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Abstract

There is one nontrivial regular configuration on two paths of three ver-
tices, and one on three paths. Path designs which are resolvable into
copies of these configurations are shown to exist whenever basic numeri-
cal conditions are met, with a few possible exceptions.

1 Introduction

Let P (v, 3, λ) be a P3-design of λKv, where P3 is the path with three vertices and
two edges. A regular P3-configuration on p vertices with regularity ρ on � blocks is a
pair (P,L) where L is a collection of P3 with vertices of P so that every p ∈ P is in
exactly ρ elements of L, and |L| = �.

∗ Research supported by the Army Research Office under grant DAAD 19-01-1-0406 (Colbourn),
MIUR and CNR GNSAGA (Quattrocchi), and NSERC Canada grant OGP007628 (Rosa).

Australasian Journal of Combinatorics 27(2003), pp.205–212



Each regular P3-configuration (P,L) is a multigraph G of λKv, where we put
V (G) = P and e is an edge µ-times repeated of G if and only if there are µ paths
of L having e as an edge. We say that G is the underlying graph of the regular
P3-configuration (P,L).

Example 1. The regular P3-configuration P = {1, . . . , 6}, L = {312, 514, 624, 536},
has the underlying graph G with V (G) = P and E(G)={12, 13, 14, 15, 24, 26, 35, 36}.

This graph G is also the underlying graph of the following regular P3-configuration
L′ = {314, 215, 426, 536}. L and L′ are not isomorphic.

Example 2. The smallest nontrivial regular P3-configuration is the following one:
P = {1, 2, 3} and L = {123, 213}. We denote by Γ its underlying graph. Since Γ
is a triangle with one of its edges two times repeated, we denote the graph Γ by
{1 = 2, 3}, where 1 = 2 means that the edge {1, 2} is two times repeated. Moreover,
when there is no confusion, we write 1 = 2 3 instead of {1 = 2, 3}.

In [3], the following problem is posed: Let G be the underlying graph of a reg-
ular P3-configuration (P,L). Find a resolvable G-decomposition of λKv, for each
admissible v and λ.
Example 3. The following is a resolvable Γ-decomposition of 2K9.
L = {1 = 2 6, 4 = 5 7, 8 = 9 3} ∪ {1 = 3 5, 4 = 6 9, 7 = 8 2} ∪ {2 = 3 4, 5 = 6 8, 7 =
9 1}∪{1 = 4 7, 2 = 5 8, 3 = 6 9}∪{4 = 8 3, 5 = 9 1, 6 = 7 2}∪{1 = 8 6, 2 = 9 4, 3 =
7 5}.

Here is another example with the same parameters:
L′ = {1 = 2 3, 4 = 5 6, 7 = 8 9} ∪ {3 = 6 1, 4 = 7 2, 5 = 8 9} ∪ {1 = 7 5, 2 = 8 3, 6 =
9 4}∪{1 = 4 8, 2 = 5 6, 3 = 7 9}∪{1 = 9 5, 6 = 7 2, 3 = 4 8}∪{6 = 8 1, 2 = 9 4, 3 =
5 7}.
L has an automorphism group of order 12 generated by (164853)(297) and
(15)(68)(79), which is intransitive with two element orbits, of sizes 3 and 6. L′ has
an automorphism group of order 18 generated by (125367)(498) and (129)(345)(678)
which is transitive on the elements. The two decompositions are also easily distin-
guished by the graph of doubled edges. These are, in fact, the only two nonisomorphic
decompositions with these parameters.

Example 4. The following is a resolvable Γ-decomposition of 3K9.
L = {1 = 2 6, 4 = 5 7, 8 = 9 3} ∪ {1 = 3 5, 4 = 6 9, 7 = 8 2} ∪ {2 = 3 4, 5 = 6 8, 7 =
9 1}∪{1 = 4 2, 5 = 9 6, 7 = 3 8}∪{4 = 8 5, 2 = 9 7, 6 = 3 1}∪{1 = 8 9, 2 = 5 3, 6 =
7 4} ∪ {1 = 7 4, 2 = 8 5, 3 = 9 } ∪ {1 = 5 9, 2 = 6 7, 4 = 3 8} ∪ {5 = 7 3, 6 = 8 1, 4 =
9 2}.

