Total domination good vertices in graphs

Teresa W. Haynes
Department of Mathematics
East Tennessee State University
Johnson City, TN 37614
U.S.A.
Michael A. Henning *
Department of Mathematics
University of Natal
Private Bag X01
Pietermaritzburg, 3209
SOUTH AFRICA

Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G. A vertex that is contained in some minimum total dominating set of a graph G is a good vertex, otherwise it is a bad vertex. We determine for which triples (x, y, z) there exists a connected graph G with $\gamma_{t}(G)=x$ and with y good vertices and z bad vertices, and we give graphs realizing these triples.

1 Introduction

Let G be a graph without isolated vertices, and let v be a vertex of G. A set $S \subseteq V(G)$ is a total dominating set if every vertex in $V(G)$ is adjacent to a vertex in S. Every graph without isolated vertices has a total dominating set, since $S=V(G)$ is such a set. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set. A total dominating set of cardinality $\gamma_{t}(G)$ we call a $\gamma_{t}(G)$-set.

Total domination in graphs was introduced by Cockayne, Dawes and Hedetniemi [3] and is now well studied in graph theory (see, for example, [5] and [10]).

[^0]The literature on this subject has been surveyed and detailed in the two books by Haynes, Hedetniemi and Slater [7, 8].

For notation and graph theory terminology, we in general follow [2, 7]. Specifically, let $G=(V, E)$ be a graph with vertex set V of order n and edge set E. For any vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in E\}$, and its closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$ and its closed neighborhood is the set $N[S]=N(S) \cup S$. For $S \subseteq V$, we denote the subgraph induced by S by $\langle S\rangle$.

The private neighborhood $\operatorname{pn}(v, S)$ of $v \in S$ is defined by $\operatorname{pn}(v, S)=N(v)-$ $N(S-\{v\})$. Equivalently, $\operatorname{pn}(v, S)=\{u \in V \mid N(u) \cap S=\{v\}\}$. Each vertex in $\operatorname{pn}(v, S)$ is called a private neighbor of v. The external private neighborhood epn (v, S) of v with respect to S consists of those private neighbors of v in $V-S$. Thus, $\operatorname{epn}(v, S)=\operatorname{pn}(v, S) \cap(V-S)$.

A leaf of a tree is a vertex of degree 1 , while a support vertex is a vertex adjacent to a leaf. A double star is a tree that contains exactly two vertices that are not end-vertices; necessarily, these two vertices are adjacent. If the one central vertex of a double star is adjacent to r leaves and the other central vertex to s leaves, then we denote the double star by $S(r, s)$.

We call a vertex that is contained in some minimum total dominating set of a graph G is a good vertex, otherwise it is a bad vertex. Let $g(G)$ (respectively, $b(G)$) denote the number of good (respectively, bad) vertices in a graph G. Note that for any graph G of order n without an isolated vertex, $g(G)+b(G)=n$.

Fricke, Haynes, Hedetniemi, Hedetniemi and Laskar [6] defined a graph G to be γ_{t}-excellent if every vertex of G is a good vertex, i.e., if $g(G)=n$. Henning [11] provided a constructive characterization of γ_{t}-excellent trees. Cockayne, Henning and Mynhardt [4] characterized the set of vertices of a tree that are contained in all, or in no, respectively, minimum total dominating sets of the tree. Haynes and Henning [9] studied graphs having unique minimum total dominating sets, i.e., graphs G for which $g(G)=\gamma_{t}(G)$ and $b(G)=n-\gamma_{t}(G)$. They provided three equivalent conditions for a tree to have a unique minimum total dominating set and gave a constructive characterization of such trees.

Let (x, y, z) be a triple of integers. If there exists a connected graph G such that $\gamma_{t}(G)=x, g(G)=y$, and $b(G)=z$, then we shall call G a realization of (x, y, z) and we call the triple (x, y, z) realizable. Our aim is to determine which triples (x, y, z) are realizable, and to find a realization of each realizable triple.

2 Known Results

The decision problem to determine the total domination number of a graph is known to be NP-complete. Hence it is of interest to determine upper bounds on the total domination number of a graph. Cockayne et al. [3] obtained the following upper bound on the total domination number of a connected graph in terms of the order of the graph.

Theorem 1 (Cockayne et al. [3]) If G is a connected graph of order $n \geq 3$, then $\gamma_{t}(G) \leq 2 n / 3$.

