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Abstract

It is well known that for each n ≡ 1 or 3 (mod 6) there is a planar
Steiner quasigroup (briefly, squag) of cardinality n (Doyen (1969) and
Quackenbush (1976)). A simple squag is semi-planar if every triangle
either generates the whole squag or the 9-element subsquag (Quacken-
bush (1976)). In fact, Quakenbush has stated that there should be such
semi-planar squags. In this paper, we construct a semi-planar squag of
cardinality 3n for all n > 9 and n ≡ 1 or 3 (mod 6). For n = 9, we give
a construction for a semi-planar squag of cardinality 27 which is not pla-
nar. Steiner triple systems are in 1–1 correspondence with the squags (see
Quackenbush (1976)). In this article, the Steiner triple system associated
with a semi-planar squag will be called semi-planar. Consequently, we
may say that there is a semi-planar Steiner triple system of cardinality m
which is not planar for all m > 9 and m ≡ 3 or 9 (mod 18). Quackenbush
has also proved that the variety generated by a finite simple planar squag
covers the variety of all medial squags. Similarly, it is easy to show that
the variety generated by a finite semi-planar squag also covers the variety
of all medial squags.

1 Introduction

A squag (or Steiner quasigroup ) is a groupoid SSS = (S; ·) satisfying the identities:

x · x = x, x · y = y · x, x · (x · y) = y.

A squag is called medial if it satisfies the medial law:

(x · y) · (z · w) = (x · z) · (y · w).
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A Steiner triple system (briefly, triple system) is a pair (P ; B), where P is a set of
points and B is a set of 3-element subsets of P called blocks such that for distinct
points p1, p2 ∈ P , there is a unique block b ∈ B such that {p1, p2} ⊆ b. Triple
systems are in 1–1 correspondence with the squags [6, 10].

The associated squag (P ; ·) with the triple system (P ; B) is defined as follows:
x · x = x for all x ∈ P and for each pair {x, y} ⊆ P , x · y = z if and only if
{x, y, z} ∈ B [6, 9].
If the cardinality of P is equal to n, then (P ; B) and (P ; ·) are said to be of order n
(or of cardinality n), and written STS(n) and SQG(n), respectively.

It is well known that the necessary and sufficient condition for an STS(n) to exist
is that n ≡ 1 or 3 (mod 6) [3, 6]. In fact, there is a 1–1 correspondence between the
subsquags of the coordinatising squag QQQ = (P ; ·) and the subspaces (or subSTSs) of
the underlying triple system (P ; B) [6].

A subsquag NNN = (S; ·) of a squag QQQ = (P ; ·) is called normal if and only if NNN
is a congruence class of QQQ. In the following theorem, Quackenbush [10] has given a
necessary and sufficient condition for a large subsquag SSS1 of a finite squag QQQ to be
normal.

Theorem 1 [10]. If SSS1 = (P1; ·) and SSS2 = (P2; ·) are two subsquags of a finite squag
QQQ such that P1 ∩ P2 = ∅ and |P | = 3|P1| = 3|P2|, then SSSi, for i = 1, 2, 3, are normal
subsquags, where SSS3 = (P3; ·) and P3 = P − (P1 ∪ P2).

Moreover, the author [2] has shown that there is a subsquag SSS1 = (P1; ·) of a
finite squag QQQ = (P ; ·) with |P | = 3|P1| and SSS1 not normal. This means that a
subsquag SSS1 = (P1; ·) of a finite squag QQQ = (P ; ·) with |P | = 3|P1| is normal if and
only if the set P − P1 can be divided into two subsquags of QQQ of cardinality |P1|.

Quackenbush [10] also proved that squags have permutable, regular, and La-
grangian congruences. Moreover, he showed that the lattice of normal subsquags of
a squag QQQ containing a fixed element is isomorphic to the lattice of congruences of QQQ.

Basic concepts of universal algebra and properties of squags can be found in [7]
and [4].

