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Abstract

In this paper we present some new sufficient conditions for equality of
edge-connectivity and minimum degree of graphs and digraphs as well as
of bipartite graphs and digraphs.

1. Introduction

We consider finite graphs and digraphs without loops and multiple edges. For
a vertex v € V(D) of a digraph D, the degree of v, denoted by d(v) = d(v, D), is
defined as the minimum value of its out-degree d*(v) = d*(v, D) and its in-degree
d=(v) =d~ (v, D). The degree sequence of D is defined as the nonincreasing sequence
of the degrees of the vertices of D. For two vertex sets X, Y of a digraph or graph
let (X,Y) be the set of arcs or edges from X to Y. If D is a digraph (graph) and
X C V(D), then let D[X] be the subdigraph (subgraph) induced by X. For other
graph theory terminology we follow Chartrand and Lesniak [3].

Sufficient conditions for equality of edge-connectivity and minimum degree for
graphs and digraphs were given by several authors, for example: Chartrand [2],
Lesniak [11], Plesnik [12], Goldsmith and White [10], Bollobds [1], Goldsmith and
Entringer [9], Soneoka, Nakada, Imase, and Peyrat [14], Plesnik and Znam [13], Volk-
mann [15], [16], Fabrega and Fiol [7], [8], Xu [17], and Dankelmann and Volkmann
), [3], [6].

In this paper we present degree sequence, distance, and neighborhood conditions
for equality of edge-connectivity and minimum degree of graphs and digraphs as well
as of bipartite graphs and digraphs, which extend and generalize several known re-
sults.

2. Degree sequence conditions

We start with a simple and well known, but useful lemma.
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Lemma 2.1 Let D be a digraph of edge-connectivity A and minimum degree §.
If X < 6, then there exist two disjoint sets X, Y C V(D) with X UY = V(D) and
[(X,Y)| = A such that | X|,|Y] >+ 1.

Proof. Suppose, without loss of generality, that |X| < 6. Then we obtain the
contradiction
|X|5<Zd+ ) <|X|(IX]-1)+A<d(X|-1)+0—1.
zeX
O
Next we will improve the following result by Dankelmann and Volkmann [5].

Theorem 2.2 (Dankelmann, Volkmann [5] 1997) Let D be a digraph of order
n and edge-connectivity \ with degree sequence dy > ds > ... > d, =9. If§ > |n/2]
orifd < |n/2] —1 and

2k

Z dn+17i Z kn —3

i=1
for some k with 2 < k <6, then A = 9.

Theorem 2.3 Let D be a digraph of order n and edge-connectivity A\ with degree
sequence dy > dy > ... >d, =46. If 6 > |n/2] orif 6 < |[n/2] — 1 and
2%

> dpii—; > max{k(n —1) — 1, (k — 1)n + 26 — 1}

i=1

for some k with 2 < k <6, then A =.

Proof. Suppose to the contrary that A < §. Then, according to Lemma 2.1, there
exist two disjoint sets X, Y C V(D) with X UY = V(D) and |(X,Y)| = A such that
|X1,|Y| > § + 1. This leads to § < |n/2] — 1.
Now let S C X and T' C Y be two k-sets with 2 < k < 4. If we choose S such
that the number of arcs of (X,Y’) incident with S is minimal, then we conclude
> dt(v) < k(X]—=1)4+6 —1—min{d — 1,[X| — k}. (1)
veES
If we choose T such that the number of arcs of (X,Y) incident with 7 is minimal,
then we conclude
dd (v) <k(Y[=1)+6—1—min{6 — 1,|Y]| — k}. (2)
veT
Case 1. Let 6 —1 < |X|—k and § — 1 < |Y| — k. The inequalities (1) and (2)
imply the following contradiction to the hypothesis:

Sdui €Y d(w) < (X~ 1) + k(Y] - 1)
i= veSUT
kn—2)<kn—1)—1
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Case 2. Let 6 —1 < |X|—Fkand § —1 > |Y| — k. In view of Lemma 2.1, we
have —|Y| < —¢ — 1. Hence (1) and (2) lead to the following contradiction to the
hypothesis:

2k
Sdprisi <00 d) <KX =D+ k(Y| -1 +6—1—|Y|[+k
i=1 veSUT

kn—k+d—-1-6—-1=k(n—-1)—-2<k(n—-1)—-1

A

Case 3. The case 0 —1 > |X|—k and 6 — 1 < |Y| — k can be proved analogously
to Case 2.