A large family of graphs attaining the bound in Theorem 1 can be established using the following transformation of a graph. The 2-corona of a graph H is the graph of order $3|V(H)|$ obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex disjoint. The 2-corona of a connected graph has total domination number two-thirds its order. The following characterization of connected graphs of order at least 3 with total domination number exactly two-thirds their order is obtained in [1].

Theorem 2 (Brigham et al. [1]) Let G be a connected graph of order $n \geq 3$. Then $\gamma_{t}(G)=2 n / 3$ if and only if G is C_{3}, C_{6} or the 2-corona of some connected graph.

The following property of minimal total dominating sets is established in [3].
Proposition 3 (Cockayne et al. [3]) If S is a minimal total dominating set of a connected graph $G=(V, E)$, then each $v \in S$ has at least one of the following two properties:
$P_{1}:$ There exists a vertex $w \in V-S$ such that $N(w) \cap S=\{v\} ;$
$P_{2}:\langle S-\{v\}\rangle$ contains an isolated vertex.
In [10], the following property of minimum total dominating sets in graphs is established.

Theorem 4 (Henning [10]) If G is a connected graph of order $n \geq 3$ and $G \not \approx K_{n}$, then G has a minimum total dominating set S that maximizes the number of edges in $\langle S\rangle$ and such that every vertex of S has property P_{1} or is adjacent to a vertex of degree 1 in $\langle S\rangle$ that has property P_{1}.

The following characterization of trees that have a unique minimum total dominating set is proven in [9].

Theorem 5 (Haynes, Henning [9]) Let T be a tree of order $n \geq 2$. Then T has a unique $\gamma_{t}(T)$-set if and only if T has a $\gamma_{t}(T)$-set S for which every vertex $v \in S$ is a support vertex or satisfies $|p n(v, S)| \geq 2$.

3 Preliminary Results

Our aim in this section is to establish a few preliminary results that we will need in subsequent sections.

Every graph G with no isolated vertex satisfies $\gamma_{t}(G) \geq 2$ and $b(G) \geq 0$. Since every vertex in a $\gamma_{t}(G)$-set is a good vertex, $g(G) \geq \gamma_{t}(G)$. This yields the following observation.

Observation 6 If (x, y, z) is a realizable triple, then $y \geq x \geq 2$ and $z \geq 0$.
The next result establishes a lower bound on the number of bad vertices in a graph.

Theorem 7 If G is a graph with no isolated vertex satisfying $g(G)=\gamma_{t}(G)+k$, then $b(G) \geq \frac{2}{3}\left(\gamma_{t}(G)-2 k\right)$.

Proof. Let S be a minimum dominating set of $G=(V, E)$ in which every vertex has property P_{1} or is adjacent to a vertex of degree 1 in $\langle S\rangle$ that has property P_{1}. Such a $\gamma_{t}(G)$-set exists by Theorem 4 . Let $A=\left\{v \in S \mid v\right.$ does not have property $\left.P_{1}\right\}$. Thus each vertex of A is adjacent to a vertex of degree 1 in $\langle S\rangle$ that has property P_{1}.

Claim: $|A| \leq\left(\gamma_{t}(G)+k\right) / 3$.
Proof. Let $A_{1}=\{v \in A \mid v$ is adjacent to exactly one vertex of degree 1 in $\langle S\rangle$ that has property $\left.P_{1}\right\}$ and let $A_{2}=A-A_{1}$. For $i=1,2$, let A_{i}^{\prime} be the set of vertices of degree 1 in $\langle S\rangle$ that have property P_{1} and are adjacent to a vertex of A_{i}. Then, $\left|A_{1}^{\prime}\right|=\left|A_{1}\right|$ and $\left|A_{2}^{\prime}\right| \geq 2\left|A_{2}\right|$. Hence,

$$
\gamma_{t}(G)=|S| \geq\left|A_{1}\right|+\left|A_{1}^{\prime}\right|+\left|A_{2}\right|+\left|A_{2}^{\prime}\right| \geq 2\left|A_{1}\right|+3\left|A_{2}\right|
$$