A squag is called simple if it has only the trivial congruences. Guelzow [8] and
the author [1] have constructed examples of non-simple squags (and not medial, of
course).

An STS is planar if it is generated by every triangle and contains a triangle. A
planar STS(n) exists for each n ≥ 7 and n ≡ 1 or 3 (mod 6) [5]. Quackenbush has
also shown in the next theorem that the only nonsimple finite planar squag has 9
elements.

Theorem 2 [10]. Let (P ; B) be a planar STS(n) and let QQQ = (P ; ·) be the corre-
sponding squag. Then either QQQ is simple or n = 9.
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Accordingly, we may say that there is always a simple SQG(n) for all n > 9
and n ≡ 1 or 3 (mod 6). In fact, the planar squag SQG(n) associated with the
planar STS(n) given in [5] is the only known construction of a simple squag for each
possible n.

In the comments and problems section of [10], Quackenbush has stated that there
should be semi-planar squags that are simple squags and each of whose triangles
either generates the whole squag or the 9-element subsquag. We observe that any
planar squag is semi-planar and the converse is not true.

In the following section, we construct semi-planar squags of cardinality 3n which
are not planar for all n > 9 and n ≡ 1 or 3 (mod 6).

2 Construction of semi-planar squags of card-

inality 3n

Let PPP i = (Pi; Bi) be a triple system with (Pi; ·) the corresponding squag for i = 1, 2.
The direct product PPP 1 × PPP 2 of the two triple systems can be obtained from the
underlying triple system of the direct product (P1; ·) × (P2; ·) [6].

Let PPP 1 = (P1; B1) be a planar triple system of cardinality n, and let P1 =
{a1, a2, . . . , an}. We consider the direct product PPP 1 ×CCC3, where CCC3 is the STS(3) on
the set {1, 2, 3}. The direct product PPP 1×CCC3 = (P ; B) is formed by the usual tripling
of (P1; B1). Namely, (P ; B) is an STS(3n), where the set of triples B is obtained by:

B = {{(ai, 1), (aj, 2), (ak, 3)} | {ai, aj, ak} ∈ B1 or ai = aj = ak}
∪{{(ai, i), (aj, i), (ak, i)} | {ai, aj, ak} ∈ B1 and i ∈ {1, 2, 3}}.

We denote the squag (P1; ·1) associated with PPP 1 by QQQ1 and the squag (P ; ·2) associ-
ated with PPP 1 ×CCC3 := (P ; B) by QQQ2.

Without loss of generality, we may assume that A1 = {a1, a2, a3} is a block of
B1; then the triple system (P ; B) contains the subsystem (A; R), where A = A1×C3

and the set of blocks R is given by:

R = {{(a1, i), (a2, i), (a3, i)} : i ∈ {1, 2, 3}}
∪{{(x, 1), (x, 2), (x, 3)} : x ∈ {a1, a2, a3}}
∪{{(x, i), (y, j), (z, k)} : {x, y, z} = {a1, a2, a3} and {i, j, k} = {1, 2, 3}}.

Define on the subset A the set of triples H as follows:

H = {{(a3, 1), (a3, 2), (a1, 3)}, {(a2, 2), (a2, 3), (a2, 1)}, {(a1, 1), (a1, 2), (a3, 3)},
{(a3, 1), (a2, 2), (a1, 1)}, {(a3, 2), (a2, 3), (a1, 2)}, {(a1, 3), (a2, 1), (a3, 3)},
{(a3, 1), (a2, 3), (a3, 3)}, {(a2, 2), (a1, 2), (a1, 3)}, {(a1, 1), (a2, 1), (a3, 2)},
{(a1, 3), (a2, 3), (a1, 1)}, {(a2, 2), (a3, 2), (a3, 3)}, {(a1, 2), (a2, 1), (a3, 1)}}.
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Each of (A; R) and (A; H) is isomorphic to the affine plane over GF(3).

