¢—2. Then, for every vertex x € G, we get
d(x, V(D) =G) < [RI+1+V,NH|—[U"| < 2=r+[V,|=|V, AV (O)] < 1=r+]V;| < 3
and thus, it follows that

6r+k—2 6r+k—8
Thig)() = d*(2) — (e, V(D) = G) > =2 g = LRSS,
This implies
G|(|G] — 1 6r+k—38
=D \mian| = 3 dpg @) = 10712

zeG
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In view of Lemma 2.1, we have |G| = d*(a;) — [V, N H| — 2 < d*(ay) — 2 < &42=3,
Altogether, this leads to % > |G| — 1> 6r+k — 8, and thus, we obtain the
inequality 6r + k < 11, a contradiction.

Now let n = ¢ — 3. Then, for every vertex z € G, we conclude that d(z, V(D) —
G)<IR|+1+|V,nH|- U< =2+ V| = |V,nV(C)| < =3+|V,| <1 and thus,
it follows that d*(z) < |G| =d"(a1) — |V, N H| — 2 < d*(a1) — 2, a contradiction to
ig(D) < 1.

Summarizing the investigations of Case 6, we see that it remains to treat the case
when a,_o — S.

Case 7. Let n = 5. If we consider the cycle C~! = ajasasasasa; = bsbibybsbsbs
in the converse D™! of D, then {b;,b5} — S — {b1,ba,b3}. Since this is exactly the
situation of Case 6, there exists in D~! a 6-cycle, containing the arc bsb; = a;as, and
hence there exists in D a 6-cycle through asa;.

Case 8. Let n > 6. Assume that there exists a vertex v € S such that a3 — v.
If we consider the converse of D, then in view of Case 6, it remains to consider the
case that S — as.

Case 9. Let ¢ > n > 6. If there exist vertices y € S and « € H such that x — y,
then a,a1xyasay . .. ay, is an (n+ 1)-cycle, a contradiction. Consequently, we assume
now that S — H. Let y € S. If there exists a vertex x € H such that x — a,, then
(103 . . . Gn_oYTay, is an (n + 1)-cycle, a contradiction. Hence, it remains to treat
the case that (S'U {a1,as,a,})~ H.

If 4 — a and a;-1 — a, for i € {3,4,...,n — 1}, then the (n + 1)-cycle
Ap1Q; . . . Ap_1Yas . . . a;_10, yields a contradiction. Thus, if a; — a; for some ¢ €

{3,4,...,n — 1}, then we may assume that a, — a;_; or V(a;_1) = V(a,). Let
N = {a;,, Gy, . . ., a;, } be exactly the subset of V(C') — {as} with the property that
a; — N. Then we define AU B = {a;,_1,a,—1,--., a1} such that a, — A

and B C V(a,). This definition and the fact that a, — (H — V(a,)) lead to
Nt(a1) ={as} UNUH and N*(a,) 2 {a1} UAUSU(H — (V(a,) — (BU{a,}))).
This implies

d"(a,) > [A[+|S|+1+[H| = (r+1—(|B]+1))
|A|+|B|+ |H|+|S]—r+1 (6)
= d*(a) + 15| -,

if |V(a,)| <r+1and
d*(an) > d*(a1) + |S] = (r+1), (7)

if |V(a,)| =742 If [V(a,)| =7+ 2 and S consists of two partite sets, then by
(7), we conclude that r = 2 and |S| = 2r = 4, and thus, Remark 2.3 leads to the
contradiction
er+k—r—2 cr+k—r—2
2 2 ’
Hence, because of the bounds (6) and (7), we conclude that the casen = ¢c—1, |B| =0
and D[V(C)] is a tournament, remains to be considered.

+1<d(ay)+1<d(a,) =
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Subcase 9.1. There exists a vertex v € S such that v — a,,_3. If there is a vertex
a; € V(C) with 4 < i < n — 4 such that a; — v, then we obtain, as in Case 1, an
(n 4 1)-cycle through a,ai, a contradiction. Thus, we investigate now the case that
v — {ay,a9,...,a,3}. U By =V(D)— (HUQUV(v)UV(C)), then because of
[H| = IN*(a1) — V(C)| = d*(ar) — (n— 2) and [Q] = IN~(v) - V(C)| = d(v) - 3,
we see with respect to Lemma 2.2 and Corollary 2.4 that

|Ri] < er+k
ok —r—2 b k—r—1
_{%_(H_QH%_SMM}_?
it [V(v)| =r,
‘R1| S CT'+]€
k—r—2 k—r—2
S e L e S P R Y )
2 2
it |[V(v)|=r+1, and
|Ri| < er+k
k—r—2 k—r—2
JEERTTTS ) TS g oy =1,
2 2
if [V(v)] =7+ 2. Altogether, we see that |R;| < 2,if [V(v)| <7+ 1 and |Ry| < 1, if
[V(v)| =r+2.

