Graphs without repeated cycle lengths

Chunhui Lai*
Department of Mathematics
Zhangzhou Teachers College
Zhangzhou
Fujian 363000, P. R. of CHINA
and
Graph Theory and Combinatorics Laboratory
Institute of Systems Science
Academy of Mathematics and Systems Science
Chinese Academy of Sciences
Beijing 100080, P. R. of CHINA
zjlaichu@public.zzptt.fj.cn

Abstract

In 1975, Erdös proposed the problem of determining the maximum number $f(n)$ of edges in a simple graph of n vertices in which any two cycles are of different lengths. In this paper, it is proved that $$
f(n) \geq n+36 t
$$ for $t=1260 r+169(r \geq 1)$ and $n \geq 540 t^{2}+\frac{175811}{2} t+\frac{7989}{2}$. Consequently, $\liminf _{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{2+\frac{2}{5}}$.

1 Introduction

Let $f(n)$ be the maximum number of edges in a graph on n vertices in which no two cycles have the same length. In 1975, Erdös raised the problem of determining $f(n)$ (see [1], p. 247, Problem 11). Shi [2] proved that

$$
f(n) \geq n+[(\sqrt{8 n-23}+1) / 2]
$$

for $n \geq 3$. Lai $[3,4,5,6,7]$ proved that for $n \geq \frac{6911}{16} t^{2}+\frac{514441}{8} t-\frac{3309665}{16}, t=27720 r+169$,

$$
f(n) \geq n+32 t-1,
$$

[^0]and for $n \geq e^{2 m}(2 m+3) / 4$,
$$
f(n)<n-2+\sqrt{n \ln (4 n /(2 m+3))+2 n}+\log _{2}(n+6)
$$

Boros, Caro, Füredi and Yuster [8] proved that

$$
f(n) \leq n+1.98 \sqrt{n}(1+o(1))
$$

In this paper, we construct a simple graph G having no two cycles with the same length which leads to the following result.

Theorem. Let $t=1260 r+169(r \geq 1)$; then

$$
f(n) \geq n+36 t
$$

for $n \geq 540 t^{2}+\frac{175811}{2} t+\frac{7989}{2}$.

2 Proof of the theorem

Proof. Let $t=1260 r+169, r \geq 1, n_{t}=540 t^{2}+\frac{175811}{2} t+\frac{7989}{2}, n \geq n_{t}$. We shall show that there exists a graph G on n vertices with $n+36 t$ edges such that all cycles in G have distinct lengths.

Now we construct the graph G which consists of a number of subgraphs: B_{i}, $(0 \leq i \leq 21 t-1,27 t \leq i \leq 28 t+64,29 t-734 \leq i \leq 29 t+267,30 t-531 \leq i \leq$ $30 t+57,31 t-741 \leq i \leq 31 t+58,32 t-740 \leq i \leq 32 t+57,33 t-741 \leq i \leq$ $33 t+57,34 t-741 \leq i \leq 34 t+52,35 t-746 \leq i \leq 35 t+60,36 t-738 \leq i \leq$ $36 t+60,37 t-738 \leq i \leq 37 t+799, i=21 t+2 j+1(0 \leq j \leq t-1), i=21 t+2 j(0 \leq$ $\left.j \leq \frac{t-1}{2}\right), i=23 t+2 j+1\left(0 \leq j \leq \frac{t-1}{2}\right)$, and $\left.i=26 t\right)$.

Now we define these B_{i}. These subgraphs all have a common vertex x, otherwise their vertex sets are pairwise disjoint.