Using the replacement property by interchanging the two sets of blocks R and H
in (P ; B), we again get an STS(3n) = (P ; B), where B := (B − R) ∪ H [6, 9]. In
fact, the sub-STS formed by the direct product of {a1, a2, a3} and {1, 2, 3} is replaced
with an isomorphic copy on the same set of points. We denote the squag associated
with the STS (P ; B) by QQQ = 3 ⊗A QQQ1 = (P ; ·). Observe that the difference between
the binary operations “·2” and “·” depends only on the elements of A.

Theorem 3 If QQQ1 is a planar squag of cardinality n, then the constructed squag
QQQ = 3 ⊗A QQQ1 is semi-planar of cardinality 3n for all n > 9 and n ≡ 1 or 3 (mod 6).

Proof. Let S = {(x1, i1), (x2, i2), (x3, i3)} be a triangle in QQQ; i.e., (x1, i1) · (x2, i2) 	=
(x3, i3). First we have to prove that the subsquag 〈S〉Q generated by S either gener-
ates the whole squag QQQ or a subsquag of cardinality 9.

In general, there are only four possible cases:

(i) S ⊆ A, (ii) |〈S〉Q ∩ A| = 1 or 0,
(iii) |〈S〉Q ∩ A| = 3, (iv) S 	⊂ A and A ⊂ 〈S〉Q.

(i) If S ⊆ A, then 〈S〉Q ⊆ A, and hence 〈S〉Q is the 9-element subsquag on A.

(ii) If |〈S〉Q ∩A| = 1 or 0, then 〈S〉Q is the same as that of 〈S〉QQQ2 , and hence the
set of first components of 〈S〉Q is a subsquag of QQQ1.

Since |〈S〉Q ∩ A| = 1 or 0, the set of first components of 〈S〉Q does not equal P1.
Hence the set of first components of 〈S〉Q forms a 3-element subsquag of QQQ1, which
implies that 〈S〉Q is a 9-element subsquag of QQQ.

(iii) If |〈S〉Q ∩ A| = 3, then we have 〈S〉Q ∩ A = {(a2, 2), (a2, 3), (a2, 1)} or any
other block in H.

If 〈S〉Q ∩ A = {(a2, 2), (a2, 3), (a2, 1)}, then 〈S〉Q = 〈S〉Q2 . This means that the
set of first components of 〈S〉Q forms a subsquag of QQQ1. Since 〈S〉Q∩A is a 3-element
subsquag, then the set of first components of 〈S〉Q does not equal P1. Therefore, the
set of first components of 〈S〉Q must be a 3-element subsquag of QQQ1, which implies
that 〈S〉Q is a 9-element subsquag of QQQ.

Let 〈S〉Q ∩ A be a 3-element subsquag not equal to {(a2, 2), (a2, 3), (a2, 1)}. We
show that any other choice of 〈S〉Q ∩ A leads to a contradiction by considering the
following two cases.

First, let 〈S〉Q ∩ A = {(a1, 1), (a2, 2), (a3, 1)}, {(a1, 2), (a2, 3), (a3, 2)},
{(a1, 3), (a2, 1), (a3, 3)}, {(a1, 1), (a2, 1), (a3, 2)} or {(a1, 2), (a2, 1), (a3, 1)}.
For any choice in this case, the set of the second components of the elements of
〈S〉Q ∩ A is a 2-element subset of {1, 2, 3}. We can easily see that the set of second
components of the elements of 〈S〉Q consists of {1, 2, 3} for any choice of 〈S〉Q ∩ A.