and so $\left|A_{2}\right| \leq\left(\gamma_{t}(G)-2\left|A_{1}\right|\right) / 3$. We show next that $\left|A_{1}\right| \leq k$. Let $v \in A_{1}^{\prime}$ and let $u \in A_{1}$ be the neighbor of v in S. Further, let $w \in \operatorname{epn}(v, S)$. Since v is the only neighbor of u of degree 1 in $\langle S\rangle,(S-\{u\}) \cup\{w\}$ is a $\gamma_{t}(G)$-set, and so w is a good vertex. Since there are exactly k good vertices in $V-S,\left|A_{1}\right|=\left|A_{1}^{\prime}\right| \leq k$. Hence, $|A|=\left|A_{1}\right|+\left|A_{2}\right| \leq\left|A_{1}\right|+\left(\gamma_{t}(G)-2\left|A_{1}\right|\right) / 3=\left(\gamma_{t}(G)+\left|A_{1}\right|\right) / 3 \leq\left(\gamma_{t}(G)+k\right) / 3$, as desired.

Let C denote the set of vertices in $V-S$ that are adjacent to at least one vertex of $S-A$, i.e., $C=N(S-A) \cap(V-S)$. Since every vertex in $S-A$ has at least one external private neighbor in $V-S$, it follows that $|C| \geq|S-A|=\gamma_{t}(G)-|A|$. Thus, by the above claim, $|C| \geq\left(2 \gamma_{t}(G)-k\right) / 3$. On the other hand, $|C| \leq|V-S|=$ $n-\gamma_{t}(G)=b(G)+g(G)-(g(G)-k)=b(G)+k$. Hence, $b(G)+k \geq\left(2 \gamma_{t}(G)-k\right) / 3$, and so $b(G) \geq\left(2 \gamma_{t}(G)-4 k\right) / 3$. This completes the proof of Theorem 7 .

By Theorem 1, every connected graph G of order $n \geq 3$ satisfies $\gamma_{t}(G) \leq$ $2 n / 3$. Theorem 2 provides a characterization of those connected graphs G satisfying $\gamma_{t}(G)=2 n / 3$. We shall need a characterization of connected graphs G of order $n \geq 5$ satisfying $\gamma_{t}(G)=(2 n-1) / 3$. For this purpose, we define a family \mathcal{G} of graphs as follows.

Let G be the graph of order $3|V(H)|-1$ obtained from a non-trivial connected graph H by attaching a path of length 1 (a pendant vertex) to a specified vertex of H and attaching a path of length 2 to every other vertex of H so that the resulting paths are vertex disjoint. Let \mathcal{G} be the family of all such graphs G.

Theorem 8 Let G be a connected graph of order $n \geq 5$. Then $\gamma_{t}(G)=(2 n-1) / 3$ if and only if $G=C_{5}$ or $G \in \mathcal{G}$.

Proof. The sufficiency is straightforward to verify. To prove the necessity, let $x=(2 n-1) / 3$ and suppose that G is a connected graph of order $n \geq 5$ such that $\gamma_{t}(G)=x$. Then, $x \geq 3$. By Theorem $4, G$ has a minimum total dominating set S that maximizes the number of edges in $\langle S\rangle$ and such that every vertex of S has property P_{1} or is adjacent to a vertex of degree 1 in $\langle S\rangle$ that has property P_{1}.

Let $A=\left\{v \in S \mid v\right.$ does not have property $\left.P_{1}\right\}$ and let $B=S-A$. Further, let $|A|=a$ and $|B|=b$, and so $a=x-b$. Since each vertex of A is adjacent to a vertex of degree 1 in $\langle S\rangle$ that has property $P_{1},|B| \geq|A|$. Thus, $b \geq a=x-b$, and so $b \geq x / 2$. Since x is odd, $b \geq(x+1) / 2$.

Each vertex of B has a private neighbor in $V-S$, and so $|V-S| \geq b$. Hence, $(3 x+1) / 2=n=|S|+|V-S| \geq x+(x+1) / 2=(3 x+1) / 2$. Thus we have equality throughout this inequality chain. This implies that $b=(x+1) / 2$ (and so $a=(x-1) / 2)$, each vertex of B has exactly one private neighbor in $V-S$, and $V-S$ consists entirely of these b external private neighbors of vertices of B.