Subcase 9.1.1. Firstly, let H consist of vertices of only one partite set. Because
of |B| = 0, according to (6) (respectively, (7)), this partite set has to be V(a,). If
there are vertices h € H and y € F such that h — y, then a,aia4...a,_1vhya, is
an (n + 1)-cycle, a contradiction. Hence, F — H. Since H C V(a,) — {an}, we
even have as — H and thus {as, a4, ...,a,_1} — H. Consequently, (N~ (a,)US) —
H. Therefore, for x € H, it follows that d~(x) > d (a,) + |S| > d (a,) + 2, a
contradiction to iy(D) < 1.

Subcase 9.1.2. Now we assume that H consists of vertices of more than one
partite set. Let L be the set of vertices in H which have an inner neighbor in H and
M = H — L. If there are vertices ¢ € L and p € H such that p — ¢ — as, then
a,a1pqag . . . a, is an (n + 1)-cycle, a contradiction. Consequently, az ~ L.

Firstly, let n > 7. Then, we have @Q ~ L, because otherwise, if there are vertices
x € @ and q € L such that ¢ — x, then a,a1qzvaqas...a, is an (n + 1)-cycle, a
contradiction. Altogether, we observe that (Q UV (v) UM U {ay,as,as,an}) ~ L.
Since |Ry| < 2, for every vertex g € L, it follows that d(q, V(D)—L) <n—2=c¢—3,
and thus Corollary 2.4 leads to

cr+k—r—2

dJ[r)[L](q) = d+(q) - d(q7 V(D) - L) Z f —c+ 3.
This implies
LI - 1) b kor_2
%Z|E L]'*ZdD[L] >|L‘ f_CJFS .
qeL
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Since dt(v) > |H| 4+ (n — 3) = |H| + (¢ — 4), we conclude together with Lemma 2.1
that |L| < d*(v) — (n—3) — [M| =d*(v) —c+4— |M| < =t — o 4 — M.
Combining these results, we arrive at

er+k—r+1

k—r—2
: c+3|M|Z|L|122{Cr+rc+3}A

2
This results in (¢ — 1)r + &k + 2| M| + 1 < 2¢, a contradiction, if |[M| > 1.

The case |M| = 0 leads to a contradiction, analogously to Subcase 3.2.

It remains to treat the case that n = 6 and ¢ = n + 1 = 7. We remember that
{as,as,a6} — S — {a1, as,a3}. We note that HNF = (), since F' — ag ~ H. If there
are vertices f € F and w € S such that w — f then agajasazasw fag is a 7-cycle, a
contradiction. Therefore, we have FF — S. Since H N F = @), we see that F ~ a;.
Let Ry = V(D) — (HUFUSUV(C)). Since |B| =0 and ag — a;_1, if a; — a; for
2 <i<n—1, weobserve that [NT(a;) NV (C)|+ N~ (ag) NV(C)| <1+5—1=5,
if [N*(a;) N V(C)| = l. Hence, Corollary 2.4 yields

cr+k—r—2+cr+k—r—2
2 2

R2|<cr+k—{ —5+|S|+n}<1.

From the fact that v — H and N*(v) N V(C) = {a1,az,a3}, we deduce that
[Nt (a) N V(C)] > 2. If {as} € N*(a1) or {as} € N*(ay), then F' ~ H, because
otherwise, if there are vertices h € H and f € F such that h — f, then either
agaiazagvh fag or agajasasvhfag is a 7-cycle, a contradiction. Let L be the set of
vertices in H which have an inner neighbor in H and let M = H — L. Then it follows
that (M U FUSU {ai,as,as,as}) ~ L, and thus, since |Ry| < 1, for every vertex
q € L, we observe that d(q, V(D) — L) <3 =n—3 = ¢— 4 and, analogously as
above, we get a contradiction. Consequently, let N*(a;)NV(C) = {aa, a5}, and thus
ag — a4 and d*(ay) = d*(v) — 1.