Let {i, j, k} = {1, 2, 3} and let the maximum number of distinct elements of 〈S〉Q,
having second components i, be equal to r. Let the values of second components
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of the three elements of 〈S〉Q ∩ A be i, i and j. If (y, k) ∈ 〈S〉Q, then the product
of any element (x, i) of 〈S〉Q by (y, k) gives an element of 〈S〉Q having a second
component equal to j; that is, (x, i) · (y, k) = (z, j). This means that 〈S〉Q also
contains r elements having second components equal to j. Also, let (y, j) ∈ 〈S〉Q;
then (x, i) · (y, j) = (z, k), which means that 〈S〉Q also contains r distinct elements
having second components equal to k. Accordingly, we may deduce that 〈S〉Q consists
exactly of an r-element subset of pairs with second components i, an r-element subset
of pairs with second components j and an r-element subset of pairs with second
components k.

Each of the r-element subsets of 〈S〉Q with second components j or k forms a
subsquag of 〈S〉Q. According to Theorem 1, the third r-element subset of 〈S〉Q with
second component equal to i must be a subsquag of 〈S〉Q, contradicting the choice
that 〈S〉Q ∩ A = {(a1, i), (a2, i), (a3, j)}. This is a contradiction.

Next, let 〈S〉Q ∩ A = {(a1, 1), (a1, 2), (a3, 3)}, {(a2, 2), (a1, 2), (a1, 3)},
{(a3, 1), (a3, 2), (a1, 3)}, {(a3, 1), (a2, 3), (a3, 3)},
{(a1, 1), (a2, 3), (a1, 3)} or {(a2, 2), (a3, 2), (a3, 3)}.

For any possible choice of 〈S〉Q ∩ A, the set of first components of the elements of
〈S〉Q ∩A is a 2-element subset of {a1, a2, a3}. Hence we may say that the set of first
components of the elements of 〈S〉Q does not contain all elements of {a1, a2, a3}.

Let {i, j, k} = {1, 2, 3} and let 〈S〉Q ∩ A = {(ai, �), (ai, n), (aj, m)} with � 	= n
and �, m, n ∈ {1, 2, 3}.

Let (b, �) ∈ 〈S〉Q−A and (b, �)·2(ai, �) = (b, �)·(ai, �) = (c, �); then (b, �)·2(ai, n) =
(b, �) · (ai, n) = (c, k) with {�, n, k} = {1, 2, 3}. Hence (c, �) ·2 (c, k) = (c, �) · (c, k) =
(c, n) and accordingly (c, n)·2(b, �) = (c, n)·(b, �) = (ai, k) ∈ 〈S〉Q. On the other hand,
we have (ai, k) ∈ A, contradicting the choice that 〈S〉Q∩A = {(ai, �), (ai, n), (aj, m)}
and {�, n, k} = {1, 2, 3}. We will get the same contradiction if we choose (b, n) or
(b, k) in 〈S〉Q −A instead of (b, �). Therefore the second possible case of 〈S〉Q ∩A is
also ruled out.

(iv) Let S 	⊂ A and A ⊂ 〈S〉Q, and let (〈S〉Q; BS) be the associated STS of
the subsquag SSS = (〈S〉Q; ·); then (〈S〉Q; (BS − H) ∪ R) is a sub-STS of (P ; B) (the
associated STS of QQQ2). As a consequence, the associated squag of (〈S〉Q; (BS−H)∪R)
is equal to 〈S〉Q2 . This means that 〈S〉Q and 〈S〉Q2 have the same set of points.
Indeed, 〈S〉Q differs from 〈S〉Q2 in the binary operations.

