
Intersection numbers of Latin squares with their
own orthogonal mates∗

Yanxun Chang

Department of Mathematics
Northern Jiaotong University

Beijing 100044, CHINA
yxchang@center.njtu.edu.cn

Giovanni Lo Faro

Department of Mathematics
University of Messina

Contrada Papardo, 31 – 98166 Sant’ Agata
Messina, ITALY
lofaro@unime.it

Abstract

Let J∗(v) be the set of all integers k such that there is a pair of Latin
squares L and L′ with their own orthogonal mates on the same v-set, and
with L and L′ having k cells in common. In this article we completely
determine the set J∗(v) for integers v ≥ 24 and v = 1, 3, 4, 5, 8, 9. For
v = 7 and 10 ≤ v ≤ 23, there are only a few cases left undecided for the
set J∗(v).

1 Introduction

A Latin square of order v is a v×v array in which each cell contains a single element
from a v-set S, such that each element occurs exactly once in each row and exactly
once in each column.

Let S and S′ be v-sets. Two Latin squares L = (aij) on symbol set S and L′ = (bij)
on symbol set S′ are orthogonal if every element in S×S′ occurs exactly once among
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the v2 pairs (aij, bij), 1 ≤ i, j ≤ v. Bose, Parker and Shrikhande [1] proved that a
pair of orthogonal Latin squares of order v exists if and only if v �= 2, 6. A Latin
square L of order v is said to possess an orthogonal mate if there exists a Latin
square L′ of the same order such that L and L′ are orthogonal. A Latin square of
order v with an orthogonal mate is equivalent to a resolvable TD(3, v).

Denote by J(v) the set of all integers k such that there is a pair of Latin squares
L and L′ on the same v-set having k cells in common. Let S(t) denote the set of
all non-negative integers less than or equal to t, with the exceptions of t − 5, t − 3,
t − 2 and t − 1. Define I(v) = S(v2). Fu [5] determined completely the set J(v)
and proved that J(v) = I(v) for integer v ≥ 1, except J(3) = I(3) \ {1, 2, 5} and
J(4) = I(4)\{5, 7, 10}. Similarly, let J∗(v) be the set of all integers k such that there
is a pair of Latin squares L and L′ with their own orthogonal mates on the same
v-set, and L and L′ have k cells in common. By Fu’s result [5] and [1], J∗(v) ⊆ J(v)
for v �= 2, 6.

In this article we will study the intersection problem for Latin squares with their
own orthogonal mates.

2 Recursive constructions

Let X be a v-set and P = {S1, S2, · · · , Sk} a partition of a subset S of X . An
incomplete Latin square with k disjoint empty subarrays on S1, S2, · · ·, Sk respec-
tively, denoted by LS(v, |S1|, |S2|, · · · , |Sk|), is an |X | by |X | array L indexed by X
satisfying the following properties:

1. A cell of L either contains an element of X or is empty.

2. The subarrays indexed by Si × Si are empty, for 1 ≤ i ≤ k (these subarrays are
called holes).

3. The elements occurring in row (or column) s ∈ Si of L are precisely those in
X \ Si.

4. The elements occurring in row (or column) s ∈ X \ (∪k
i=1Si) of L are precisely

those in X .

The type of L is the multiset {|S1|, |S2|, · · · , |Sk|}. Suppose that L and M are two
Latin squares with k common disjoint empty subarrays on S1, S2, · · ·, Sk. We say L
and M are orthogonal if their superposition yields every ordered pair in X2\(∪k

i=1S
2
i ).

We also say M is an orthogonal mate of L. The pair L and M will be denoted by
MOLS(v, n1, n2, · · · , nk) where |Si| = ni for 1 ≤ i ≤ k. If n1 = n2 = · · · = nk = n,
we write briefly MOLS(v, nk) for MOLS(v, n1, n2, · · · , nk).