Case 4. Let § —1 > |X| —kand § — 1 > |Y| — k. Then (1) and (2) yield to the
following contradiction to the hypothesis:

2%k

Zdnﬂﬂ‘ < Z d(v)

i=1 vESUT
< KX -D)+0—-1—|X|+E+E(Y|-1)+0—-1-|Y|+k
< kn+2—-n—-2=(k—-1)n+2—-2
< (k—=1)n+20—1

O

Corollary 2.4 Let G be a graph of order n and edge-connectivity A\ with degree
sequence dy > dy > ... >d, =46. If 6 > |n/2] orif 6 < |[n/2] — 1 and

2%
> dpy1—i > max{k(n — 1) —1,(k— 1)n + 26 — 1}

i=1
for some k with 2 < k <§, then A =.

Proof. Define the digraph D on the vertex set V(G) by replacing each edge of
G by two arcs in opposite directions and apply Theorem 2.3. |

3. Distance maximal sets

Let u and v be two vertices of a graph (digraph) D. The distance dp(u,v) =
d(u,v) from u to v is the length of a shortest (directed) path from w to v in D. The
distance dp(X,Y’) from a vertex set X to a vertex set Y in D is given by

dp(X,Y)=d(X,Y)= min _d(z,y).

zeX, yey

A pair of vertex sets X and Y of D with distance dp(X,Y) =k, k € N, is called
k-distance mazimal, if there exist no vertex sets X; 2 X and Y7 D Y with X; # X
or Y7 # Y such that dp(Xy,Y7) = k.
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Theorem 3.1 Let D be a strong connected digraph of edge-connectivity X and mini-
mum degree §. If for all 3-distance maximal pairs of vertex sets X andY there exists
an isolated vertex u in D[X UY], then A = 4.

Proof. Suppose to the contrary that A < §. Then, there exist two disjoint sets
S, T C V(D) with SUT = V(D) and |[(S,T)] = A. Now let A C S and B C T be the
sets of vertices incident with an arc of (S,7). Furthermore, we define 49 =S — A
and By =T — B. In view of our assumption, we see that |A|,|B| < A < J. Now we
shall investigate two cases.

Case 1. Let Ag,By # 0. Then, clearly, the distance from Ay to By in D is
finite and at least 3. Choose a 3-distance maximal pair X and Y with Ay C X and
By C Y. According to our assumption, there is an isolated vertex in D[X UY]. If
u € Ag, then we obtain the contradiction 6 < [Nt (u)| < |A| < §. If u € By, then we
obtain the contradiction 6 < [N~ (u)| < |B| < 4. If u € A, then the definition of A
and the fact that u has positive neighbors only in A U B leads to the contradiction

§ < d(u)=|Nt(u)NB|+|NT(u)N A
< INf(w)nBl+ > [N*(z)nB|
zeN+(u)NA
Z INT(z)NB| =\ <.

€A

Analogously, u € B leads to the contradiction

§ < d(u)=|N"(u)NA|l+|N"(u)N B
< INT(wNAl+ > INT(z)NA
2N~ (u)NB
< Y IN“(@)nAl=Ar<6

reB

Case 2. Let Ag =0 or By = 0. If Ay = 0, then we obtain the same contradiction
for an arbitrary vertex w € A = S instead of u € A. Finally, if By = 0, then we
obtain the same contradiction for an arbitrary vertex w € B = T instead of u € B.

Since we have discussed all possible cases, the proof is complete. O

Corollary 3.2 (Dankelmann, Volkmann [4] 1995) Let G be a connected graph
of edge-connectivity A and minimum degree §. If for all 3-distance mazximal pairs of
vertez sets X, Y C V(G) there exists an isolated vertez in G[X UY], then A = 4.

