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Abstract

A set S of vertices in a graph G is a total dominating set of G if every
vertex of G is adjacent to some vertex in S. The total domination number
γt(G) is the minimum cardinality of a total dominating set of G. A vertex
that is contained in some minimum total dominating set of a graph G is a
good vertex, otherwise it is a bad vertex. We determine for which triples
(x, y, z) there exists a connected graph G with γt(G) = x and with y good
vertices and z bad vertices, and we give graphs realizing these triples.

1 Introduction

Let G be a graph without isolated vertices, and let v be a vertex of G. A set
S ⊆ V (G) is a total dominating set if every vertex in V (G) is adjacent to a vertex in
S. Every graph without isolated vertices has a total dominating set, since S = V (G)
is such a set. The total domination number of G, denoted by γt(G), is the minimum
cardinality of a total dominating set. A total dominating set of cardinality γt(G) we
call a γt(G)-set.

Total domination in graphs was introduced by Cockayne, Dawes and Hedet-
niemi [3] and is now well studied in graph theory (see, for example, [5] and [10]).
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The literature on this subject has been surveyed and detailed in the two books by
Haynes, Hedetniemi and Slater [7, 8].

For notation and graph theory terminology, we in general follow [2, 7]. Specifi-
cally, let G = (V, E) be a graph with vertex set V of order n and edge set E. For
any vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E},
and its closed neighborhood is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , its
open neighborhood is the set N(S) = ∪v∈SN(v) and its closed neighborhood is the set
N [S] = N(S) ∪ S. For S ⊆ V , we denote the subgraph induced by S by 〈S〉.

The private neighborhood pn(v, S) of v ∈ S is defined by pn(v, S) = N(v) −
N(S − {v}). Equivalently, pn(v, S) = {u ∈ V | N(u) ∩ S = {v}}. Each vertex in
pn(v, S) is called a private neighbor of v. The external private neighborhood epn(v, S)
of v with respect to S consists of those private neighbors of v in V − S. Thus,
epn(v, S) = pn(v, S) ∩ (V − S).

A leaf of a tree is a vertex of degree 1, while a support vertex is a vertex adjacent
to a leaf. A double star is a tree that contains exactly two vertices that are not
end-vertices; necessarily, these two vertices are adjacent. If the one central vertex of
a double star is adjacent to r leaves and the other central vertex to s leaves, then we
denote the double star by S(r, s).

We call a vertex that is contained in some minimum total dominating set of a
graph G is a good vertex, otherwise it is a bad vertex. Let g(G) (respectively, b(G))
denote the number of good (respectively, bad) vertices in a graph G. Note that for
any graph G of order n without an isolated vertex, g(G) + b(G) = n.

Fricke, Haynes, Hedetniemi, Hedetniemi and Laskar [6] defined a graph G to be
γt-excellent if every vertex of G is a good vertex, i.e., if g(G) = n. Henning [11]
provided a constructive characterization of γt-excellent trees. Cockayne, Henning
and Mynhardt [4] characterized the set of vertices of a tree that are contained in
all, or in no, respectively, minimum total dominating sets of the tree. Haynes and
Henning [9] studied graphs having unique minimum total dominating sets, i.e., graphs
G for which g(G) = γt(G) and b(G) = n − γt(G). They provided three equivalent
conditions for a tree to have a unique minimum total dominating set and gave a
constructive characterization of such trees.

Let (x, y, z) be a triple of integers. If there exists a connected graph G such that
γt(G) = x, g(G) = y, and b(G) = z, then we shall call G a realization of (x, y, z) and
we call the triple (x, y, z) realizable. Our aim is to determine which triples (x, y, z)
are realizable, and to find a realization of each realizable triple.

2 Known Results

The decision problem to determine the total domination number of a graph is known
to be NP-complete. Hence it is of interest to determine upper bounds on the total
domination number of a graph. Cockayne et al. [3] obtained the following upper
bound on the total domination number of a connected graph in terms of the order
of the graph.
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Theorem 1 (Cockayne et al. [3]) If G is a connected graph of order n ≥ 3, then
γt(G) ≤ 2n/3.