The major goal is to find a resolvable G-decomposition of λKv, where G is the
underlying graph of each regular P3-configuration having at most three lines (or
paths). We settle this problem with few exceptions here.
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2 Two Paths

There is only one nontrivial regular P3-configuration with � ≤ 2. This is the config-
uration whose underlying graph is Γ, given in Example 2.

Theorem 1 (Necessary conditions). If there is a resolvable Γ-decomposition of λKv,
then v and λ satisfy one of the following conditions:

I. v ≡ 9 (mod 12), λ ≡ 2 (mod 4), λ ≥ 2;

II. v ≡ 3 (mod 6), λ ≡ 4 (mod 8), λ ≥ 4;

III. v ≡ 0 (mod 3), λ ≡ 0 (mod 8), λ ≥ 8;

IV. v ≡ 9 (mod 24), λ ≡ 1 (mod 2), λ ≥ 3.

Lemma 1 The necessary conditions are sufficient when λ ≡ 0 (mod 4).

Proof. When v ≡ 3 (mod 6), λ ≡ 4 (mod 8), and λ ≥ 4, replace every triple
of a Kirkman triple system of order v by λ/4 triples; then replace every triple by
a Γ-decomposition of 4K3. When v ≡ 0 (mod 3), v �= 6, λ ≡ 0 (mod 8), and
λ ≥ 8, perform the same operation on a resolvable triple system of order v and index
2 first replicating each triple λ/8 times. For v = 6, take the following base blocks
(mod 5): 0 = 1∞, 0 = ∞2, 0 = ∞1, 2 = 4 3, 1 = 3 4, 2 = 4 3. �

A Γ-frame (V,G,A) is defined as follows. Let V , |V | = n, and let G be a partition
of V into G1, G2, . . . , Gq such that |Gi| = ti for i = 1, 2, . . . , q. Let A be a Γ-
decomposition of λKt1,t2,...,tq such that it is possible to partition A into holey parallel
classes, where the hole is Gi, i = 1, 2, . . . , q. We say that (V,G,A) is a Γ-frame of
type t1t2. . .tq.

Example 5. The following is a Γ-frame of type 24, λ = 2.
V = {a0, a1, b0, b1, c0, c1, d0, d1}, G1 = {a0, a1}, G2 = {b0, b1}, G3 = {c0, c1}, G4 =
{d0, d1}. The holey parallel classes, (mod (−, 2)), are:
A1 = {c0 = d1 a0} ∪ {a1 = c0 d0};
A2 = {d0 = b1 a0} ∪ {b0 = a0 d0};
A3 = {b1 = c0 a0};
A4 = {c0 = b0 d0}.

The number of holey parallel classes associated to each hole Gi is not constant.
When this number is a constant, the frame is uniform, and when not a constant (as
here) it is nonuniform.

Example 6. The following is a uniform Γ-frame of type 44, λ = 2.
V = {a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3},
G1 = {a0, a1, a2, a3}, G2 = {b0, b1, b2, b3}, G3 = {c0, c1, c2, c3}, G4 = {d0, d1, d2, d3}.
The holey parallel classes, (mod (−, 4)), are:
A1 = {a0 = b0 c1} ∪ {a0 = b2 c1} ∪ {c0 = b0 a1};
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A2 = {d2 = b0 a3} ∪ {d0 = b0 a3} ∪ {a0 = d0 b3};
A3 = {a0 = c0 d1} ∪ {a0 = c2 d3} ∪ {a0 = d2 c3};
A4 = {d2 = c0 b3} ∪ {d0 = c0 b1} ∪ {b0 = c2 d1}.

