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Abstract

In 1975, Erdös proposed the problem of determining the maximum num-
ber f(n) of edges in a simple graph of n vertices in which any two cycles
are of different lengths. In this paper, it is proved that

f(n) ≥ n + 36t

for t = 1260r +169 (r ≥ 1) and n ≥ 540t2 + 175811
2

t+ 7989
2

. Consequently,

lim infn→∞
f(n) − n√

n
≥

√
2 + 2

5
.

1 Introduction

Let f(n) be the maximum number of edges in a graph on n vertices in which no two
cycles have the same length. In 1975, Erdös raised the problem of determining f(n)
(see [1], p. 247, Problem 11). Shi [2] proved that

f(n) ≥ n + [(
√

8n − 23 + 1)/2]

for n ≥ 3. Lai [3,4,5,6,7] proved that for n ≥ 6911
16

t2+ 514441
8

t− 3309665
16

, t = 27720r+169,

f(n) ≥ n + 32t − 1,
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and for n ≥ e2m(2m + 3)/4,

f(n) < n − 2 +
√

nln(4n/(2m + 3)) + 2n + log2(n + 6).

Boros, Caro, Füredi and Yuster [8] proved that

f(n) ≤ n + 1.98
√

n(1 + o(1)).

In this paper, we construct a simple graph G having no two cycles with the same
length which leads to the following result.

Theorem. Let t = 1260r + 169 (r ≥ 1); then

f(n) ≥ n + 36t

for n ≥ 540t2 + 175811
2

t + 7989
2

.

2 Proof of the theorem

Proof. Let t = 1260r +169, r ≥ 1, nt = 540t2 + 175811
2

t+ 7989
2

, n ≥ nt. We shall show
that there exists a graph G on n vertices with n + 36t edges such that all cycles in
G have distinct lengths.

Now we construct the graph G which consists of a number of subgraphs: Bi,
(0 ≤ i ≤ 21t − 1, 27t ≤ i ≤ 28t + 64, 29t − 734 ≤ i ≤ 29t + 267, 30t − 531 ≤ i ≤
30t + 57, 31t − 741 ≤ i ≤ 31t + 58, 32t − 740 ≤ i ≤ 32t + 57, 33t − 741 ≤ i ≤
33t + 57, 34t − 741 ≤ i ≤ 34t + 52, 35t − 746 ≤ i ≤ 35t + 60, 36t − 738 ≤ i ≤
36t + 60, 37t− 738 ≤ i ≤ 37t + 799, i = 21t + 2j + 1(0 ≤ j ≤ t− 1), i = 21t + 2j(0 ≤
j ≤ t−1

2
), i = 23t + 2j + 1(0 ≤ j ≤ t−1

2
), and i = 26t).

Now we define these Bi. These subgraphs all have a common vertex x, otherwise
their vertex sets are pairwise disjoint.

For 0 ≤ i ≤ t − 1, let the subgraph B21t+2i+1 consist of a cycle

xu1
i u

2
i . . . u25t+2i−1

i x

and a path:

xu1
i,1u

2
i,1 . . . u

(19t+2i−1)/2
i,1 u

(23t+2i+1)/2
i .

Based the construction, B21t+2i+1 contains exactly three cycles of lengths:

21t + 2i + 1, 23t + 2i, 25t + 2i.

For 0 ≤ i ≤ t−3
2

, let the subgraph B21t+2i consist of a cycle

xv1
i v

2
i . . . v25t+2i

i x

and a path:
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xv1
i,1v

2
i,1 . . . v9t+i−1

i,1 v12t+i
i .

Based the construction, B21t+2i contains exactly three cycles of lengths:

21t + 2i, 22t + 2i + 1, 25t + 2i + 1.

For 0 ≤ i ≤ t−3
2

, let the subgraph B23t+2i+1 consist of a cycle

xw1
i w

2
i . . . w26t+2i+1

i x

and a path:

xw1
i,1w

2
i,1 . . . w

(21t+2i−1)/2
i,1 w

(25t+2i+1)/2
i .

Based the construction, B23t+2i+1 contains exactly three cycles of lengths:

23t + 2i + 1, 24t + 2i + 2, 26t + 2i + 2.