Let $A=\left\{u_{1}, \ldots, u_{a}\right\}$. For $i=1, \ldots, a$, let v_{i} be a vertex of degree 1 in $\langle S\rangle$ that has property P_{1} and is adjacent to u_{i}. Necessarily, the vertices v_{1}, \ldots, v_{a} are distinct. This accounts for $2 a=x-1$ vertices of S. Furthermore, each v_{i} has an external private neighbor in $V-S$, and hence $\operatorname{deg}_{G} v_{i}=2$. Let v denote the remaining vertex of S. Then, v has property P_{1} and all its neighbors in $\langle S\rangle$ belong to the set A. For notational convenience, we may assume that v is adjacent to u_{1} (and possibly to other vertices of A). Hence G contains a spanning subgraph that is isomorphic to $P_{5} \cup(a-1) P_{3}$. For $i=1, \ldots, a$, let w_{i} denote the external private neighbor of v_{i}, i.e., $\operatorname{epn}\left(v_{i}, S\right)=\left\{w_{i}\right\}$, and let epn $(v, S)=\{w\}$.

If $x=3$, then either w is adjacent to w_{1}, in which case $G=C_{5}$, or w is a leaf, in which case $G=P_{5} \in \mathcal{G}$. Hence we may assume in what follows that $x \geq 5$. We proceed further with the following claim.

Claim: Each vertex of $V-S$ has degree 1 in G.
Proof. Suppose $\operatorname{deg} w \geq 2$. Then, w is adjacent to a vertex w_{i} for some i, $1 \leq i \leq a$. If $i \neq 1$, then $\left(S-\left\{u_{i}, v\right\}\right) \cup\left\{w_{i}\right\}$ is a total dominating set of G of cardinality $|S|-1<\gamma_{t}(G)$, which is impossible. Thus, w is not adjacent to w_{i} for any i with $2 \leq i \leq a$. Similarly, w_{1} is not adjacent to w_{i} for any i with $2 \leq i \leq a$. Hence $w w_{1}$ is an edge. But then since G is connected and $x \geq 5, u_{1}$ must be adjacent to some other vertex of A, and so $\left(S-\left\{u_{1}, v, v_{1}\right\}\right) \cup\left\{w, w_{1}\right\}$ is a total dominating set of G of cardinality $|S|-1$, which is impossible. Hence, $\operatorname{deg}_{G} w=1$. Similarly, $\operatorname{deg}_{G} w_{1}=1$.

Suppose, now, that there is an edge $w_{i} w_{j}$ in G where $2 \leq i<j \leq a$. Thus, $u_{i}, v_{i}, w_{i}, w_{j}, v_{j}, u_{j}$ is a path P_{6}. If u_{i} and u_{j} both have degree 1 in G, then $(S-$ $\left.\left\{u_{i}, u_{j}\right\}\right) \cup\left\{w_{i}, w_{j}\right\}$ is a minimum total dominating set of G whose induced subgraph contains more edges than the subgraph induced by S. This contradicts our choice of S. Hence, at least one of u_{i} and u_{j} has degree at least 2 .

If $u_{i} u_{j}$ is an edge and if this is the only edge in $\langle A\rangle$ incident with u_{i} or u_{j}, then, since G is connected, there is some edge of $\langle V-S\rangle$, different from $w_{i} w_{j}$, incident with w_{i} or w_{j}. We may assume $w_{i} w_{k}$ is an edge where $2 \leq k \leq a$ and $k \notin\{i, j\}$. But then G must contain a spanning subgraph H that is isomorphic to $P_{5} \cup P_{9} \cup(a-4) P_{3}$.

It follows that $\gamma_{t}(G) \leq \gamma_{t}(H) \leq 3+5+2(a-4)=2 a=x-1<\gamma_{t}(G)$, which is impossible. Hence, there must be a vertex of A, different from u_{i} and u_{j}, adjacent to u_{i} or u_{j}. If $u_{1} u_{i}$ is an edge, then $\left(S-\left\{u_{i}, u_{j}, v_{i}\right\}\right) \cup\left\{w_{i}, w_{j}\right\}$ is a total dominating set of G of cardinality $|S|-1$, which is impossible. Hence, u_{1} is not adjacent to u_{i}. Similarly, u_{1} is not adjacent to u_{j}. Hence at least one of u_{i} and u_{j} is adjacent to a vertex u_{ℓ} where $2 \leq \ell \leq a$ and $\ell \notin\{i, j\}$. But then G must contain a spanning subgraph H that is isomorphic to $P_{5} \cup P_{9} \cup(a-4) P_{3}$, which as shown earlier is impossible. We deduce therefore that there can be no edge $w_{i} w_{j}$ in G where $2 \leq i<j \leq a$. The desired result follows.