Denote by J∗(v, n) the set of all integers k such that there is a pair of LS(v, n) L
and L′ with their own orthogonal mates on the same set and with the same empty
subarray, and with L and L′ having k cells in common. It is useful to note that
if v > n1 + n2 + · · · + nk, then a MOLS(v, 1, n1, n2, · · · , nk) exists if and only if a
MOLS(v, n1, n2, · · · , nk) exists. If any ni is zero we will simply ignore it. It is easy
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to see that J∗(v + 1, 1) = {k − 1 : k ∈ J∗(v + 1) \ {0}}. Next we quote a result as
follows.

Lemma 2.1 [6] For any integers v and n, a MOLS(v, n) exists if and only if v ≥ 3n
and (v, n) �= (6, 1).

Theorem 2.2 If s ∈ J∗(v, n) and t ∈ J∗(n), then s + t ∈ J∗(v).

Proof. Let Iv−n = {1, 2, · · · , v − n} and Y = {∞1,∞2, · · · ,∞n}. Let A and B be
LS(v, n) with their own orthogonal mates on the set Iv−n ∪ Y with the same empty
subarray on Y such that |A ∩ B| = s. Let C and D be a pair of orthogonal Latin
squares of order n on the set Y , C ′ and D′ a pair of orthogonal Latin squares of order
n on the set Y such that C and C ′ have t ∈ J∗(n) cells in common. By filling the
Latin squares C and C ′ into the holes of A and B, the resulting Latin squares of order
v possess their own orthogonal mates which are obtained by filling Latin squares D
and D′ into the holes of the orthogonal mates of A and B. It is readily checked that
the two resulting Latin squares have s+t cells in common. This completes the proof.

�

Theorem 2.3 If v ≥ 3n and n ≥ 3 (n �= 6), then av + b(v − n) + k ∈ J∗(v) for any
integers a ∈ [0, v − n] \ {v − n − 1}, b ∈ [0, n] \ {n − 1} and k ∈ J∗(n).

Proof. Let Iv−n = {1, 2, · · · , v − n} and Y = {∞1,∞2, · · · ,∞n}. By Lemma 2.1
there is a MOLS(v, n) A and B on the set Iv−n ∪ Y with the same empty subarray
on Y . Let π be the element permutation acting on A and B as follows:

π = (1 2 · · · v − n − a)(∞1 ∞2 · · · ∞n−b)

where a ∈ [0, v − n] \ {v − n − 1} and b ∈ [0, n] \ {n − 1}. Then πA and πB is also
a MOLS(v, n) on Iv−n ∪ Y with the empty subarray on Y at the same location as A
and B. It is readily checked that A and πA have av + b(v−n) cells in common. The
conclusion follows from Theorem 2.2. �

Theorem 2.4 If v is an integer and v �= 2, 6, then tv ∈ J∗(v) for any integer
t ∈ [0, v] \ {v − 1}.
Proof. For v �= 2, 6, there exists a Latin square L with an orthogonal mate on
Iv = {1, 2, · · · , v}. Let π be the element permutation acting on L: π = (1 2 · · · v− t)
for t ∈ [0, v] \ {v − 1}. Then πL is also a Latin square with an orthogonal mate. It
is readily checked that L and πL have tv cells in common. �

Theorem 2.5 Let m and n be integers greater than or equal to 3, but not equal to
6. Then

∑n
i=1

∑n
j=1 kij ∈ J∗(mn) where each kij ∈ J∗(m).

Proof. Let A = (aij)n×n be a Latin square of order n with an orthogonal mate
B = (bij)n×n. For i, j = 1, 2 · · · , n, let Cij and Dij be a pair of orthogonal Latin
squares of order m, and C ′

ij and D′
ij a pair of orthogonal Latin squares of order m

such that Cij and C ′
ij have kij ∈ J∗(m) cells in common. Define four Latin squares
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L1, L2, L′
1 and L′

2 of order mn as follows:

L1 =

(a11, C11) · · · (a1n, C1n)
(a21, C21) · · · (a2n, C2n)

· · · · · · · · ·
(an1, Cn1) · · · (ann, Cnn)

L2 =

(b11, D11) · · · (b1n, D1n)
(b21, D21) · · · (b2n, D2n)

· · · · · · · · ·
(bn1, Dn1) · · · (bnn, Dnn)