Corollary 3.3 If in a strong connected digraph D there exist mo four vertices
Uy, V1, Ug, Uy With

d(ul7u2)7 d(uhUQ): d(017u2)7 d(vhUZ) 2 37
then A = 9.
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Proof. If XY C V(D) is a pair of 3-distance maximal sets, then the hypothe-
sis yields min{|X|,|Y|} < 1, and the desired result is immediate by Theorem 3.1. O

Corollary 3.4 (Plesnik, Znam [13] 1989) If in a connected graph G there exist
no four vertices uy, vy, us, Vo wWith

d(uy,uz), d(ui,va), d(vi,uz), d(vi,vz) >3,

then A = 9.
Corollary 3.5 If D is a digraph of diameter at most two, then A = 0.

Corollary 3.6 (Plesnik [12] 1975) If G is a graph of diameter at most two, then
A=4.

Corollary 3.7 Let D be a digraph of order n. If dt(z) +d (y) > n—1 for
all pairs of nonadjacent vertices x and y, then A = 4.

Corollary 3.8 (Lesniak [11] 1974) Let G be a graph of ordern. Ifd(x)+d(y) > n—1
for all pairs of nonadjacent vertices x and y, then A = 6.

Corollary 3.9 Let D be a digraph of order n. If n <25+ 1, then A = 6.

Corollary 3.10 (Chartrand [2] 1966) Let G be a graph of order n. If n <26 + 1,
then A = 0.

4. Bipartite graphs and digraphs

In the sequel let D be a bipartite graph or a digraph with bipartition V(D) =
V' UV”. We adopt the convention that for every subset X of V(D), we denote the
set X NV' by X’ and X NV by X".

A pair of vertex sets X and Y of a bipartite graph or digraph D with dp (X', Y”) =
k, and dp(X",Y") = k, k € N, is called (k,k)-distance mazimal, if there ex-
ist no vertex sets X; O X and Y7 O Y with X; # X or Y7 # Y such that
dp(X1, YY) = dp(X7, YY) = k.

Analogously to Theorem 3.1, one can prove the following Theorems 4.1 and 4.6,
which generalize the corresponding results in [4] for graphs.

Theorem 4.1 Let D be a strong connected bipartite digraph of edge-connectivity
A and minimum degree 6. If for all (4,4)-distance mazimal pairs of vertex sets X
and 'Y there exists an isolated vertex in D[X UY], then A = 0.

Corollary 4.2 Let D be a bipartite digraph with bipartition V(D) = V' U V",
If d(x,y) = 2 for all different x,y € V', then A = 9.
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Corollary 4.3 (Dankelmann, Volkmann [4]) Let G be a bipartite graph with bipar-
tition V(G) = V' U V", If d(z,y) = 2 for all different x,y € V', then A = 4.

Corollary 4.4 If D is a bipartite digraph of diameter at most three, then A = 4.

Corollary 4.5 (Plesni'k7 Znédm [13] 1989) If G is a bipartite graph of diameter
at most three, then A = 9.

Theorem 4.6 Let D be a bipartite digraph of edge-connectivity A\, minimum de-
gree 6, and diameter at most 4. If for all (4,4)-distance mazimal pairs of vertex sets
X and Y with | X'|,|Y'|,|X"|,|Y"| > 2, there exists a vertex u € X UY such that
dt(u, DIX UY]),d” (u, DIX UY]) <1, then A =¢.

Also the next lemma, an analogue to Lemma 2.1 for bipartite digraphs, is well
known but useful.

Lemma 4.7. Let D be a bipartite digraph of edge-connectivity A and minimum de-
gree 6. If A < ¢, then there exist two disjoint sets X, Y C V(D) with X UY = V(D)
and |(X,Y)| = X such that | X'|, | X", [Y"],|Y"] > 0.

Proof. In view of Lemma 2.1, | X| > § + 1. Hence, there exists a vertex v € X such
that N (u) C X. If, without loss of generality, u € X”, then it follows | X'| > §. Now
there exists a vertex v € X' such that N*(v) C X, and hence | X”| > §. Similarly
one can show that [Y'|,[Y"| > 0. O

As a generalization of a result of Goldsmith and White [10] for graphs, Xu [17]
has given in 1994 the following sufficient condition for equality of edge-connectivity
and minimum degree of a digraph.

Theorem 4.8 (Xu [17] 1994) Let D be a digraph of order n. If there are |n/2]
disjoint pairs of vertices (vi, w;) with d(v;) + d(w;) > n fori=1,2,...,|n/2], then
A=4.