On the other hand, since S 	⊂ A, there is an element (x, i) ∈ 〈S〉Q −A. Hence we
may assume that 〈S〉Q2 contains three elements (x, i), (y, i), (z, i) with x, y, z forming
a triangle in QQQ1. Consequently, the elements (x, i), (y, i) and (z, i) form a triangle
in QQQ2. Since QQQ1 is planar, QQQ1 × {i} is a subsquag of 〈S〉Q2 . Also, 〈S〉Q2 contains
another element (a, j) with i 	= j, so (a, j) ·2 (QQQ1 ×{i}) = QQQ1 ×{k} forms a subsquag
of 〈S〉Q2 , where {i, j, k} = {1, 2, 3}. According to Theorem 1, QQQ1 × {j} also forms a
subsquag of 〈S〉Q2 . Hence 〈S〉Q2 = QQQ2, which implies that 〈S〉Q = QQQ. This completes
the proof of the first part of the theorem.
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Now we need only show that QQQ is a simple squag. Assume that QQQ has a proper
congruence θ. Since [(x, i)]θ is a subsquag of QQQ, the cardinality of [(x, i)]θ must be
equal to 9 or 3. On the other hand, for any 3-element subsquag X of QQQ, the set [X ]θ
forms a subsquag of QQQ. Hence, if |[(x, i)]θ| = 9, then there is a 3-element subsquag
X such that the subsquag [X ]θ is of cardinality 27. Therefore, in light of the first
part of the proof, we may say that the case |[(x, i)]θ| = 9 is ruled out.

If |[(x, i)]θ| = 3, then we will choose (x, i) ∈ A and x 	= a2; i.e., x = a1 or a3.
If [(x, i)]θ 	⊂ A, then [A]θ is a subsquag of QQQ of cardinality 27. If [(x, i)]θ ⊆ A, we
may choose a 3-element subsquag X1 = {x, x2, x3} of QQQ1 satisfying X1 ∩ A1 = {x}
where x 	= a2. Then X2 = X1 × {1, 2, 3} forms a subsquag of each of QQQ2 and QQQ
with X2 ∩ A = {(x, 1), (x, 2), (x, 3)}, where {(x, 1), (x, 2), (x, 3)} is not a block of
QQQ. This means that [X2]θ is also a subsquag of QQQ of cardinality 27. Both cases
[(x, i)]θ 	⊂ A and [(x, i)]θ ⊆ A contradict the fact that the maximal cardinality of a
proper subsquag of QQQ is 9. This means that there is no proper congruence θ of QQQ
with |[(x, i)]θ| = 3. Therefore, QQQ is a simple squag. This completes the proof of the
theorem.

In this article, the Steiner triple system STS(m) associated with a semi-planar
squag SQG(m) will be called semi-planar (for much more precision, it may be called
semi-9-planar). In other words, one may say that a triple system STS(m) is semi-
planar if the STS(m) has no proper a-normal subsystems (see [11]) (equivalently, the
corresponding SQG(m) is simple) and has subsystems only of cardinality 1, 3, 9 and
m. According to the previous theorem, we may deduce that there is a semi-planar
triple system of cardinality m = 3n which is not planar, for all n > 9 and n ≡ 1 or
3 (mod 6).

We are faced with the question: is there a semi-planar squag of cardinality m
which is not planar for the other possible values of m such as m = 7, 9, 13, 15, 19,
25, 27, . . . ? Indeed, for m = 7, 9, 13, 15 there are only planar squags. Also, we observe
that if m is prime or if m = r × n with r or n not congruent to 1 or 3 (mod 6), then
each SQG(m) must be simple. Hence for m = 19 each SQG(19) is simple. Indeed,
one can easily show that there is a simple SQG(19) having a 9-element subsquag as
follows:
For this purpose, we now briefly review the concept of derived triple systems.

A Steiner quadruple system (briefly SQS) is a pair (P ; B) where P is a finite set
and B is a collection of 4-subsets (called blocks) of P such that every 3-subset of P
is contained in exactly one block of B [9]. Let SQS(m) = (P ; B) denote a Steiner
quadruple system of cardinality m. If one considers Px = P − {x} for any point
x ∈ P and deletes that point from all blocks which contain it, then the resulting
system (Px; B(x)) is a triple system where B(x) = {b′ = b− {x} : b ∈ B and x ∈ b}.
Now (Px; B(x)) is called a derived triple system [6, 9]. The direct product SQS(10)×
SQS(2) is an SQS(20). Each derived triple system of the Steiner quadruple system
SQS(10) × SQS(2) is an STS(19) having a subSTS(9). This implies that there is a
simple SQG(19) which has a 9-element subsquag. Actually this SQS(19) is still not
semi-planar.
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In the following section we turn our attention to construct a semi-planar SQG(m)
for m = 27.