L′
1 =

(a11, C
′
11) · · · (a1n, C ′

1n)
(a21, C

′
21) · · · (a2n, C ′

2n)
· · · · · · · · ·

(an1, C
′
n1) · · · (ann, C

′
nn)

L′
2 =

(b11, D
′
11) · · · (b1n, D′

1n)
(b21, D

′
21) · · · (b2n, D′

2n)
· · · · · · · · ·

(bn1, D
′
n1) · · · (bnn, D

′
nn)

where (a, L) = ((a, lij)) if L = (lij) is a Latin square. Then L1 and L2, L′
1 and L′

2

are two pairs of orthogonal Latin squares of order mn. It is easy to check that L1

and L′
1 have

∑n
i=1

∑n
j=1 kij cells in common. The conclusion follows immediately. �

Let Y1 and Y2 be n-sets such that |Y1 ∩ Y2| = l ≥ 1. Let A denote the set of all
Latin squares on Y1 with an orthogonal mate, and B the set of all Latin squares on
Y2 with an orthogonal mate. Define Jl(n) = {k : |A ∩ B| = k for A ∈ A, B ∈ B}.
Theorem 2.6 Let v, n and l be integers such that v ≥ 3n and n ≥ 3 (n �= 6) and
1 ≤ l < n. Then av + b(v − n) + k ∈ J∗(v) for integers a ∈ [0, v − 2n + l], b ∈ [0, l]
and k ∈ Jl(n).

Proof. Let Iv−n = {1, 2, · · · , v − n} and Y = {∞1,∞2, · · · ,∞n}. By Lemma 2.1
there is a MOLS(v, n) A and B on the set Iv−n ∪ Y with the same empty subarray
on Y . Let π be the element permutation acting on A and B as follows:

(∞1 1 ∞2 2 · · ·∞n−l−1 n− l−1 ∞n−l ∞n−l+1 · · · ∞n−b n− l n− l+1 · · · v−n−a)

where 1 ≤ l < n, a ∈ [0, v − 2n + l] and b ∈ [0, l]. Then πA and πB is also a
MOLS(v, n) on Iv−n ∪ Y with the empty subarray on πY at the same location as A
and B. Clearly, |Y ∩ πY | = l. Let C and D be a pair of orthogonal Latin squares
of order n on the set Y , and C ′ and D′ a pair of orthogonal Latin squares of order
n on the set πY such that C and C ′ have k ∈ Jl(n) cells in common. By filling the
Latin squares C and C ′ into the holes of A and πA, the resulting two Latin squares
of order v possess their own orthogonal mates which are obtained by filling Latin
squares D and D′ into the holes of B and πB. It is readily checked that the two
resulting LS(v) have av + b(v − n) + k cells in common. This completes the proof.

�

Theorem 2.7 Let v, n ≥ 3, k ≥ 2 and l be integers such that v ≥ kn and 1 ≤ l < n.
If there exists a MOLS(v, nk), then av+b(v−n)+

∑k
i=1 ai ∈ J∗(v) where a ∈ [0, v−kn],

b ∈ [0, kl] and ai ∈ Jl(n) for i ∈ [1, k].

Proof. Let X = {1, 2, · · · , v − kn} ∪ (∪k
i=1Yi) where Yi = {x(i)

1 , x
(i)
2 , · · · , x(i)

n } for
i ∈ [1, k]. Let A and B be a MOLS(v, nk) on the set X with k common disjoint
empty subarrays on Y1, Y2, · · ·, Yk. For 1 ≤ l < n, a ∈ [0, v − kn] and b ∈ [0, kl], let
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b = sl + t where 0 ≤ t < l. Then 0 ≤ i ≤ k and n − t ≥ 2. Let π = π1 · π2 be the
element permutation acting on A and B as follows:

π1 = (x
(s+1)
t+1 x

(s+1)
t+2 · · · x(s+1)

n )(x
(s+2)
1 x

(s+2)
2 · · · x(s+2)

n ) · · · (x(k)
1 x

(k)
2 · · · x(k)

n )

for 0 ≤ s ≤ k − 1 or π1 = (1) for s = k;

π2 =




n−1∏
i=l+1

(x
(1)
i x

(2)
i · · · x

(k)
i )


 (x(1)

n x(2)
n · · · x(k)

n a + 1 a + 2 · · · v − kn).