A large family of graphs attaining the bound in Theorem 1 can be established
using the following transformation of a graph. The 2-corona of a graph H is the graph
of order 3|V (H)| obtained from H by attaching a path of length 2 to each vertex of
H so that the resulting paths are vertex disjoint. The 2-corona of a connected graph
has total domination number two-thirds its order. The following characterization of
connected graphs of order at least 3 with total domination number exactly two-thirds
their order is obtained in [1].

Theorem 2 (Brigham et al. [1]) Let G be a connected graph of order n ≥ 3.
Then γt(G) = 2n/3 if and only if G is C3, C6 or the 2-corona of some connected
graph.

The following property of minimal total dominating sets is established in [3].

Proposition 3 (Cockayne et al. [3]) If S is a minimal total dominating set of a
connected graph G = (V, E), then each v ∈ S has at least one of the following two
properties:

P1 : There exists a vertex w ∈ V − S such that N(w) ∩ S = {v};
P2 : 〈S − {v}〉 contains an isolated vertex.

In [10], the following property of minimum total dominating sets in graphs is
established.

Theorem 4 (Henning [10]) If G is a connected graph of order n ≥ 3 and G 
∼= Kn,
then G has a minimum total dominating set S that maximizes the number of edges
in 〈S〉 and such that every vertex of S has property P1 or is adjacent to a vertex of
degree 1 in 〈S〉 that has property P1.

The following characterization of trees that have a unique minimum total domi-
nating set is proven in [9].

Theorem 5 (Haynes, Henning [9]) Let T be a tree of order n ≥ 2. Then T has
a unique γt(T )-set if and only if T has a γt(T )-set S for which every vertex v ∈ S is
a support vertex or satisfies |pn(v, S)| ≥ 2.

3 Preliminary Results

Our aim in this section is to establish a few preliminary results that we will need in
subsequent sections.

Every graph G with no isolated vertex satisfies γt(G) ≥ 2 and b(G) ≥ 0. Since
every vertex in a γt(G)-set is a good vertex, g(G) ≥ γt(G). This yields the following
observation.
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Observation 6 If (x, y, z) is a realizable triple, then y ≥ x ≥ 2 and z ≥ 0.

The next result establishes a lower bound on the number of bad vertices in a
graph.

Theorem 7 If G is a graph with no isolated vertex satisfying g(G) = γt(G) + k,
then b(G) ≥ 2

3
(γt(G) − 2k).

Proof. Let S be a minimum dominating set of G = (V, E) in which every vertex has
property P1 or is adjacent to a vertex of degree 1 in 〈S〉 that has property P1. Such
a γt(G)-set exists by Theorem 4. Let A = {v ∈ S | v does not have property P1}.
Thus each vertex of A is adjacent to a vertex of degree 1 in 〈S〉 that has property P1.

Claim: |A| ≤ (γt(G) + k)/3.
Proof. Let A1 = {v ∈ A | v is adjacent to exactly one vertex of degree 1 in 〈S〉

that has property P1} and let A2 = A−A1. For i = 1, 2, let A′
i be the set of vertices

of degree 1 in 〈S〉 that have property P1 and are adjacent to a vertex of Ai. Then,
|A′

1| = |A1| and |A′
2| ≥ 2|A2|. Hence,

γt(G) = |S| ≥ |A1| + |A′
1| + |A2| + |A′

2| ≥ 2|A1| + 3|A2|,

and so |A2| ≤ (γt(G) − 2|A1|)/3. We show next that |A1| ≤ k. Let v ∈ A′
1 and let

u ∈ A1 be the neighbor of v in S. Further, let w ∈ epn(v, S). Since v is the only
neighbor of u of degree 1 in 〈S〉, (S − {u}) ∪ {w} is a γt(G)-set, and so w is a good
vertex. Since there are exactly k good vertices in V − S, |A1| = |A′

1| ≤ k. Hence,
|A| = |A1| + |A2| ≤ |A1| + (γt(G) − 2|A1|)/3 = (γt(G) + |A1|)/3 ≤ (γt(G) + k)/3, as
desired. �

Let C denote the set of vertices in V −S that are adjacent to at least one vertex
of S − A, i.e., C = N(S − A) ∩ (V − S). Since every vertex in S − A has at least
one external private neighbor in V − S, it follows that |C| ≥ |S − A| = γt(G) − |A|.
Thus, by the above claim, |C| ≥ (2γt(G)−k)/3. On the other hand, |C| ≤ |V −S| =
n−γt(G) = b(G)+ g(G)− (g(G)−k) = b(G)+k. Hence, b(G)+k ≥ (2γt(G)−k)/3,
and so b(G) ≥ (2γt(G) − 4k)/3. This completes the proof of Theorem 7. �

By Theorem 1, every connected graph G of order n ≥ 3 satisfies γt(G) ≤
2n/3. Theorem 2 provides a characterization of those connected graphs G satis-
fying γt(G) = 2n/3. We shall need a characterization of connected graphs G of
order n ≥ 5 satisfying γt(G) = (2n− 1)/3. For this purpose, we define a family G of
graphs as follows.

Let G be the graph of order 3|V (H)| − 1 obtained from a non-trivial connected
graph H by attaching a path of length 1 (a pendant vertex) to a specified vertex of
H and attaching a path of length 2 to every other vertex of H so that the resulting
paths are vertex disjoint. Let G be the family of all such graphs G.

Theorem 8 Let G be a connected graph of order n ≥ 5. Then γt(G) = (2n − 1)/3
if and only if G = C5 or G ∈ G.
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Proof. The sufficiency is straightforward to verify. To prove the necessity, let
x = (2n − 1)/3 and suppose that G is a connected graph of order n ≥ 5 such that
γt(G) = x. Then, x ≥ 3. By Theorem 4, G has a minimum total dominating set
S that maximizes the number of edges in 〈S〉 and such that every vertex of S has
property P1 or is adjacent to a vertex of degree 1 in 〈S〉 that has property P1.

Let A = {v ∈ S | v does not have property P1} and let B = S − A. Further,
let |A| = a and |B| = b, and so a = x − b. Since each vertex of A is adjacent to a
vertex of degree 1 in 〈S〉 that has property P1, |B| ≥ |A|. Thus, b ≥ a = x − b, and
so b ≥ x/2. Since x is odd, b ≥ (x + 1)/2.

Each vertex of B has a private neighbor in V − S, and so |V − S| ≥ b. Hence,
(3x + 1)/2 = n = |S| + |V − S| ≥ x + (x + 1)/2 = (3x + 1)/2. Thus we have
equality throughout this inequality chain. This implies that b = (x + 1)/2 (and so
a = (x − 1)/2), each vertex of B has exactly one private neighbor in V − S, and
V − S consists entirely of these b external private neighbors of vertices of B.

Let A = {u1, . . . , ua}. For i = 1, . . . , a, let vi be a vertex of degree 1 in 〈S〉 that
has property P1 and is adjacent to ui. Necessarily, the vertices v1, . . . , va are distinct.
This accounts for 2a = x − 1 vertices of S. Furthermore, each vi has an external
private neighbor in V −S, and hence degG vi = 2. Let v denote the remaining vertex
of S. Then, v has property P1 and all its neighbors in 〈S〉 belong to the set A. For
notational convenience, we may assume that v is adjacent to u1 (and possibly to
other vertices of A). Hence G contains a spanning subgraph that is isomorphic to
P5 ∪ (a − 1)P3. For i = 1, . . . , a, let wi denote the external private neighbor of vi,
i.e., epn(vi, S) = {wi}, and let epn(v, S) = {w}.

If x = 3, then either w is adjacent to w1, in which case G = C5, or w is a leaf,
in which case G = P5 ∈ G. Hence we may assume in what follows that x ≥ 5. We
proceed further with the following claim.