Example 7. The following is a nonuniform Γ-frame of type 24, λ = 3.
V = {a0, a1, b0, b1, c0, c1, d0, d1}, G1 = {a0, a1}, G2 = {b0, b1}, G3 = {c0, c1}, G4 =
{d0, d1}. The holey parallel classes are, (mod (−, 2)), are:
A1 = {a0 = d0 c0} ∪ {a1 = d0 c0};
A2 = {a0 = b0 d0} ∪ {a0 = b1 d1};
A3 = {a0 = c0 b0} ∪ {a0 = c1 b1};
A4 = {b0 = d1 c0} ∪ {d0 = c1 b0} ∪ {b0 = c1 d1}.

Lemma 2 There is a resolvable Γ-decomposition of 2Kv when v ≡ 9 (mod 12)
except possibly for v = 69.

Proof. First we treat some small cases.

v = 9: See Example 3.

For the next three cases, base parallel classes are given. These are to be
developed modulo (v − 1)/2, with the first yielding (v − 1)/4 parallel classes
and the second yielding (v − 1)/2.

v = 21: 00 = 50 ∞, 01 = 11 10, 51 = 61 60, 21 = 41 30, 71 = 91 80,
31 = 70 90, 81 = 20 40 and ∞ = 01 00, 21 = 81 51, 70 = 41 91,
10 = 20 61, 30 = 90 11, 50 = 80 31, 71 = 40 60.

v = 33: 00 = 80 ∞, 10 = 01 11, 90 = 81 91, 21 = 41 60, 101 = 121 140,
31 = 61 20, 111 = 141 100, 30 = 40 51, 110 = 120 131, 71 = 130 150,
151 = 50 70 and ∞ = 01 00, 11 = 51 101, 21 = 81 31, 10 = 61 151,
90 = 41 121, 30 = 150 71, 60 = 120 91, 111 = 50 140, 131 = 40 110,
141 = 70 20, 100 = 130 80.

v = 45: 00 = 110 ∞, 01 = 11 10, 111 = 121 120, 21 = 41 30, 131 = 151 140,
31 = 61 20, 141 = 171 130, 51 = 91 70, 161 = 201 180, 40 = 50 71,
150 = 160 181, 81 = 190 100, 191 = 80 210, 101 = 170 200, 211 =
60 90 and ∞ = 01 00, 11 = 71 141, 21 = 101 151, 31 = 131 181,
10 = 61 171, 20 = 40 201, 30 = 130 91, 50 = 90 191, 60 = 200 121,
70 = 140 111, 100 = 150 51, 41 = 190 160, 81 = 170 110, 161 = 80 210,
211 = 120 180.

Now use 4-GDDs (see [1]) of types 2n (for n ≥ 7, n ≡ 1 (mod 3)), 2n5 (for
n ≥ 9, n ≡ 0 (mod 3)) and the uniform Γ-frame of type 44 given in Example 6,
to construct uniform Γ-frames of types 8n (for n ≥ 7, n ≡ 1 (mod 3)), 8n20 (for
n ≥ 9, n ≡ 0 (mod 3)). The existence of a resolvable Γ-decomposition of 2K9 and
of a resolvable Γ-decomposition of 2K21 complete the proof. �

It remains to treat cases with odd index λ, and for this it suffices to settle existence
when λ = 3. The main ingredient is a somewhat large frame:
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Example 8. A uniform Γ-frame of type 87 and index 3. The point set is the integers
modulo 56, with groups determined by the congruence classes modulo 7. Consider
the nine pairs of copies of Γ given by: 5=8 13, 2=3 4; 4=31 20, 1=26 51; 5=24
37, 4=13 22; 2=52 15, 4=40 27; 1=9 24, 6=40 18; 1=19 46, 2=6 17; 2=34 17,
5=15 25; 3=5 8, 2=46 41; 1=17 40, 6=32 2. Adding each multiple of 7 modulo
56 to the pair of graphs given results, in each case, in a holey parallel class for the
group consisting of the multiples of 7. Hence this group has nine holey parallel
classes. Then adding i modulo 7 to each element in each of these holey parallel
classes produces the nine holey parallel classes for the group of elements which is i
modulo 7.

This frame leads to the final result on sufficiency:

Lemma 3 A resolvable Γ-decomposition of 3Kv exists whenever v ≡ 9 (mod 24)
except possibly when v = 153.