Then πA and πB is also a MOLS(v, nk) on X with k common disjoint empty subar-
rays on πY1, πY2, · · ·, πYk at the same locations as A and B. It is easy to check that
|Yi ∩ πYi| = l for i ∈ [1, k]. For i ∈ [1, k], let Ci and Di be a pair of orthogonal Latin
squares of order n on Yi, and C ′

i and D′
i a pair of orthogonal Latin squares of order

n on πYi such that Ci and C ′
i have ai ∈ Jl(n) cells in common. By filling the Latin

squares Ci, C ′
i (i ∈ [1, k]) into the holes of A and πA respectively, the resulting Latin

squares of order v possess their own orthogonal mates which are obtained by filling
Latin squares Di, D′

i (i ∈ [1, k]) into the holes of B and πB. It is readily checked
that the two resulting LS(v) have av + b(v − n) +

∑k
i=1 ai cells in common. This

completes the proof. �

For n ≥ 4 and n �= 6, 10, it is well known that there are three mutually orthogonal
Latin squares of order n. Now we assume that L1, L2 and L3 = (aij)n×n are three
mutually orthogonal Latin squares on In = {1, 2, · · · , n}. Let Tk = {(i, j) : aij = k}
for k ∈ In. Then L1 and L2 are orthogonal and have the same n disjoint transversals
T1, T2, · · ·, Tn. The following construction is to take the squares L1 and L2, and
replace each cell of them by a q × q array; this array will in general either be a
MOLS(q) or be combined with additional rows and columns to L1 and L2 to form a
MOLS(qn+x, x). For each cell in Tk (k ∈ [1, n]), we add xk rows and columns to L1

and L2 using a MOLS(q +xk, xk). The construction yields a MOLS(qn+x, x) where
x =

∑n
k=1 xk.

Theorem 2.8 Let q, n and x be integers and n ≥ 4, n �= 6, 10 and 1 ≤ x ≤ n. Then∑xn
i=1 di +

∑n2

i=xn+1 di ∈ J∗(qn + x, x) where all di ∈ J∗(q + 1, 1) for 1 ≤ i ≤ xn and
di ∈ J∗(q) for xn + 1 ≤ i ≤ n2.

Proof. Let xk = 1 for k ∈ [1, x] and 0 for k ∈ [x + 1, n]. When n ≥ 4 and n �= 6, 10
and 1 ≤ x ≤ n, let L1, L2 and Tk (1 ≤ k ≤ n) be as above. Then L1 and L2 are
orthogonal and have the same n disjoint transversals T1, T2, · · ·, Tn. For each cell
(i, j) ∈ Tk (k ∈ [1, n]), let Cij and Dij be LS(q + xk, xk) with their own orthogonal
mates C ′

ij and D′
ij such that Cij and Dij have cij ∈ J∗(q + xk, xk) cells in common.

For each cell in Tk (k ∈ [1, n]), we add xk rows and columns to L1 using Cij. The
resulting Latin square A is LS(qn+x, x) with an orthogonal mate which is obtained
by adding xk rows and columns to L2 using C ′

ij for each cell in Tk (k ∈ [1, n]).
Similarly, for each cell in Tk (k ∈ [1, n]), we add xk rows and columns to L1 using
Dij . The resulting Latin square A′ is also LS(qn + x, x) with an orthogonal mate
which is obtained by adding xk rows and columns to L2 using D′

ij for each cell in Tk
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(k ∈ [1, n]). It is readily checked that A and A′ have

x∑
k=1

∑

(i,j)∈Tk

cij +
n∑

k=x+1

∑

(i,j)∈Tk

cij

cells in common. Hence
∑xn

i=1 di+
∑n2

i=xn+1 di ∈ J∗(qn+x, x) where all di ∈ J∗(q+1, 1)
for 1 ≤ i ≤ xn and di ∈ J∗(q) for xn + 1 ≤ j ≤ n2. �

3 The set J∗(v) for v = 3, 4, 5, 7, 8

In this section we will consider the set J∗(v) where 1 ≤ v ≤ 8 and v �= 2, 6. Let
L be a Latin square of order n on In = {1, 2, · · · , n} with its own orthogonal mate
L′. In what follows let πr, πc and πe be row permutation, column permutation and
element permutation. Then πrπcπe(L) is a Latin square with an orthogonal mate
πrπcπe(L

′). Let |L ∩ πrπcπe(L)| = k denote the fact that L and πrπcπe(L) have k
cells in common.