Claim: Each vertex of V − S has degree 1 in G.
Proof. Suppose deg w ≥ 2. Then, w is adjacent to a vertex wi for some i,

1 ≤ i ≤ a. If i 
= 1, then (S − {ui, v}) ∪ {wi} is a total dominating set of G of
cardinality |S| − 1 < γt(G), which is impossible. Thus, w is not adjacent to wi for
any i with 2 ≤ i ≤ a. Similarly, w1 is not adjacent to wi for any i with 2 ≤ i ≤ a.
Hence ww1 is an edge. But then since G is connected and x ≥ 5, u1 must be adjacent
to some other vertex of A, and so (S − {u1, v, v1}) ∪ {w, w1} is a total dominating
set of G of cardinality |S| − 1, which is impossible. Hence, degG w = 1. Similarly,
degG w1 = 1.

Suppose, now, that there is an edge wiwj in G where 2 ≤ i < j ≤ a. Thus,
ui, vi, wi, wj, vj , uj is a path P6. If ui and uj both have degree 1 in G, then (S −
{ui, uj})∪{wi, wj} is a minimum total dominating set of G whose induced subgraph
contains more edges than the subgraph induced by S. This contradicts our choice of
S. Hence, at least one of ui and uj has degree at least 2.

If uiuj is an edge and if this is the only edge in 〈A〉 incident with ui or uj, then,
since G is connected, there is some edge of 〈V − S〉, different from wiwj, incident
with wi or wj. We may assume wiwk is an edge where 2 ≤ k ≤ a and k /∈ {i, j}. But
then G must contain a spanning subgraph H that is isomorphic to P5∪P9∪(a−4)P3.
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It follows that γt(G) ≤ γt(H) ≤ 3 + 5 + 2(a − 4) = 2a = x − 1 < γt(G), which is
impossible. Hence, there must be a vertex of A, different from ui and uj, adjacent to
ui or uj. If u1ui is an edge, then (S−{ui, uj, vi})∪{wi, wj} is a total dominating set of
G of cardinality |S|−1, which is impossible. Hence, u1 is not adjacent to ui. Similarly,
u1 is not adjacent to uj. Hence at least one of ui and uj is adjacent to a vertex u�

where 2 ≤ � ≤ a and � /∈ {i, j}. But then G must contain a spanning subgraph H
that is isomorphic to P5 ∪ P9 ∪ (a − 4)P3, which as shown earlier is impossible. We
deduce therefore that there can be no edge wiwj in G where 2 ≤ i < j ≤ a. The
desired result follows. �

By the above claim, each vertex of V −S has degree 1 in G. Since G is connected,
it follows that 〈A ∪ {v}〉 is connected, and so G ∈ G. �

4 Realizable Triples

Our aim in this section is to determine which triples (x, y, z) are realizable, and to
find a realization of each realizable triple. By Observation 6, y ≥ x ≥ 2 and z ≥ 0.
We consider three possibilities depending on whether y < 3x/2 or y ≥ 3x/2 with
x ≥ 2 even or y ≥ (3x + 1)/2 with x ≥ 3 odd.

4.1 y < 3x/2

In this subsection, we consider the case when x ≥ 2 and y < 3x/2.
Note that the bound in Theorem 7 is only meaningful for k ≤ 1

2
γt(G) since

b(G) ≥ 0 for any graph G. Thus as an immediate consequence of Theorem 7, we
have the following results.

Corollary 9 If G is a graph satisfying γt(G) = x, g(G) = y, and b(G) = z where
2 ≤ x ≤ y < 3x/2, then z ≥ 2x − 4y/3.

Corollary 10 All triples (x, y, z) of integers with 2 ≤ x ≤ y < 3x/2 and z <
2x − 4y/3 are not realizable.

Hence in what follows in this subsection we restrict our attention to values of z
where z ≥ 2x − 4y/3.

Observation 11 The triple (3, 4, 1) is not realizable.