By the above claim, each vertex of $V-S$ has degree 1 in G. Since G is connected, it follows that $\langle A \cup\{v\}\rangle$ is connected, and so $G \in \mathcal{G}$.

4 Realizable Triples

Our aim in this section is to determine which triples (x, y, z) are realizable, and to find a realization of each realizable triple. By Observation $6, y \geq x \geq 2$ and $z \geq 0$. We consider three possibilities depending on whether $y<3 x / 2$ or $y \geq 3 x / 2$ with $x \geq 2$ even or $y \geq(3 x+1) / 2$ with $x \geq 3$ odd.

$4.1 y<3 x / 2$

In this subsection, we consider the case when $x \geq 2$ and $y<3 x / 2$.
Note that the bound in Theorem 7 is only meaningful for $k \leq \frac{1}{2} \gamma_{t}(G)$ since $b(G) \geq 0$ for any graph G. Thus as an immediate consequence of Theorem 7, we have the following results.

Corollary 9 If G is a graph satisfying $\gamma_{t}(G)=x, g(G)=y$, and $b(G)=z$ where $2 \leq x \leq y<3 x / 2$, then $z \geq 2 x-4 y / 3$.

Corollary 10 All triples (x, y, z) of integers with $2 \leq x \leq y<3 x / 2$ and $z<$ $2 x-4 y / 3$ are not realizable.

Hence in what follows in this subsection we restrict our attention to values of z where $z \geq 2 x-4 y / 3$.
Observation 11 The triple $(3,4,1)$ is not realizable.
Proof. Suppose G is a graph of order 5 with $\gamma_{t}(G)=3$. Let $S=\{u, v, w\}$ be a $\gamma_{t}(G)$-set. We may assume that v is adjacent to u and w. By Proposition 3, each of u and w has an external private neighbor, say u^{\prime} and w^{\prime} respectively. Now either $u^{\prime} w^{\prime} \in E(G)$, in which case $G=C_{5}$, or $u^{\prime} w^{\prime} \notin E(G)$, in which case $G=P_{5}$. Hence the only triples $(3, y, z)$ with $y+z=5$ are $(3,5,0)$ and $(3,3,2)$. The desired result follows.

We show next that all triples (x, y, z) satisfying $2 \leq x \leq y<3 x / 2$ and $z \geq$ $2 x-4 y / 3$ are realizable except for the triple $(3,4,1)$. For this purpose, we prove three lemmas.

Lemma 12 The triple $(x,(3 x-1) / 2, z)$ of integers where $x \geq 5$ is an odd integer and $z \geq 1$ is realizable.

Proof. Let $k=(x-1) / 2 \geq 2$ and let G be obtained from the disjoint union of a 2-corona of a path P_{k} on k vertices and a star $K_{1, z}$ by adding at least two edges joining the central vertex of the star to vertices of the path P_{k}. Since every minimum total dominating set of a graph contains all its support vertices, it follows that $\gamma_{t}(G)=2 k+1=x$. Furthermore, each of the z leaves of the star $K_{1, z}$ is a bad vertex in G, while each vertex of the 2-corona is a good vertex. Hence, $\gamma_{t}(G)=x$, $g(G)=3 k+1=(3 x-1) / 2$, and $b(G)=z$.
Lemma 13 The triple (x, x, z) of integers where $x \geq 2$ and $z \geq 2 x / 3$ is realizable.
Proof. Suppose $x=2$. Then, $z \geq 2$. Let G be a double star $S(\lfloor z / 2\rfloor,\lceil z / 2\rceil)$. Then the two central vertices of G form a unique $\gamma_{t}(G)$-set, and so $\gamma_{t}(G)=g(G)=2=x$ and $b(G)=z$. Hence we may assume that $x \geq 3$. We now consider three possibilities depending on whether x is congruent to 0,1 or 2 modulo 3 .

Let $\ell \geq 1$ be an integer. Let T_{0} be the tree of order 3ℓ obtained from the disjoint union of ℓ stars $K_{1,2}$ by adding $\ell-1$ edges joining central vertices of the stars. Let T_{1} be the tree of order $3 \ell+1$ obtained from the disjoint union of $\ell-1$ stars $K_{1,2}$ and a star $K_{1,3}$ by adding $\ell-1$ edges joining central vertices of the stars. Let T_{2} be the tree of order $3 \ell+2$ obtained from the disjoint union of $\ell-1$ stars $K_{1,2}$ and a star $K_{1,4}$ by adding $\ell-1$ edges joining central vertices of the stars. For $i=0,1,2$, let \mathcal{G}_{i} be the family of trees obtained from the tree T_{i} by adding vertices and edges as follows: for each leaf v of T_{i}, add at least one new vertex adjacent to v.