Lemma 3.1 J∗(1) = {1}; J∗(3) = {0, 3, 9}; J∗(4) = {0, 4, 8, 16}.
Proof. J∗(1) = {1} is trivial. Apply Theorem 2.4 and J∗(3) ⊆ J(3) to get J∗(3) =
{0, 3, 9}.

Under row permutation and column permutation, there are only two LS(4)s A and
its transpose A� with their own orthogonal mates, where A is listed below:

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

1 3 4 5 2
4 2 5 3 1
5 1 3 2 4
2 5 1 4 3
3 4 2 1 5

1 3 4 5 2
3 2 5 1 4
4 5 3 2 1
5 1 2 4 3
2 4 1 3 5

It is easy to check that J∗(4) = {0, 4, 8, 16} by an exhausive search. �

Lemma 3.2 J∗(5) = {0–13, 15, 25}.
Proof. Under row permutation, column permutation and element permutation, there
are only two LS(5)s with an orthogonal mate exhibited as above. The conclusion
follows immediately by an exhaustive computer search. �

Lemma 3.3 0, 7, 14, 21, 28, 35, 49 ⊆ J∗(7).

Proof. This follows immediately from Theorem 2.4. �

Lemma 3.4 17–20, 22–27, 29–33, 36, 37, 39–41, 45 ⊆ J∗(7).

Proof. Let Ki (i = 1, 2, 3, 4, 5) be Latin squares of order 7 with an orthogonal mate,
as given in the Appendix. It is readily checked that:

|K1 ∩ (2 5 6 7)r(K2)| = 17;

|K2 ∩ (2 3 4 5)r(K3)| = 18;

|K1 ∩ (2 3 4 5)r(K2)| = 19;
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|K2 ∩ (1 4)r(5 6 7)r(K3)| = 20;

|K2 ∩ (5 6 7)r(K3)| = 22;

|K1 ∩ (1 2 3 4)r(K2)| = 23;

|K1 ∩ (5 6 7)r(K2)| = 24;

|K2 ∩ (2 3 4)r(K3)| = 25;

|K1 ∩ (2 3 4)r(K2)| = 26;

|K2 ∩ (1 4)r(6 7)r(K3)| = 27;

|K2 ∩ (6 7)r(K3)| = 29;

|K1 ∩ (1 2 4)r(K2)| = 30;

|K1 ∩ (6 7)r(K2)| = 31;

|K2 ∩ (1 2)r(K3)| = 32;

|K1 ∩ (1 2)r(K2)| = 33;

|K1 ∩ K5| = 36;

|K3 ∩ K4| = 37;

|K1 ∩ (1 4)r(K2)| = 39;

|K2 ∩ (1 4)r(K3)| = 41;

|K2 ∩ K3| = 43;

|K1 ∩ K2| = 45. �

Lemma 3.5 1–6, 8–13, 15, 16 ⊆ J∗(7).

Proof. Let πr = (1 4)(2 3 6 7 5) and πc = (1 4)(2 3 6 7 5) be the row permutation and
column permutation acting on the Latin square K1 which comes from the Appendix.
Let K6 = πrπc(K1). Then K6 has an orthogonal mate. It is readily checked that:

|K1 ∩ (1 3 7 4)e(2 6 5)e(K6)| = 1;

|K1 ∩ (1 3 7 4 2 6 5)e(K6)| = 2;

|K1 ∩ (1 6 4 5)e(2 7 3)e(K6)| = 3;

|K1 ∩ (1 3)e(2 6 5 7 4)e(K6)| = 4;

|K1 ∩ (1 7 6 3 5)e(K6)| = 5;