Proof. A uniform Γ-frame of type 84 and index 3 can be obtained using a resolvable
transversal design RTD(4,4) (see [1]) and the nonuniform Γ-frame of type 24 in
Example 5. Now give weight 8 to the elements of a 4-GDD on x = (v−1)/8 elements;
its type is 1x when x ≡ 1, 4 (mod 12), and 1x−771 when x ≡ 7, 10 (mod 12) and
x ≥ 22. Fill in the holes using resolvable Γ-decompositions of orders 9, 33, and 57.

�

Summarizing, we have the following:

Theorem 2 The necessary conditions of Theorem 1 are sufficient except possibly
when v = 153 and λ is odd, or v = 69 and λ ≡ 2 (mod 4).

3 Three Paths

There is only one nontrivial regular P3-configuration with � = 3. This configuration
is given by P = {1, 2, 3}, L = {123, 123, 213}. We denote by Λ = {1 ≡ 2 = 3} its
underlying graph, where 1 ≡ 2 means that the edge {1, 2} is three times repeated
and 2 = 3 means that the edge {2, 3} is two times repeated. Moreover, when there
is no confusion, we write 1 ≡ 2 = 3 instead of {1 ≡ 2 = 3}.
Theorem 3 (Necessary conditions). If there is a resolvable Λ-decomposition of λKv,
then v and λ satisfy one of the following conditions:

I. v ≡ 0 (mod 3), λ ≡ 0 (mod 4), λ ≥ 4;

II. v ≡ 3 (mod 6), λ ≡ 2 (mod 4), λ ≥ 6;

III. v ≡ 9 (mod 12), λ ≡ 1 (mod 2), λ ≥ 3.

Now we treat sufficiency.

Lemma 4 When v ≡ 0 (mod 6) and v ≥ 12, a resolvable Λ-decomposition of λKv

exists provided that λ ≡ 0 (mod 4).
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Proof. According to [2], given a S2(2, 3, v), (V,B), it is always possible to partition
B into B1 and B2 so that |B1| = |B2|, |B1 ∩B2| = 0, B1 ∪B2 = B and there is a 1− 1
mapping

f : B1 → B2

such that B and f(B) share at least one edge for each block B ∈ B1. �

There is no resolvable Λ-decomposition of 4K6.

Lemma 5 When v ≡ 3 (mod 6), λ ≡ 0 (mod 2), and λ ≥ 4, there is a resolvable
Λ-decomposition of λKv.

Proof. There is a resolvable Λ-decomposition of 4K3 and a resolvable Λ-decom-
position of 6K3. Form a Kirkman triple system on v elements, and replace each triple
by a copies of the first decomposition and b copies of the second, with 4a + 6b = λ.

�

Lemma 6 If v ≡ 9 (mod 12) and λ ≥ 3, there is a resolvable Λ-decomposition of
λKv except possibly when λ = 5.

Proof. Whenever a resolvable Γ-decomposition of 2Kv exists, a resolvable Λ-
decomposition of 3Kv is obtained as follows. Partition the single edges appear-
ing in copies of Γ into two classes, black and white, so that every Γ has one black
and one white singleton edge. Then replace the doubly repeated edges in copies of
Γ by triply repeated edges, replace black edges by doubly repeated edges, and leave
white edges as singletons.

This handles all cases with λ = 3; using the preceding lemmas, union with
solutions with λ ∈ {4, 6} settles all cases with λ ≥ 7. �

To complete the cases with λ = 5, we require a further frame. This somewhat
large frame was found by first selecting five starter blocks of size three on the integers
modulo 16, which generate eighty triples in total. Triples were chosen so that each
pair occurred in either two or three triples. The resulting collection of triples is frame
resolvable, by choosing every fourth triple under the action of the cyclic group to
form a frame parallel class. Hence the task is to replace triples by copies of Λ so that
the resulting design has index λ = 5. All pairs occurring in two of the eighty triples
are forced to appear as a tripled edge in one copy of Γ and doubled in another.