If $x=3 \ell+i$ for $i \in\{0,1,2\}$, then $z \geq 2 \ell+i$. Hence since T_{i} has order x and $2 \ell+i$ leaves, there exists a tree G_{i} in \mathcal{G}_{i} of order $x+z$ (so the total number of new vertices added to T_{i} to produce G_{i} is z). Since every minimum total dominating set of a graph contains all its support vertices, it follows that for each $i=0,1,2$, $S_{i}=V\left(T_{i}\right)$ is a $\gamma_{t}\left(G_{i}\right)$-set. By construction, each vertex $v \in S_{i}$ is a support vertex of G_{i} or satisfies $\left|\operatorname{pn}\left(v, S_{i}\right)\right| \geq 2$. Hence, by Theorem $5, S_{i}$ is a unique $\gamma_{t}\left(G_{i}\right)$-set, and so $\gamma_{t}\left(G_{i}\right)=g\left(G_{i}\right)=x$ and $b\left(G_{i}\right)=z$.

For integers (x, x, z) with $x \geq 2$ and $z \geq 2 x / 3$, let $G_{x, z}$ be the tree constructed in the proof of Lemma 13 that satisfies $\gamma_{t}\left(G_{x, z}\right)=x=g\left(G_{x, z}\right)$ and $b\left(G_{x, z}\right)=z$.

Lemma 14 All triples (x, y, z) of integers where $2 \leq x<y \leq(3 x-2) / 2$ and $z \geq 2 x-4 y / 3$ are realizable.

Proof. Let $y=x+k$. Then, $1 \leq k \leq(x-2) / 2$. Let $x^{\prime}=x-2 k$. Then, $x^{\prime} \geq 2$ and $z \geq 2 x^{\prime} / 3$. We now consider the tree $T=G_{x^{\prime}, z}$. Let S be the unique $\gamma_{t}(T)$-set of T (and so $|S|=x^{\prime}$) and let v be a support vertex in the subgraph $\langle S\rangle$. Let G be obtained from the disjoint union of T and a 2-corona of a path P_{k} by adding an edge joining v and a vertex of the path P_{k}. Then, $\gamma_{t}(G)=2 k+x^{\prime}=x$. Furthermore, each of the z leaves in the tree T is a bad vertex in G, while each vertex of the 2 -corona is a good vertex in G. Hence, $\gamma_{t}(G)=x, g(G)=3 k+x^{\prime}=x+k=y$, and $b(G)=z$.

An immediate consequence of Corollary 9, Observation 11, and Lemmas 12, 13, and 14 now follows.

Theorem 15 Let (x, y, z) be a triple of integers where $2 \leq x \leq y<3 x / 2$. Then (x, y, z) is realizable if and only if $z \geq 2 x-4 y / 3$ and $(x, y, z) \neq(3,4,1)$.

$4.2 \quad x$ even and $y \geq 3 x / 2$

In this subsection, we consider the case when $x \geq 2$ is even and $y \geq 3 x / 2$.
Lemma 16 All triples (x, y, z) of integers where $x \geq 4$ is even, $y \geq 3 x / 2$, and $z \geq 0$ are realizable.

Proof. Let $k=x / 2 \geq 2$. For $i=1,2, \ldots, k$, since $y \geq 3 k$ we can choose integers $n_{i} \geq 2$ such that $\sum_{i=1}^{k} n_{i}=y-k$. For $i=1,2, \ldots, k$, let F_{i} be obtained from $K_{n_{i}}$ by adding a new vertex u_{i} and joining it to a vertex of $K_{n_{i}}$. Let F be the connected graph obtained from the disjoint union of the k graphs $F_{1}, F_{2}, \ldots, F_{k}$ by adding the edges $u_{i} u_{i+1}$ for $i=1, \ldots, k-1$. If $z=0$, let $G=F$, while if $z \geq 1$, let G be obtained from F by adding z new vertices and joining each of these z new vertices to each of the vertices $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Then, $\gamma_{t}(G)=2 k=x$. Furthermore, each of the z vertices added to F when constructing G is a bad vertex in G, while all other vertices of G are good vertices. Hence, $\gamma_{t}(G)=x, g(G)=y$, and $b(G)=z$.