|K1 ∩ (1 5 7)e(2 4 6)e(K6)| = 6;

|K1 ∩ (1 4)e(2 3 6 7 5)e(K6)| = 8;

|K1 ∩ (1 4 7 5 2 3 6)e(K6)| = 9;

|K1 ∩ (1 2 5)e(3 4)e(K6)| = 10;

|K1 ∩ (1 2 5 3 4)e(K6)| = 11;

|K1 ∩ (1 5 6 7 2 4 3)e(K6)| = 12;

|K1 ∩ (3 4)e(2 5 6 7)e(K6)| = 13;

|K1 ∩ (1 2)e(3 4)e(5 6 7)e(K6)| = 15;
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|K1 ∩ (3 4)e(1 5 6 7 2)e(K6)| = 16. �

Theorem 3.6 I(7) \ {34, 38, 40, 42} ⊆ J∗(7).

Proof. This follows immediately from Lemma 3.3 to Lemma 3.5. �

Lemma 3.7 0, 8, 16, 24, 32, 40, 48, 64 ∈ J∗(8).

Proof. This follows immediately from Theorem 2.4. �

Lemma 3.8 2, 4, 6, 10–12, 14, 17–23, 25–31, 33, 35–39, 41–47, 49, 52, 53, 56, 57,
60 ∈ J∗(8).

Proof. Let Li (i = 1, 2, 3, 4) be Latin squares of order 8 with an orthogonal mate in
Appendix. It is readily checked that

|L1 ∩ (1 8)r(2 3 · · · 6 − t)r(L2)| = 6 + 8t for t = 0, 1, 2, 3;

|L1 ∩ (1 2 · · · 6 − t)r(L2)| = 12 + 8t for t = 0, 1, 2, 3, 4;

|L1 ∩ (1 6 3)r(2 4 5 7 8)r(L4)| = 2;

|L1 ∩ (1 2 3 4 5 6)r(7 8)r(L2)| = 4;

|L1 ∩ (1 6 3)r(2 4 5 7)r(L4)| = 10;

|L1 ∩ (2 3)r(4 5 7 8)r(L4)| = 11;

|L1 ∩ (3 4)r(1 5 6)r(L3)| = 17;

|L1 ∩ (1 6 3)r(2 4 5)r(L4)| = 18;

|L1 ∩ (2 3)r(4 5 7)r(L4)| = 19;

|L1 ∩ (7 8)r(1 5 6)r(L3)| = 21;

|L1 ∩ (1 2)r(5 6)r(L3)| = 23;

|L1 ∩ (1 2)r(3 5)r(L3)| = 25;

|L1 ∩ (1 6 3)r(2 4)r(L4)| = 26;

|L1 ∩ (2 3)r(4 5)r(L4)| = 27;

|L1 ∩ (1 5 6)r(L3)| = 29;

|L2 ∩ (2 3 4)r(L4)| = 31;

|L1 ∩ (2 4 5)r(L4)| = 33;

|L1 ∩ (2 3 4)r(L4)| = 35;

|L1 ∩ (1 5)r(L3)| = 37;

|L1 ∩ (5 6 7)r(L2)| = 38;

|L1 ∩ (1 2)r(L3)| = 39;

|L1 ∩ (3 4)r(L3)| = 41;

|L1 ∩ (1 6 3)r(L4)| = 42;

|L1 ∩ (2 3)r(L4)| = 43;

|L1 ∩ (7 8)r(L3)| = 45;

|L1 ∩ (1 8)r(L2)| = 46;
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|L3 ∩ L4| = 47;

|L1 ∩ (3 6)r(L4)| = 49;

|L1 ∩ (7 8)r(L2)| = 52;

|L1 ∩ L3| = 53;

|L2 ∩ L3| = 56;

|L1 ∩ L4| = 57;

|L1 ∩ L2| = 60. �

Lemma 3.9 15, 34, 50, 51, 54, 55, 58 ∈ J∗(8).