In [5], Dankelmann and Volkmann gave a short proof of Xu’s theorem. Apply-
ing the next theorem, we present two analogue results to Theorem 4.8 for bipartite
digraphs.

Theorem 4.9 (Dankelmann, Volkmann [5] 1997) Let D be a bipartite digraph
of order n, edge-connectivity A, and degree sequence di > dy > ... > d, = d. If
0> [(n+1)/4] orif § < |n/4] and

k

> (di + dps1-54k-i) = k(n —26) +26 — 1

i=1
for some k with 1 < k < 2§, then A = 4.
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Theorem 4.10 Let D be a bipartite (di)-graph of order n > 2, minimum degree
0, and edge-connectivity A. If there are |n/2] disjoint pairs of vertices (v;, w;) with
dv;)) +d(w;)) >n—20+1 fori=1,2,...,|n/2], then A = 0.

Proof. If § > [(n+ 1)/4], then A = § by Lemma 4.7 or Theorem 4.9.

If 6 < |n/4], then from the |n/2] disjoint pairs of vertices choose 2§ — 1 pairs
(vh, wy), (vh, wh), ..., (vhs_1,whs ;) containing the 2§ — 1 vertices of lowest degree of
v; and w;. Then we deduce for k = 25 — 1 that

k 25—1
Z(di +dni1-osik-i) = Z (di + dns1-26425-1-4)
i=1 i=1
25-1
= Z (di + dp—s)
i=1
25-1
> (d(v)) + d(w)))

i=1

A%

> (20—-1)(n—2041)
= 20—-1)(n—20)+20—1
= k(n—20)+20—1.
Now Theorem 4.9 with & = 26 — 1 leads to A = 4. O

For even n we can prove a slightly better result.

Theorem 4.11 Let D be a bipartite (di)-graph of even order n > 2, minimum
degree &, and edge-connectivity X. If there are n/2 — 1 disjoint pairs of vertices
(vs, w;) with d(v;) +d(w;) >n—2+1 fori=1,2,...,n/2 -1 and one further pair
(vj, wy) with d(v;) + d(w;) > n — 26, then A = 0.

Proof. If § > [(n+ 1)/4], then A = § by Lemma 4.7 or Theorem 4.9. If § < [n/4],
then from the n/2 disjoint pairs of vertices choose 20 pairs (vi,w]), (vh, wh),. ..,
(vhs, whs) containing the 24 vertices of lowest degree of v; and w; and therefore con-
taining the 24 vertices of lowest degree in D. Then we deduce for k = 20 that

3 25
> (di+ dngi-osin—i) = D_(di + dni1-25425—3)

i=1 i=1
25

= Z(dz +dpi1i)
i=1
26

2 (d(]) + d(wy))

=1
(20-1)(n—204+1)4+n—26
26(n —26) +20 — 1
= k(n—20)+26—1.

(A%

v
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Now Theorem 4.9 with k& = 2§ leads to A = 0. O

Example 4.12 Let H; and Hj be two copies of the complete bipartite graph K,
with V(H) = {x1,29,...,2,} U {2}, 2,...,2,} and V(Hy) = {y1,92,..., 4} U
{¥1, 95, - -y, }. We define the bipartite graph G as the union of H; and H, together
with the new edges z1y1, 2oy, . . ., Tp—1Yp—1. Then n(G) = n =4p, §(G) = 6 = p, and
MG) = A =p—1=0—1. Furthermore, d(x,) +d(z;) = d(y,) +d(y,) = 2p =n—2¢
and d(z;) +d(z}) =d(y;) +d(y)) =2p+1=n—-20+1fori=1,2,....p— 1.

This example shows that Theorem 4.11 is best possible in the sense that the
condition that there are n/2 — 2 disjoint pairs of vertices (v;, w;) with d(v;) + d(w;) >
n—20+1fori=1,2,...,n/2 -2 and two further pairs with degree sum exactly
n — 26 does not guarantee A = 4.

For a non-complete digraph D let
NC2(D) = min{|[N"(z) UNT(y)], IN"(z) UN"(y)| : @,y € V(D), d(z,y) = 2}.