Proof. Suppose G is a graph of order 5 with γt(G) = 3. Let S = {u, v, w} be a
γt(G)-set. We may assume that v is adjacent to u and w. By Proposition 3, each
of u and w has an external private neighbor, say u′ and w′ respectively. Now either
u′w′ ∈ E(G), in which case G = C5, or u′w′ /∈ E(G), in which case G = P5. Hence
the only triples (3, y, z) with y + z = 5 are (3, 5, 0) and (3, 3, 2). The desired result
follows. �

We show next that all triples (x, y, z) satisfying 2 ≤ x ≤ y < 3x/2 and z ≥
2x − 4y/3 are realizable except for the triple (3, 4, 1). For this purpose, we prove
three lemmas.
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Lemma 12 The triple (x, (3x − 1)/2, z) of integers where x ≥ 5 is an odd integer
and z ≥ 1 is realizable.

Proof. Let k = (x − 1)/2 ≥ 2 and let G be obtained from the disjoint union
of a 2-corona of a path Pk on k vertices and a star K1,z by adding at least two
edges joining the central vertex of the star to vertices of the path Pk. Since every
minimum total dominating set of a graph contains all its support vertices, it follows
that γt(G) = 2k + 1 = x. Furthermore, each of the z leaves of the star K1,z is a bad
vertex in G, while each vertex of the 2-corona is a good vertex. Hence, γt(G) = x,
g(G) = 3k + 1 = (3x − 1)/2, and b(G) = z. �

Lemma 13 The triple (x, x, z) of integers where x ≥ 2 and z ≥ 2x/3 is realizable.

Proof. Suppose x = 2. Then, z ≥ 2. Let G be a double star S(�z/2, �z/2�). Then
the two central vertices of G form a unique γt(G)-set, and so γt(G) = g(G) = 2 = x
and b(G) = z. Hence we may assume that x ≥ 3. We now consider three possibilities
depending on whether x is congruent to 0, 1 or 2 modulo 3.

Let � ≥ 1 be an integer. Let T0 be the tree of order 3� obtained from the disjoint
union of � stars K1,2 by adding � − 1 edges joining central vertices of the stars. Let
T1 be the tree of order 3�+1 obtained from the disjoint union of �− 1 stars K1,2 and
a star K1,3 by adding � − 1 edges joining central vertices of the stars. Let T2 be the
tree of order 3� + 2 obtained from the disjoint union of � − 1 stars K1,2 and a star
K1,4 by adding � − 1 edges joining central vertices of the stars. For i = 0, 1, 2, let
Gi be the family of trees obtained from the tree Ti by adding vertices and edges as
follows: for each leaf v of Ti, add at least one new vertex adjacent to v.

If x = 3� + i for i ∈ {0, 1, 2}, then z ≥ 2� + i. Hence since Ti has order x and
2� + i leaves, there exists a tree Gi in Gi of order x + z (so the total number of new
vertices added to Ti to produce Gi is z). Since every minimum total dominating
set of a graph contains all its support vertices, it follows that for each i = 0, 1, 2,
Si = V (Ti) is a γt(Gi)-set. By construction, each vertex v ∈ Si is a support vertex of
Gi or satisfies |pn(v, Si)| ≥ 2. Hence, by Theorem 5, Si is a unique γt(Gi)-set, and
so γt(Gi) = g(Gi) = x and b(Gi) = z. �

For integers (x, x, z) with x ≥ 2 and z ≥ 2x/3, let Gx,z be the tree constructed
in the proof of Lemma 13 that satisfies γt(Gx,z) = x = g(Gx,z) and b(Gx,z) = z.

Lemma 14 All triples (x, y, z) of integers where 2 ≤ x < y ≤ (3x − 2)/2 and
z ≥ 2x − 4y/3 are realizable.

Proof. Let y = x + k. Then, 1 ≤ k ≤ (x − 2)/2. Let x′ = x − 2k. Then, x′ ≥ 2
and z ≥ 2x′/3. We now consider the tree T = Gx′,z. Let S be the unique γt(T )-set
of T (and so |S| = x′) and let v be a support vertex in the subgraph 〈S〉. Let G be
obtained from the disjoint union of T and a 2-corona of a path Pk by adding an edge
joining v and a vertex of the path Pk. Then, γt(G) = 2k+x′ = x. Furthermore, each
of the z leaves in the tree T is a bad vertex in G, while each vertex of the 2-corona is
a good vertex in G. Hence, γt(G) = x, g(G) = 3k + x′ = x + k = y, and b(G) = z. �

An immediate consequence of Corollary 9, Observation 11, and Lemmas 12, 13,
and 14 now follows.
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Theorem 15 Let (x, y, z) be a triple of integers where 2 ≤ x ≤ y < 3x/2. Then
(x, y, z) is realizable if and only if z ≥ 2x − 4y/3 and (x, y, z) 
= (3, 4, 1).