Proof. Let Li (i = 5, 6, 7, 8) be Latin squares of order 8 with an orthogonal mate
in Appendix. It is checked that |L2 ∩ L5| = 50; |L6 ∩ L8| = 51; |L1 ∩ L5| = 54;
|L6 ∩ L7| = 55; |L5 ∩ L6| = 58; |L2 ∩ (2 5)rL5)| = 34; |L6 ∩ (2 5 6 7 8)rL7)| = 15. �

Lemma 3.10 1, 3, 5, 7, 9, 13 ∈ J∗(8).

Proof. Let πr = (1 8)(2 7)(3 6)(4 5) be the row permutation acting on L1 which
comes from the Appendix. Let L̄1 = πr(L1). It is readily checked that

|L2 ∩ πcπe(L̄1)| = 1 where πc = (1 4)(2 3)(5 8)(6 7) and πe = (1 7)(2 6)(3 5);

|L2 ∩ πcπe(L̄1)| = 3 where πc = (1 8)(2 7)(3 6)(4 5) and πe = (1 3)(4 8)(5 7);

|L2 ∩ πcπe(L̄1)| = 5 where πc = (1 8)(2 7)(3 6)(4 5) and πe = (1 4)(2 3)(5 8)(6 7);

|L2 ∩ πcπe(L̄1)| = 7 where πc = (1 8)(2 7)(3 6)(4 5) and πe = (1 8)(2 7)(3 6)(4 5);

|L2 ∩ πcπe(L̄1)| = 9 where πc = (1 7)(2 6)(3 5) and πe = (1 5)(2 4)(6 8);

|L2 ∩ πcπe(L̄1)| = 13 where πc = (1 7)(2 6)(3 5) and πe = (1 6)(2 5)(3 4)(7 8). �

Theorem 3.11 J∗(8) = I(8).

Proof. This follows immediately from Lemma 3.7 to Lemma 3.10. �

4 The set J∗(v) for 9 ≤ v ≤ 14

In this section we will consider the set J∗(v) where 9 ≤ v ≤ 14.

Lemma 4.1 v2 − 9, v2 − 6 ∈ J∗(v) for any integer v ≥ 9; v2 − 8 ∈ J∗(v) for any
integer v ≥ 12.

Proof. It follows immediately by Theorem 2.3 with n = 3 or 4 and Lemma 3.1. �

Lemma 4.2 J1(3) = {0, 1, 3}; J2(3) = {0, 2, 3, 6}.
Proof. This follows from an exhaustive search. �

Lemma 4.3 I(9) \ {52, 58, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 77} ⊆ J∗(9).

Proof. Apply Theorem 2.5 with m = n = 3 to get
∑3

i=1

∑3
j=1 kij ∈ J∗(9) where

each kij ∈ J∗(3) = {0, 3, 9}. Then 3t ∈ J∗(9) for t ∈ [0, 27] \ {26}. By Theorem 2.6
with v = 9, n = 3 and l = 1 or 2, we have 9a + 6b + k ∈ J∗(9) where a ∈ [0, 3 + l],
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b ∈ [0, l] and k ∈ Jl(3) which is taken from Lemma 4.2. It is readily checked
that 1, 2, 7, 8, 10, 11, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 32, 34, 35, 37, 38, 41, 43, 44, 47,
50, 53, 59 ∈ J∗(9).

By the proof of Theorem 2.5, there is a MOLS(9, 32). Apply Theorem 2.7 with
v = 9, n = 3 and l = 1, 2 to get 9a + 6b + s + t ∈ J∗(9) where a ∈ [0, 3], b ∈ [0, 2l]
and s, t ∈ Jl(3). The remaining cases are obtained by taking suitable integers a, b,
l, s and t as follows:

a b l s t 9a + 6b + s + t ∈ J∗(9)
0 0 2 2 2 4
0 0 2 2 3 5
0 2 1 0 1 13
1 2 1 0 1 22
2 2 1 0 1 31
3 2 1 0 1 40
2 4 2 2 2 46
3 3 2 2 2 49
3 4 2 2 2 55
3 4 2 2 3 56

�

Lemma 4.4 52, 58, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 77 ∈ J∗(9).