For $0 \leq i \leq t-1$, let the subgraph $B_{21 t+2 i+1}$ consist of a cycle

$$
x u_{i}^{1} u_{i}^{2} \ldots u_{i}^{25 t+2 i-1} x
$$

and a path:

$$
x u_{i, 1}^{1} u_{i, 1}^{2} \ldots u_{i, 1}^{(19 t+2 i-1) / 2} u_{i}^{(23 t+2 i+1) / 2} .
$$

Based the construction, $B_{21 t+2 i+1}$ contains exactly three cycles of lengths:

$$
21 t+2 i+1,23 t+2 i, 25 t+2 i
$$

For $0 \leq i \leq \frac{t-3}{2}$, let the subgraph $B_{21 t+2 i}$ consist of a cycle

$$
x v_{i}^{1} v_{i}^{2} \ldots v_{i}^{25 t+2 i} x
$$

and a path:

$$
x v_{i, 1}^{1} v_{i, 1}^{2} \ldots v_{i, 1}^{9 t+i-1} v_{i}^{12 t+i} .
$$

Based the construction, $B_{21 t+2 i}$ contains exactly three cycles of lengths:

$$
21 t+2 i, 22 t+2 i+1,25 t+2 i+1
$$

For $0 \leq i \leq \frac{t-3}{2}$, let the subgraph $B_{23 t+2 i+1}$ consist of a cycle

$$
x w_{i}^{1} w_{i}^{2} \ldots w_{i}^{26 t+2 i+1} x
$$

and a path:

$$
x w_{i, 1}^{1} w_{i, 1}^{2} \ldots w_{i, 1}^{(21 t+2 i-1) / 2} w_{i}^{(25 t+2 i+1) / 2}
$$

Based the construction, $B_{23 t+2 i+1}$ contains exactly three cycles of lengths:

$$
23 t+2 i+1,24 t+2 i+2,26 t+2 i+2
$$

For $58 \leq i \leq t-742$, let the subgraph $B_{27 t+i-57}$ consist of a cycle

$$
C_{27 t+i-57}=x y_{i}^{1} y_{i}^{2} \ldots y_{i}^{132 t+11 i+893} x
$$

and ten paths sharing a common vertex x; the other end vertices are on the cycle $C_{27 t+i-57}$:

$$
\begin{gathered}
x y_{i, 1}^{1} y_{i, 1}^{2} \ldots y_{i, 1}^{(17 t-1) / 2} y_{i}^{(37 t-115) / 2+i} \\
x y_{i, 2}^{1} y_{i, 2}^{2} \ldots y_{i, 2}^{(19 t-1) / 2} y_{i}^{(57 t-103) / 2+2 i} \\
x y_{i, 3}^{1} y_{i, 3}^{2} \ldots y_{i, 3}^{(19 t-1) / 2} y_{i}^{(77 t+315) / 2+3 i} \\
x y_{i, 4}^{1} y_{i, 4}^{2} \ldots y_{i, 4}^{(21 t-1) / 2} y_{i}^{(97 t+313) / 2+4 i} \\
x y_{i, 5}^{1} y_{i, 5}^{2} \ldots y_{i, 5}^{(21 t-1) / 2} y_{i}^{(117 t+313) / 2+5 i} \\
x y_{i, 6}^{1} y_{i, 6}^{2} \ldots y_{i, 6}^{(23 t-1) / 2} y_{i}^{(137 t+311) / 2+6 i} \\
x y_{i, 7}^{1} y_{i, 7}^{2} \ldots y_{i, 7}^{(23 t-1) / 2} y_{i}^{(157 t+309) / 2+7 i} \\
x y_{i, 8}^{1} y_{i, 8}^{2} \ldots y_{i, 8}^{(25 t-1) / 2} y_{i}^{(177 t+297) / 2+8 i} \\
x y_{i, 9}^{1} y_{i, 9}^{2} \ldots y_{i, 9}^{(25 t-1) / 2} y_{i}^{(197 t+301) / 2+9 i} \\
x y_{i, 10}^{1} y_{i, 10}^{2} \ldots y_{i, 10}^{(27 t-1) / 2} y_{i}^{(217 t+305) / 2+10 i} .
\end{gathered}
$$

Since a cycle with d chords contains $\binom{d+2}{2}$ distinct cycles, $B_{27 t+i-57}$ contains exactly 66 cycles of lengths:

$27 t+i-57$,	$28 t+i+7$,	$29 t+i+210$,	$30 t+i$,
$31 t+i+1$,	$32 t+i$,	$33 t+i$,	$34 t+i-5$,
$35 t+i+3$,	$36 t+i+3$,	$37 t+i+742$,	$38 t+2 i-51$,
$38 t+2 i+216$,	$40 t+2 i+209$,	$40 t+2 i$,	$42 t+2 i$,
$42 t+2 i-1$,	$44 t+2 i-6$,	$44 t+2 i-3$,	$46 t+2 i+5$,
$46 t+2 i+744$,	$48 t+3 i+158$,	$49 t+3 i+215$,	$50 t+3 i+209$,
$51 t+3 i-1$,	$52 t+3 i-1$,	$53 t+3 i-7$,	$54 t+3 i-4$,
$55 t+3 i-1$,	$56 t+3 i+746$,	$59 t+4 i+157$,	$59 t+4 i+215$,
$61 t+4 i+208$,	$61 t+4 i-2$,	$63 t+4 i-7$,	$63 t+4 i-5$,
$65 t+4 i-2$,	$65 t+4 i+740$,	$69 t+5 i+157$,	$70 t+5 i+214$,
$71 t+5 i+207$,	$72 t+5 i-8$,	$73 t+5 i-5$,	$74 t+5 i-3$,
$75 t+5 i+739$,	$80 t+6 i+156$,	$80 t+6 i+213$,	$82 t+6 i+201$,
$82 t+6 i-6$,	$84 t+6 i-3$,	$84 t+6 i+738$,	$90 t+7 i+155$,
$91 t+7 i+207$,	$92 t+7 i+203$,	$93 t+7 i-4$,	$94 t+7 i+738$,
$101 t+8 i+149$,	$101 t+8 i+209$,	$103 t+8 i+205$,	$103 t+8 i+737$,
$111 t+9 i+151$,	$112 t+9 i+211$,	$113 t+9 i+946$,	$122 t+10 i+153$,
$122 t+10 i+952$,	$132 t+11 i+894$.		

B_{0} is a path with an end vertex x and length $n-n_{t}$. Any other B_{i} is simply a cycle of length i.

Then $f(n) \geq n+36 t$, for $n \geq n_{t}$. This completes the proof.
From the above theorem, we have

$$
\liminf _{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{2+\frac{2}{5}}
$$

which is better than the previous bounds $\sqrt{2}($ see $[2]), \sqrt{2+\frac{2562}{6911}}$ (see [7]).
Combining this with Boros, Caro, Füredi and Yuster's upper bound, we get

$$
1.98 \geq \limsup _{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \liminf _{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}} \geq \sqrt{2.4} .
$$

We make the following conjecture:

Conjecture.

$$
\lim _{n \rightarrow \infty} \frac{f(n)-n}{\sqrt{n}}=\sqrt{2.4}
$$

Acknowledgment

The author thanks Professors Yair Caro and Raphael Yuster for sending him reference [8]. The author thanks Professors Genghua Fan and Cheng Zhao for their valuable suggestions.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, New York, 1976).
[2] Y. Shi, On maximum cycle-distributed graphs, Discrete Math. 71 (1988), 57-71.
[3] Chunhui Lai, On the Erdös problem, J. Zhangzhou Teachers College (Natural Science Edition) 3(1) (1989), 55-59.
[4] Chunhui Lai, Upper bound and lower bound of $f(n)$, J. Zhangzhou Teachers College (Natural Science Edition) 4(1) (1990), 29, 30-34.
[5] Chunhui Lai, On the size of graphs with all cycle having distinct length, Discrete Math. 122 (1993), 363-364.
[6] Chunhui Lai, The edges in a graph in which no two cycles have the same length, J. Zhangzhou Teachers College (Natural Science Edition) 8(4) (1994), 30-34.
[7] Chunhui Lai, A lower bound for the number of edges in a graph containing no two cycles of the same length, Electronic J. Combinatorics 8 (2001), \#N9.
[8] E. Boros, Y. Caro, Z. Füredi and R. Yuster, Covering non-uniform hypergraphs (submitted, 2000).

[^0]: * Project supported by NSF of Fujian(A96026), Science and Technology Project of Fujian (K20105) and Fujian Provincial Training Foundation for "Bai-Quan-Wan Talents Engineering".