Assume that F' consists of vertices of only one partite set V,. In this case, we
observe that N~ (ag) C F U (N~ (ag) NV(C)). Since |[N*(ag) NV(C)| > |NT(a1) N
V(C)| = 2, it follows that [N~ (ag) NV (C)| < 3 and thus "2 < d~(ag) < r+3, if
|V.] = r + 1. This yields the contradiction 4r + k < 8. Hence, let us investigate the
case that |V.| = r+2. If |V,| = r+2 and |V (ag)| > r+1 (that means k& > 3), then we
arrive at the contradiction #2=2 < d~(ag) < r+4. On the other hand, if |V;| < r+1
or [V(ag)| = r, we see that =2 < d~(ag) < r+3 or Z < d~(ag) < r+4, in
both cases a contradiction.

Consequently, it remains to consider the case that F' consists of more than one
partite set. Hence, there exists an arc fifo € F(D[F]), and the set F; of vertices
in F' having an outer neighbor in F' is non-empty. Let Fy = F — F}. If there are
vertices f; € Fi, h € H and fy € F such that h — f; — fo, then agaiasvh fi foae is a
7-cycle, a contradiction. Therefore, we may assume that F; ~» H. Furthermore, we
see that F] ~ a4, because otherwise agaiasasayfifoag is a 7-cycle, a contradiction.
Because of H N F = (), we conclude that F'~+ a;. It is also easy to see that F ~» as
and F' — S, since otherwise we are able to construct a 7-cycle, a contradiction.
Summarizing, we see that F; ~ (HUSUFyU{a1, aq,as, ag}). Hence, since |Ry| < 1,
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for every vertex f; € Fy, we conclude that d(V (D) — Fi, f1) < 3, and thus, it follows
from Corollary 2.4 that

. . 6r+k—2
A (1) = (1) = d(V(D) = Fy, fi) 2 725 =
This implies
B0 > 1p0IA) = X dpyey() = I {552 -5},
fieF

We see that d=(ag) > |F| + 2, because otherwise, we arrive at the contradiction
dt(ag) > 4+ |H| — |V(ag) — {as}| + |S] > dt(a1) + 2+ |S| —r > dF(ay) + 2, if
[V (ag)] < r+1. If |V (ag)| = r+2, then we obtain d*(ag) > d*(a1)+1, a contradiction
to Remark 2.3. Thus, it follows that |Fi| < d~(ag) — 2 — |Fy| < & — 2 — |F),
Combining these results, we obtain

6r+k—+1

6r+k —2
; —3—|F2|2F1—122{T+—3},

2

which can be transformed to 6r + k + 2| F5| < 11, a contradiction.

Subcase 9.2. Finally, we assume that a,_3 — S. Then we see that n =c—1 > 7.
Let R = V(D) — (HUFUSUV(C)). If there is a vertex w € H N F, then
ApQ10a; . . . Ay_oVWa, is an (n+1)-cycle, a contradiction. Consequently, let HNF = .
We have seen above that |H| = d*(a;) — |[N| — 1 and [N*(a,) N V(C)| > |N| + 1.
Hence [N~ (a,) NV (C)| < n—|N| -2, and thus |F| = |N"(a,) = V(C)| > d (a,) —
(n =2 —|N|). It follows from Corollary 2.4 that

|R| <er+k

{cr—i—k—r—

2 cr+k—r—2
5 —|N|-14 —————

5 —n+2+N|+|S+n},

and thus |R| < 1,if |S| = r; |R| = 0, if |S| = r+ 1; and |R| < —1, if |§] =
r + 2. If there is an arc xy with € H and y € F, then a,aias...a,_svrya, is an
(n + 1)-cycle, a contradiction. If there is an arc uy with u € S and y € F, then
(@102 . . . Ay_2UYay, is an (n+1)-cycle, a contradiction. Furthermore, if there is an arc
xa,_1 with z € H, then a,aiaz ... a,_3vra, 1a, is an (n+ 1)-cycle, a contradiction.
Consequently, it remains to treat the case that (FUS U {as,as,a,_1,a,}) ~ H and
F~ ({a1,an_1,a,} US UH).

Subcase 9.2.1. Firstly, we investigate the case that r = 2. As seen above, for
every vertex h € H, we conclude that d(h,V (D) — H) < n—3 = ¢ — 4 and thus
dB[H](h) > adkor? o4 4 = B4 > 5 and therefore dz[H](h) > 3. Hence, H
contains at least 7 vertices. Furthermore, there is at least one vertex h; in H such
that dy;(hi) < % Since N*(a1) = HU N U {as} and iz(D) < 1, we conclude
that d*(hq1) > |H| + |N|. In addition, (F U S U {a1,as2,an_1,a,}) ~ H, and thus
N+t(hy) CV(C)U RU H, which leads to

|H| -1
2

INT(ha) NV(O)| + [R| + > d"(h1) = [H| +|N|.
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This implies

Ny nvic) = L

N~ Rl > |N| +3

Let a; € NT(h))NV(C) 3 < i <n-—2). If a1 — a,, then we observe that
Apa1ha; . .. Gp_2vas . . . a;_1a, is an (n+1)-cycle, a contradiction. Therefore, in V(C'),
a, has at least |[N| + 3 further outer neighbors except a;. According to (6) and (7),
this yields

d*(ay) > N[+ 4+ [H] +[S| = (r+ 1) =d*(a1) + 2+ |S] = r > d*(a1) + 2,

a contradiction to i,(D) < 1.