3 Construction of a semi-planar SQG(27)

From the foregoing discussion, we may directly say that the number 21 is the smallest
known cardinality of a semi-planar squag which is not planar. As a result of the
previous construction, we see that given an SQG(7) = QQQ1 one can construct a semi-
planar squag SQG(21) = QQQ which is not planar.

Theorem 3 is not valid for n = 9. In this section, we are only interested in con-
structing a semi-planar squag of cardinality 27 which is not planar. The techniques
used in the above theorem (the replacement property) can be applied to the direct
product STS(9)× STS(3) to get a semi-planar STS(27) = (P ; B), where the sets P
and B are given by: P = {ai, bi, ci | i = 1, 2, . . . , 9} and

B = a1 a2 b1 b1 b2 b4 b1 c1 c2 a2 a3 b3 a2 b2 c2 b3 c2 c3

a4 a5 a6 b4 b5 b6 c4 c5 c6 a1 b2 c3 a1 a3 c2 a2 c1 c3

a7 a8 a9 b7 b8 b4 c7 c8 c9 a1 b4 c7 a2 b5 c8 a3 b6 c9

a1 a4 a7 b1 b6 b7 c1 c4 c7 a1 b5 c9 a2 b6 c7 a3 b5 c7

a2 a5 a8 b2 b5 b8 c2 c5 c8 a1 b6 c8 a2 b4 c9 a3 b4 c8

a3 a6 a9 b3 b6 b2 c3 c6 c9 b1 a3 c3 a1 c1 b3 a3 b2 c1

a1 a5 a9 b1 b5 b9 c1 c5 c9 a1 c4 b7 a2 b8 c5 a3 b9 c6

a3 a5 a7 b3 b5 b7 c3 c5 c7 a1 c5 b9 a2 b7 c6 a3 b7 c5

a1 a6 a8 b9 b6 b8 c1 c6 c8 a1 c6 b8 a2 b9 c4 a3 b8 c4

a2 a6 a7 b1 b3 b8 c2 c6 c7 a2 a4 a9 b2 b7 b9 c2 c4 c9

a7 b7 c7 a8 b8 c8 a9 b9 c9 a3 a4 a8 b3 b4 b9 c3 c4 c8

a7 b8 c9 a8 b7 c9 a9 b7 c8 a4 b4 c4 a5 b5 c5 a6 b6 c6

a7 b1 c4 a8 b2 c5 a9 b3 c6 a4 b5 c6 a5 b4 c6 a6 b4 c5

a7 b3 c5 a8 b1 c6 a9 b1 c5 a4 b1 c7 a5 b2 c8 a6 b3 c9

a7 b2 c6 a8 b3 c4 a9 b2 c4 a4 b3 c8 a5 b3 c7 a6 b1 c8

a7 b9 c8 a8 b9 c7 a9 b8 c7 a4 b2 c9 a5 b1 c9 a6 b2 c7

a7 b4 c1 a8 b5 c2 a9 b6 c3 a4 b6 c5 a5 b6 c4 a6 b5 c4

a7 b5 c3 a8 b6 c1 a9 b5 c1 a4 b7 c1 a5 b8 c2 a6 b9 c3

a7 b6 c2 a8 b4 c3 a9 b4 c2 a4 b8 c3 a5 b7 c3 a6 b8 c1

a4 b9 c2 a5 b9 c1 a6 b7 c2

Let QQQ = (P ; ·) be the squag associated with the STS(27) = (P ; B). In the following,
we want to prove that QQQ = (P ; ·) is a semi-planar SQG(27).