We developed a simple hillclimbing method, which starts with a “random” as-
signment of copies of Γ to the triples and then repeatedly modifies the selection of
triple, double, and single edges in one Γ to reduce the discrepancy between the cur-
rent assignment and a design with index five. This simple minded method succeeded
in producing a solution.

Example 9. The following is a uniform Λ-frame of type 44 with λ = 5.
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6≡3=1 10≡5=7 14≡11=9 2≡15=13
9≡2=3 13≡6=7 1≡10=11 5≡14=15
7≡5=2 11≡6=9 15≡13=10 3≡1=14
3≡9=10 11≡1=2 7≡13=14 15≡5=6
2≡3=5 7≡6=9 10≡11=13 15≡14=1
0≡6=7 4≡10=11 8≡14=15 12≡2=3
7≡2=4 11≡8=6 15≡10=12 3≡14=0
14≡7=8 2≡11=12 6≡15=0 10≡3=4
12≡10=7 0≡11=14 4≡2=15 8≡6=3
7≡8=10 12≡11=14 0≡15=2 4≡3=6
7≡0=1 3≡12=13 15≡8=9 11≡4=5

12≡13=15 0≡1=3 4≡5=7 9≡8=11
5≡3=0 9≡4=7 13≡11=8 1≡12=15
8≡3=5 12≡7=9 0≡13=11 4≡15=1
1≡7=8 5≡11=12 9≡15=0 13≡3=4
5≡0=2 9≡6=4 13≡8=10 1≡14=12
6≡1=4 10≡8=5 14≡9=12 2≡13=0
8≡1=2 12≡5=6 0≡9=10 4≡13=14
1≡2=4 5≡6=8 9≡10=12 14≡13=0
2≡8=9 6≡12=13 10≡0=1 14≡4=5

Lemma 7 There is a resolvable Λ-decomposition of 5Kv when v ≡ 9 (mod 12)
except possibly for v ∈ {33, 45, 69}.
Proof. First we treat some small cases.

v = 9:
We form ten parallel classes on the elements Z3 × Z3. The first three are formed
by developing the block (0, 1) ≡ (1, 2) = (0, 0) modulo (3,−) to form a parallel
class. Then develop modulo (−, 3) to form three parallel classes. The next three are
formed by developing the block (2, 0) ≡ (1, 1) = (0, 0) modulo (−, 3); then develop
modulo (3,−) to form three parallel classes. The final four are formed by placing a
resolvable Λ-decomposition of 4K3 on each of the triples with constant first or second
coordinate.

v = 21:
Form a base parallel class on Z7×{0, 1, 2}: 10 ≡ 00 = 21, 11 ≡ 20 = 40, 61 ≡ 30 = 60,
62 ≡ 50 = 02, 42 ≡ 01 = 31, 41 ≡ 52 = 22, 32 ≡ 12 = 51. Develop this under the
mapping ij �→ (2i mod 7)(j+1) mod 3 to form three base parallel classes in total, and
develop each modulo (7,−) to obtain 21 parallel classes. Place two parallel classes
on the triples with constant first coordinate using a resolvable Λ-decomposition of
4K3. The final two parallel classes are handled in a similar way, placed on triples of
the form (i0, (2i)1, (4i)2) for i ∈ Z7.

Now use 4-GDDs (see [1]) of types 2n (for n ≥ 7, n ≡ 1 (mod 3)), 2n5 (for
n ≥ 9, n ≡ 0 (mod 3)) and the uniform Γ-frame of type 44 given in Example 9,
to construct uniform Γ-frames of types 8n (for n ≥ 7, n ≡ 1 (mod 3)), 8n20 (for
n ≥ 9, n ≡ 0 (mod 3)). The existence of a resolvable Γ-decomposition of 5K9 and
of a resolvable Γ-decomposition of 5K21 complete the proof. �
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This leaves only a few small exceptions for the existence of resolvable Λ-decom-
positions. Summarizing, we have the following:

Theorem 4 The necessary conditions of Theorem 2 are sufficient except possibly
when v = 6 or λ = 5 and v ∈ {33, 45, 69}.
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