4.2 x even and y ≥ 3x/2

In this subsection, we consider the case when x ≥ 2 is even and y ≥ 3x/2.

Lemma 16 All triples (x, y, z) of integers where x ≥ 4 is even, y ≥ 3x/2, and z ≥ 0
are realizable.

Proof. Let k = x/2 ≥ 2. For i = 1, 2, . . . , k, since y ≥ 3k we can choose integers
ni ≥ 2 such that

∑k
i=1 ni = y − k. For i = 1, 2, . . . , k, let Fi be obtained from Kni

by adding a new vertex ui and joining it to a vertex of Kni
. Let F be the connected

graph obtained from the disjoint union of the k graphs F1, F2, . . . , Fk by adding the
edges uiui+1 for i = 1, . . . , k − 1. If z = 0, let G = F , while if z ≥ 1, let G be
obtained from F by adding z new vertices and joining each of these z new vertices
to each of the vertices {u1, u2, . . . , uk}. Then, γt(G) = 2k = x. Furthermore, each of
the z vertices added to F when constructing G is a bad vertex in G, while all other
vertices of G are good vertices. Hence, γt(G) = x, g(G) = y, and b(G) = z. �

Observation 17 All triples (2, y, 0) of integers where y ≥ 2 are realizable.

Proof. The complete graph G = Ky is a realization of (2, y, 0). �

Observation 18 The triple (2, 3, 1) is not realizable.

Proof. It is straightforward to check that if G is a connected graph of order 4, then
either G = P4, in which case b(G) = 2, or G 
= P4, in which case b(G) = 0. �

Lemma 19 All triples (2, 3, z) where z ≥ 2 are realizable.

Proof. Let G be obtained from a C4 by attaching z − 1 leaves to a vertex v of the
cycle. Then, v and any one of its two neighbors on the 4-cycle totally dominate G,
and so γt(G) = 2. However, neither any leaf of G nor the vertex not adjacent to v
belong to any γt(G)-set. Thus, g(G) = 3, while b(G) = z. �

Lemma 20 All triples (2, y, z) where y ≥ 4 and z ≥ 1 are realizable.

Proof. Let F be the graph obtained from a complete graph Ky−1 by subdividing one
edge uv exactly once. Let w be the resulting vertex of degree 2 adjacent to u and v.
Let G be obtained from F by adding z new vertices and joining each new vertex to
both u and w. Then, the vertex u together with any vertex of V (F )− {u, v} totally
dominates G, as does the set {v, w}. However, none of the z vertices (of degree 2 that
were added to F to produce G) belong to a γt(G)-set. Thus, γt(G) = 2, g(G) = y,
and b(G) = z. �

We summarize the results in this subsection as follows.

Theorem 21 All triples (x, y, z) of integers where x ≥ 2 is even, y ≥ 3x/2 and
z ≥ 0 are realizable, except for the triple (2, 3, 1).
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4.3 x odd and y ≥ (3x + 1)/2

In this subsection, we consider the case when x ≥ 3 is odd and y ≥ (3x + 1)/2.

Lemma 22 All triples (x, y, z) of integers where x ≥ 5 is odd, y ≥ (3x + 1)/2 and
z ≥ 1 are realizable.