It is clear that the set A = {b1, b2, b3, b4, b5, b6, b7, b8, b9} is a sub-SQG(9); if A is
normal, then a1 · A must also be a sub-SQG(9) [10, 2]. Indeed, we have:

a1 · A = {a1 · b1, a1 · b2, a1 · b3, a1 · b4, a1 · b5, a1 · b6, a1 · b7, a1 · b8, a1 · b9}
= {a2, c3, c1, c7, c9, c8, c4, c6, c5}.

Moreover, a2 · c4 = b9, so a1 · A is not a sub-SQG(9) and hence A is not normal in
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QQQ. Since A is not normal, any normal sub-SQG(9) = N of QQQ must intersect A, so
that |N ∩ A| = 3.

To prove that QQQ has no congruence θ with |[x]θ| = 9, we need only prove that
there is no normal sub-SQG(9) containing a block of A and a fixed element x ∈ P−A.

In the following, we calculate 〈bi, bj , bk, x〉 in which the fixed element x ∈ P − A
may be chosen for instance as the element a1 and {bi, bj , bk} is any block on A. This
means that we have to calculate 12 different cases.

Consider the sub-SQG 〈b3, b5, b7, a1〉 in QQQ; then we have: a1 · b3 = c1, a1 · b5 =
c9, a1 · b7 = c4, c1 · b5 = a9, c1 · b7 = a4, c1 · c9 = c5, c1 · c4 = c7, c4 · c9 = c2, c1 · c2 =
b1, b1 · b3 = b8. Then 〈b3, b5, b7, a1〉 contains more than 13 elements. This means that
〈b3, b5, b7, a1〉 = QQQ.

Consider the sub-SQG 〈b2, b5, b8, a1〉 in QQQ; we have:
a1 · b2 = c3, a1 · b5 = c9, a1 · b8 = c6, c3 · c9 = c6, c3 · b8 = a4, c3 · b5 = a7, a4 · b2 = c9,
a4·b5 = c6, c3·c9 = a8. Then 〈b4, b7, b8, a1〉 = SQG(9) = {a1, b2, b5, b8, c6, c3, c9, a4, a7}.
On the other hand, we have: a2 · 〈b4, b7, b8, a1〉 = a2 · {a1, b2, b5, b8, c6, c3, c9, a4, a7} =
{b1, c2, c8, c5, b7, c1, b4, a9, a6} and c1 · c5 = c9. This means that the SQG(9) =
〈b2, b5, b8, a1〉 is not normal in QQQ.

Similarly, by considering the other 10 cases one can prove that 〈bi, bj , bk, a1〉QQQ is
the whole squag QQQ or a sub-SQG(9) but not normal, where {bi, bj, bk} is always a
block on A.

Therefore, we may say that QQQ has no congruence θ with |[x]θ| = 9. Hence QQQ also
has no congruence θ with |[x]θ| = 3; thus QQQ is a simple squag. This implies that QQQ
is a semi-planar squag of cardinality 27 which is not planar.

Finally, we may improve the result of Theorem 3 as follows:

Theorem 4 There is a semi-planar squag of cardinality 3n which is not planar, for
all n > 3 and n ≡ 1 or 3 (mod 6).

In other words, one may say that there is a semi-planar triple system of cardinality
m which is not planar, for all m > 9 and m ≡ 3 or 9 (mod 18).

Quackenbush [10] has proved that the variety V (QQQ) generated by a simple planar
squag QQQ has only two subdirectly irreducible squags QQQ and the 3-element squag
SQG(3) and then V (QQQ) covers the smallest nontrivial subvariety (the class of all
medial squags).

Similarly, if QQQ is a semi-planar squag, then one can prove that the variety V (QQQ)
generated by QQQ has only two subdirectly irreducible squags QQQ and the 3-element
squag SQG(3). And hence we deduce the same result that each semi-planar squag QQQ
generates another variety V (QQQ) which covers also the smallest nontrivial subvariety
(the class of all medial squags).

Finally, the author is thankful for the help of his son Antonius who verified the
construction of the semi-planar SQG(27) by software programming.
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