Observation 17 All triples $(2, y, 0)$ of integers where $y \geq 2$ are realizable.
Proof. The complete graph $G=K_{y}$ is a realization of $(2, y, 0)$.
Observation 18 The triple $(2,3,1)$ is not realizable.
Proof. It is straightforward to check that if G is a connected graph of order 4, then either $G=P_{4}$, in which case $b(G)=2$, or $G \neq P_{4}$, in which case $b(G)=0$.

Lemma 19 All triples $(2,3, z)$ where $z \geq 2$ are realizable.
Proof. Let G be obtained from a C_{4} by attaching $z-1$ leaves to a vertex v of the cycle. Then, v and any one of its two neighbors on the 4-cycle totally dominate G, and so $\gamma_{t}(G)=2$. However, neither any leaf of G nor the vertex not adjacent to v belong to any $\gamma_{t}(G)$-set. Thus, $g(G)=3$, while $b(G)=z$.

Lemma 20 All triples $(2, y, z)$ where $y \geq 4$ and $z \geq 1$ are realizable.
Proof. Let F be the graph obtained from a complete graph K_{y-1} by subdividing one edge $u v$ exactly once. Let w be the resulting vertex of degree 2 adjacent to u and v. Let G be obtained from F by adding z new vertices and joining each new vertex to both u and w. Then, the vertex u together with any vertex of $V(F)-\{u, v\}$ totally dominates G, as does the set $\{v, w\}$. However, none of the z vertices (of degree 2 that were added to F to produce G) belong to a $\gamma_{t}(G)$-set. Thus, $\gamma_{t}(G)=2, g(G)=y$, and $b(G)=z$.

We summarize the results in this subsection as follows.
Theorem 21 All triples (x, y, z) of integers where $x \geq 2$ is even, $y \geq 3 x / 2$ and $z \geq 0$ are realizable, except for the triple $(2,3,1)$.

$4.3 x$ odd and $y \geq(3 x+1) / 2$

In this subsection, we consider the case when $x \geq 3$ is odd and $y \geq(3 x+1) / 2$.
Lemma 22 All triples (x, y, z) of integers where $x \geq 5$ is odd, $y \geq(3 x+1) / 2$ and $z \geq 1$ are realizable.

Proof. Let $k=(x-1) / 2 \geq 2$. For $i=1, \ldots, k$, since $y \geq 3 k+2$ we can choose integers $n_{i} \geq 2$ such that $\sum_{i=1}^{k} n_{i}=y-k-1$. For $i=1,2, \ldots, k$, let F_{i} be obtained from $K_{n_{i}}$ by adding a new vertex u_{i} and joining it to a vertex of $K_{n_{i}}$. Let F be the connected graph obtained from the disjoint union of the k graphs $F_{1}, F_{2}, \ldots, F_{k}$ by adding a new vertex w and adding the edges $w u_{i}$ for $i=1,2, \ldots, k$. Let G be obtained from F by adding $z \geq 1$ new vertices and joining them to w. Then, $\gamma_{t}(G)=2 k+1=x$. Furthermore, each of the z vertices added to F when constructing G is a bad vertex in G, while all other vertices of G are good vertices. Hence, $\gamma_{t}(G)=x, g(G)=y$, and $b(G)=z$.

Lemma 23 All triples $(x,(3 x+1) / 2,0)$ where $x \geq 5$ is an odd integer are not realizable.

Proof. Let G be a connected graph of order $n=(3 x+1) / 2$ with $\gamma_{t}(G)=x$, where $x \geq 5$ is an odd integer. Then, by Theorem $8, G \in \mathcal{G}$. However, then $g(G) \in\{n-1, n-2\}$ and $b(G) \in\{1,2\}$. The desired result now follows.

Lemma 24 All triples $(x, y, 0)$ of integers where $x \geq 5$ is odd and $y \geq(3 x+3) / 2$ are realizable.