For 58 ≤ i ≤ t − 742, let the subgraph B27t+i−57 consist of a cycle

C27t+i−57 = xy1
i y

2
i . . . y132t+11i+893

i x

and ten paths sharing a common vertex x; the other end vertices are on the cycle
C27t+i−57:

xy1
i,1y

2
i,1 . . . y

(17t−1)/2
i,1 y

(37t−115)/2+i
i

xy1
i,2y

2
i,2 . . . y

(19t−1)/2
i,2 y

(57t−103)/2+2i
i

xy1
i,3y

2
i,3 . . . y

(19t−1)/2
i,3 y

(77t+315)/2+3i
i

xy1
i,4y

2
i,4 . . . y

(21t−1)/2
i,4 y

(97t+313)/2+4i
i

xy1
i,5y

2
i,5 . . . y

(21t−1)/2
i,5 y

(117t+313)/2+5i
i

xy1
i,6y

2
i,6 . . . y

(23t−1)/2
i,6 y

(137t+311)/2+6i
i

xy1
i,7y

2
i,7 . . . y

(23t−1)/2
i,7 y

(157t+309)/2+7i
i

xy1
i,8y

2
i,8 . . . y

(25t−1)/2
i,8 y

(177t+297)/2+8i
i

xy1
i,9y

2
i,9 . . . y

(25t−1)/2
i,9 y

(197t+301)/2+9i
i

xy1
i,10y

2
i,10 . . . y

(27t−1)/2
i,10 y

(217t+305)/2+10i
i .

Since a cycle with d chords contains
(

d+2
2

)
distinct cycles, B27t+i−57 contains

exactly 66 cycles of lengths:
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27t + i − 57, 28t + i + 7, 29t + i + 210, 30t + i,
31t + i + 1, 32t + i, 33t + i, 34t + i − 5,
35t + i + 3, 36t + i + 3, 37t + i + 742, 38t + 2i − 51,
38t + 2i + 216, 40t + 2i + 209, 40t + 2i, 42t + 2i,
42t + 2i − 1, 44t + 2i − 6, 44t + 2i − 3, 46t + 2i + 5,
46t + 2i + 744, 48t + 3i + 158, 49t + 3i + 215, 50t + 3i + 209,
51t + 3i − 1, 52t + 3i − 1, 53t + 3i − 7, 54t + 3i − 4,
55t + 3i − 1, 56t + 3i + 746, 59t + 4i + 157, 59t + 4i + 215,
61t + 4i + 208, 61t + 4i − 2, 63t + 4i − 7, 63t + 4i − 5,
65t + 4i − 2, 65t + 4i + 740, 69t + 5i + 157, 70t + 5i + 214,
71t + 5i + 207, 72t + 5i − 8, 73t + 5i − 5, 74t + 5i − 3,
75t + 5i + 739, 80t + 6i + 156, 80t + 6i + 213, 82t + 6i + 201,
82t + 6i − 6, 84t + 6i − 3, 84t + 6i + 738, 90t + 7i + 155,
91t + 7i + 207, 92t + 7i + 203, 93t + 7i − 4, 94t + 7i + 738,
101t + 8i + 149, 101t + 8i + 209, 103t + 8i + 205, 103t + 8i + 737,
111t + 9i + 151, 112t + 9i + 211, 113t + 9i + 946, 122t + 10i + 153,
122t + 10i + 952, 132t + 11i + 894.

B0 is a path with an end vertex x and length n − nt. Any other Bi is simply a
cycle of length i.

Then f(n) ≥ n + 36t, for n ≥ nt. This completes the proof.

From the above theorem, we have

lim inf
n→∞

f(n) − n√
n

≥
√

2 +
2

5
,

which is better than the previous bounds
√

2 (see [2]),
√

2 + 2562
6911

(see [7]).
Combining this with Boros, Caro, Füredi and Yuster’s upper bound, we get

1.98 ≥ lim sup
n→∞

f(n) − n√
n

≥ lim inf
n→∞

f(n) − n√
n

≥
√

2.4.

We make the following conjecture:

Conjecture.

lim
n→∞

f(n) − n√
n

=
√

2.4.
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