Subcase 9.2.2. Assume that |[N| > %6 and r > 3. Since |R| < 1, for every vertex
h € H, we conclude that d(h,V (D) — H) <n —3 = c— 4 and thus, it follows from
Corollary 2.4 that

cr+k—r—2
dp(h) = d*(h) = d(h, V(D) = H) 2 = —c+4.
This implies
|H|(|H| 1)
Hf > |E(D[H])|:Zd5[m(h)
heH
4k —r—2
> |H{(’7+k2 r —c+4}.

Since ‘H| — d+(a1) _ ‘N| -1 < cr+k2—r+1 _ ‘N| -1 < cr+k2—r+1 _ % +92 = C7‘+k—27‘—8+57
we obtain
cr+k—r—c+
2

3
>|H|—1>cr+k—r—2—2c+38.

This inequality is equivalent to (¢ — 1)r + k < 3¢ — 9, a contradiction to r > 3.

Subcase 9.2.3. Now assume that |[N| < ST and r > 3. Since |R| < 1, for every
vertex y € F', we conclude that d(V(D) — F,y) <n — 2 = ¢ — 3 and thus, it follows
from Corollary 2.4 that

(c=Dr+k+4
— ¢

dpyey(¥) = 4 () = d(V(D) = Fuy) > =5

This implies

[FI(F = 1)

5 Z|E(DIF) = X dpip () = |F|

yer

{(c—l)r2+k+4_c}.

Since i4(D) < 1, we conclude from (6) and (7) that |[N*(a,) NV (C)| < |N|+3, and
thus [N~ (a,)NV(C)| > n—|N|—4. Hence, it follows that |F| = [N~ (a,) -V (C)| <
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d(a,) — (n— [N| —4) < ethortl (o — 1) 444 &7 = %4 Combining
these results, we observe that

—1r+k+2—c
(c )”2 P~ 1> (= 1)r k442
A transformation of this inequality leads to 3¢ > (c— 1)r+k+6 > (c—1)r+7, a
contradiction to r > 3. This completes the proof of the theorem. O

From Theorem 1.4 and the theorem in this section we can immediately deduce
the main theorem.

The following example, which can also be found in [12], shows that the condition
¢ > 7 in Theorem 1.5 is best possible.

Example 3.2 Let Vi = {u} UV with |V{| = 2, Vo = {v} U V] with |Vj| = 2,
Vs = V§U VY with |V = |VJ'| = 2, and Vy, Vs, Vi with |Vy| = |V5] = |Vs| = 2 and
Vi = {z,y} be the partite sets of a 6-partite tournament such that v — v — V| —
VauVsuls) =V mu— (VUVEUV) — o, Vi = V3 —u, v— Vs = V],
Vi = Vi Vi = Vs — Vg — Vi, and Vi — (Vs Ufa}) — V' — (Vs U{y}) — V]
(see Figure 1). The resulting 6-partite tournament is almost reqular with at least two
vertices in every partite set; however, the arc uv is not contained in a 4-cycle.

\

Figure 1: An almost regular 6-partite tournament with the property
that the arc uv is not contained in a 4-cycle

The next example (cf. [12]) shows that the condition r > 2 is necessary for ¢ = 7.
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Example 3.3 Let Vi = {u,us}, Vo = {v, 09}, V3 = {wy,we, w3}, Vi = {z}, Vs =
{y}, Vs = {z}, and V7 = {a} be the partite sets of a T-partite tournament such that
u—v—u — {a,z,y,2} - v —u— {a,z,y,2} v — Vs = u vy — uy,
vo = V3 > Uy, wy a4 > x 5>y — 2z —a—Y — w — zZ— T — W,
Wy — z — W3 — a4 — Wy — T — w3 — Yy — we (see Figure 2). The resulting
T-partite tournament is almost reqular, however, the arc uv is not contained in a
4-cycle. Consequently, the condition v > 2 in Theorem 3.1 is necessary, at least for
c=T.

Figure 2: An almost regular 7-partite tournament with the property
that the arc uv is not contained in a 4-cycle
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