Proof. Let $k=(x-3) / 2 \geq 1$. For $i=1, \ldots, k$, since $y \geq 3 k+6$ we can choose integers $n_{i} \geq 2$ such that $\sum_{i=1}^{k} n_{i}=y-k-6$. For $i=1, \ldots, k$, let F_{i} be obtained from $K_{n_{i}}$ by adding a new vertex u_{i} and joining it to a vertex v_{i} of $K_{n_{i}}$. Let F be the connected graph obtained from the disjoint union of the k graphs F_{1}, \ldots, F_{k} by adding a new vertex w and adding the edges $w u_{i}$ for $i=1, \ldots, k$. Let G be obtained from F by adding a 5-cycle C and joining one of its vertices to the vertex w. Then any total dominating set of G must contain at least two vertices from F_{i} for each $i=1, \ldots, k$ and at least three vertices from $V(C) \cup\{w\}$. Hence, $\gamma_{t}(G) \geq$ $2 k+3=x$. However, the set $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{k}\right\} \cup\{a, b, c\}$ where a, b, c are any three consecutive vertices on the 5 -cycle, is a total dominating set of G, and so $\gamma_{t}(G) \leq x$. Consequently, $\gamma_{t}(G)=x$. In fact, it is not difficult to check that every vertex of G belongs to some $\gamma_{t}(G)$-set. Hence, $\gamma_{t}(G)=x, g(G)=y$, and $b(G)=0$.

Observation 25 All triples $(3, y, z)$ of integers where $y \geq 5$ and $z \geq 0$ are realizable.

Proof. Let F be the graph of order y obtained from a complete graph K_{y-2} by subdividing one edge $u v$ exactly twice. Let u^{\prime} and v^{\prime} denote the resulting new vertices where $u, u^{\prime}, v^{\prime}, v$ is a new path joining u and v. If $z=0$, let $G=F$, while if $z \geq 1$, then let G be the graph obtained from F by adding z new vertices and
joining each new vertex to both u^{\prime} and v^{\prime}. Clearly, $\gamma_{t}(G) \geq 3$. The sets $\left\{t, u, u^{\prime}\right\}$ and $\left\{t, v, v^{\prime}\right\}$ where $t \in V(F)-\left\{u, u^{\prime}, v, v^{\prime}\right\}$ both totally dominate G, and so $\gamma_{t}(G) \leq 3$. Consequently, $\gamma_{t}(G)=3$. However, none of the z vertices (of degree 2 that were added to F to produce G) belong to a $\gamma_{t}(G)$-set. Thus, $\gamma_{t}(G)=3, g(G)=|V(F)|=y$, and $b(G)=z$.

We summarize the results in this subsection as follows.
Theorem 26 All triples (x, y, z) of integers where $x \geq 3$ is odd, $y \geq(3 x+1) / 2$, and $z \geq 0$ are realizable, except for those triples $(x,(3 x+1) / 2,0)$ where $x \geq 5$ is odd.

4.4 Summary

As a consequence of Theorems 15, 21, and 26 we have the following characterization of all triples (x, y, z) that are realizable.

Theorem 27 All triples (x, y, z) of integers where $2 \leq x \leq y$ and $z \geq 0$ are realizable except for the triples
(a) $(2,3,1)$,
(b) $(3,4,1)$,
(c) $(x,(3 x+1) / 2,0)$ where $x \geq 5$ is odd, and
(d) (x, y, z) where $y<3 x / 2$ and $z<2 x-4 y / 3$.

References

[1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number. J. Combin. Math. Combin. Comput. 34 (2000), 81-95.
[2] G. Chartrand and L. Lesniak, Graphs 83 Digraphs: Third Edition, Chapman \& Hall, London (1996).
[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs. Networks 10 (1980), 211-219.
[4] E.J. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in every minimum total dominating set of a tree. Discrete Math., to appear.
[5] O. Favaron, M.A. Henning, C.M. Mynhardt and J. Puech, Total domination in graphs with minimum degree three. J. Graph Theory 34(1) (2000), 9-19.
[6] G.H. Fricke, T.W. Haynes, S.S. Hedetniemi, S.T. Hedetniemi and R.C. Laskar, Excellent trees. Bull. Inst. Combin. Appl. 34 (2002), 27-38.
[7] T.W. Haynes, S.T. Hedetniemi and PJ. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[9] T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets. Discussiones Mathematicae Graph Theory, to appear.
[10] M.A. Henning, Graphs with large total domination number. J. Graph Theory 35(1) (2000), 21-45.
[11] M.A. Henning, Total domination excellent trees. Discrete Math., to appear.

[^0]: * Research supported in part by the South African National Research Foundation and the University of Natal