Theorem 4.13 Let D be a strong connected bipartite digraph of order n > 3, edge-
connectivity A, and minimum degree §. If NC2(D) > [(n+ 1)/4], then A = 6.

Proof. Suppose to the contrary that A < § and thus 6 > 2. Then, by Lemma
4.7, there exist two disjoint sets S, T C V(D) with SUT = V(D), |(S,T)| = A, and
[S], 15”1, 1T, |T"| > 6. Now let A C S and B C T be the set of vertices incident
with an arc of (S,T). Furthermore, we define A9 = S — A and By =T — B. If
V' U V" is the bipartition of D, then let Ay = AgNV/, A/ = ANV’ A=A, NV,
A" = ANV", B, = BynNV', B' = BOV', B! = ByN V", and B" = BAV". In view
of our assumption, we see that |A[,|B] < A <.

Firstly, we show that Af, A, B), B # 0. Suppose that Aj = 0. If there is a vertex
v € Aj, then 6 < [Nt(v)] = [NT(v) N A'| < A < 0, a contradiction. Consequently,
Af = 0. If there is a vertex v € A, then

o INT(v)] = [NT(v) N A"| + [N T (v) N B”|

INT(o)nB"[+ Y. |N*(z)nB|
zeN*(v)NA"

S IN*(@) N B| = A <.

€A

ININ

IN

a contradiction and hence A’ = ). Analogously, one can show that A” = (). This
leads to the contradiction S = () and so Af # 0. Similar to this proof Aj, Bj, and
B{ are nonempty.

Secondly, we show that |Ap|, |Agl, |Byl, |By| > 2. Without loss of generality,

suppose that Aj consists of a single vertex u. Then it follows for each = € Af

§ < IN*(z)| = INT(2) N AY| + [NH (@) N A| < T+A< 6
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and thus |[A'| =6 — 1 and |A”| = 0. Therefore, |Af| > 2 and N*(z) = A’ U {u} for
each vertex = € Afj. Since A” = 0 and ¢ > 2, the vertex u has at least two positive
neighbors y, z in Aj. Consequently, d(y, z) = 2 and hence the hypothesis implies

nz ! < NC2(D) < INT(y)UNT(2)| = |A|+1=0.
This yields n < 45 — 1, a contradiction to Lemma 4.7 or Theorem 4.9. Finally, we
distinguish two cases.

Case 1. Assume that the four sets Af), Aj, B), B{j contain vertices of distance two.
If z,y € A} with d(z,y) = 2, then it follows from N*(2) U N*(y) C Aj U A” and
NC2(D) > (n+1)/4 that |Aj U A”] > (n + 1)/4. Analogously, we obtain

1
AU A, By U B, 1By U B >

These inequalities lead to the contradiction
! ! " " / /! 1" 1" n + 1
n=|AyUA|+ Ay UA"|+|ByUB'| +|By UB"| 24T:n+1.

Case 2. Assume that at least one of the sets Ay, Ay, By, By, say A, does not
contain two vertices of distance two. Because of |A”|,|A’| < §, each vertex u € Aj
has at least one positive neighbor v’ in Ajfj, and v’ has at least one positive neighbor
v in Af. Since A} does not contain two vertices of distance two, it follows u = v and
hence |A'| =6 — 1 and |A"| = 0.

Since no two vertices of Ay have distance two, we deduce (N (u)NAf) N (Nt (v)N
Af) = 0 for all u,v € Aj with u # v. Because of |Af)] > 2 and |A”| = 0, we therefore
obtain |Aj| > 24 and so |S| > 35 + 1. Hence, the bound |T'| > 2§ implies n > 55 + 1.

In addition, let z,y € N*(u) with & # y for an u € Aj. Then, we have seen
above that N*(z) = N*(y) = A’ U {u}. Hence, d(z,y) = 2 and we arrive finally at
the contradiction

P2 LML S NCAAD) < INT(0) UNT () =6
O

Corollary 4.14 (Dankelmann, Volkmann [4] 1995) Let G be a connected bipartite
graph of order n > 3, edge-connectivity A\, and minimum degree 0. If NC2(G) > (n+
1)/4, then A =5, where NC2(G) = min{|N(x) UN(y)| : =,y € V(G),d(x,y) = 2}.
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