Proof. Let k = (x − 1)/2 ≥ 2. For i = 1, . . . , k, since y ≥ 3k + 2 we can choose
integers ni ≥ 2 such that

∑k
i=1 ni = y − k − 1. For i = 1, 2, . . . , k, let Fi be

obtained from Kni
by adding a new vertex ui and joining it to a vertex of Kni

.
Let F be the connected graph obtained from the disjoint union of the k graphs
F1, F2, . . . , Fk by adding a new vertex w and adding the edges wui for i = 1, 2, . . . , k.
Let G be obtained from F by adding z ≥ 1 new vertices and joining them to w.
Then, γt(G) = 2k + 1 = x. Furthermore, each of the z vertices added to F when
constructing G is a bad vertex in G, while all other vertices of G are good vertices.
Hence, γt(G) = x, g(G) = y, and b(G) = z. �

Lemma 23 All triples (x, (3x + 1)/2, 0) where x ≥ 5 is an odd integer are not
realizable.

Proof. Let G be a connected graph of order n = (3x + 1)/2 with γt(G) = x,
where x ≥ 5 is an odd integer. Then, by Theorem 8, G ∈ G. However, then
g(G) ∈ {n − 1, n − 2} and b(G) ∈ {1, 2}. The desired result now follows. �

Lemma 24 All triples (x, y, 0) of integers where x ≥ 5 is odd and y ≥ (3x + 3)/2
are realizable.

Proof. Let k = (x − 3)/2 ≥ 1. For i = 1, . . . , k, since y ≥ 3k + 6 we can choose
integers ni ≥ 2 such that

∑k
i=1 ni = y − k − 6. For i = 1, . . . , k, let Fi be obtained

from Kni
by adding a new vertex ui and joining it to a vertex vi of Kni

. Let F
be the connected graph obtained from the disjoint union of the k graphs F1, . . . , Fk

by adding a new vertex w and adding the edges wui for i = 1, . . . , k. Let G be
obtained from F by adding a 5-cycle C and joining one of its vertices to the vertex
w. Then any total dominating set of G must contain at least two vertices from Fi

for each i = 1, . . . , k and at least three vertices from V (C) ∪ {w}. Hence, γt(G) ≥
2k + 3 = x. However, the set {u1, . . . , uk, v1, . . . , vk} ∪ {a, b, c} where a, b, c are any
three consecutive vertices on the 5-cycle, is a total dominating set of G, and so
γt(G) ≤ x. Consequently, γt(G) = x. In fact, it is not difficult to check that every
vertex of G belongs to some γt(G)-set. Hence, γt(G) = x, g(G) = y, and b(G) = 0. �

Observation 25 All triples (3, y, z) of integers where y ≥ 5 and z ≥ 0 are realizable.

Proof. Let F be the graph of order y obtained from a complete graph Ky−2 by
subdividing one edge uv exactly twice. Let u′ and v′ denote the resulting new
vertices where u, u′, v′, v is a new path joining u and v. If z = 0, let G = F , while
if z ≥ 1, then let G be the graph obtained from F by adding z new vertices and
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joining each new vertex to both u′ and v′. Clearly, γt(G) ≥ 3. The sets {t, u, u′} and
{t, v, v′} where t ∈ V (F ) − {u, u′, v, v′} both totally dominate G, and so γt(G) ≤ 3.
Consequently, γt(G) = 3. However, none of the z vertices (of degree 2 that were added
to F to produce G) belong to a γt(G)-set. Thus, γt(G) = 3, g(G) = |V (F )| = y, and
b(G) = z. �

We summarize the results in this subsection as follows.

Theorem 26 All triples (x, y, z) of integers where x ≥ 3 is odd, y ≥ (3x+1)/2, and
z ≥ 0 are realizable, except for those triples (x, (3x + 1)/2, 0) where x ≥ 5 is odd.

4.4 Summary

As a consequence of Theorems 15, 21, and 26 we have the following characterization
of all triples (x, y, z) that are realizable.

Theorem 27 All triples (x, y, z) of integers where 2 ≤ x ≤ y and z ≥ 0 are realizable
except for the triples

(a) (2, 3, 1),
(b) (3, 4, 1),
(c) (x, (3x + 1)/2, 0) where x ≥ 5 is odd, and
(d) (x, y, z) where y < 3x/2 and z < 2x − 4y/3.
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