Proof. Let Mi and M ′
i (i = 1, 2) be Latin squares of order 9 as follows:

M1 =

4 5 6 7 8 9
A1 9 8 7 5 4 6

8 7 9 6 5 4
7 6 5 4 9 8
9 4 6 A2 8 7 5
8 5 4 9 6 7
4 8 9 7 6 5
6 9 7 5 4 8 A3

5 7 8 6 9 4

M ′
1 =

4 5 6 7 8 9
A′

1 6 4 5 8 9 7
5 6 4 9 7 8

4 5 6 1 3 2
5 6 4 A′

2 3 2 1
6 4 5 2 1 3
7 9 8 1 2 3
8 7 9 2 3 1 A′

3

9 8 7 3 1 2

where A1, A2, A3 are any Latin squares on {1, 2, 3}, and A′
i are an orthogonal mate

of Ai on {3i − 2, 3i − 1, 3i} for i = 1, 2, 3.

M2 =

4 5 6 7 9 8
B1 9 8 7 5 4 6

8 7 9 6 5 4
7 6 5 4 8 9
9 4 6 B2 8 7 5
8 5 4 9 6 7
4 8 9 7 6 5
6 9 7 5 4 8 B3

5 7 8 6 9 4

M ′
2 =

1 2 3 4 5 6 7 8 9
2 9 1 6 4 3 8 5 7
3 1 8 5 2 4 9 7 6
4 5 6 7 8 9 1 3 2
5 3 4 8 6 7 2 9 1
6 4 2 9 7 5 3 1 8
7 8 9 1 3 2 4 6 5
8 7 5 3 9 1 6 2 4
9 6 7 2 1 8 5 4 3
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where B1 =
1 2 3
3 1 2
2 3 1

and B2 = B3 =
1 3 2
2 1 3
3 2 1

. It is readily checked that M1 and M ′
1,

M2 and M ′
2 are mutually orthogonal, M1 and M2 have (81− 27− 4) + (r1 + r2 + r3)

cells in common where r1, r2, r3 ∈ J∗(3). So 62, 65, 68, 71, 77 ∈ J∗(9).

Take A1 = B1, A2 = B2 and A3 to be any Latin squares on {1, 2, 3} in M1. Let
π = (1 4) be the row permutation acting on M1. Then π(M1) and M2 have (67−9)+r
cells in common where r ∈ J∗(3). Hence 61, 67 ∈ J∗(9).

Let M3 and M ′
3 be as follows:

M3 =

1 2 3 4 5 6 7 8 9
3 1 2 9 8 7 5 4 6
2 3 1 8 7 9 6 5 4
8 6 5 4 9 7
9 4 6 C 8 7 5
7 5 4 9 6 8
4 8 9 7 6 5 1 3 2
6 9 7 5 4 8 2 1 3
5 7 8 6 9 4 3 2 1

M ′
3 =

1 2 3 4 5 6 7 8 9
2 4 1 6 3 5 8 9 7
3 1 6 5 2 4 9 7 8
6 5 4 1 2 3
5 3 2 C ′ 4 6 1
4 6 5 3 1 2
7 9 8 1 4 3 2 5 6
8 7 9 2 6 1 5 3 4
9 8 7 3 1 2 6 4 5

where C is any Latin square on {1, 2, 3} and C ′ is an orthogonal mate of C on
{7, 8, 9}. It is readily checked that M3 and M ′

3 are mutually orthogonal. Then M2

and M3 have (74 − 9) + r cells in common where r ∈ J∗(3) and hence 74 ∈ J∗(9).

Let U1 be obtained from M1 by taking A1 = (1 2)r(B1), A2 = (2 3)r(B2) and A3

any Latin square on {1, 2, 3}. Let π = (1 4) be the row permutation acting on U1.
Then π(U1) and M2 have 49+r cells in common where r ∈ J∗(3). So, 52, 58 ∈ J∗(9).

Let U2 be obtained from M3 by taking C = (1 3)r(B2). Let π1 = (4 6) be the row
permutation acting on U2. Then π1(U2) and M2 have 70 cells in common.

Let M4 and M ′
4 be as follows:

M4 =

1 2 3 4 5 6 7 8 9
3 1 2 9 8 7 5 4 6
2 3 1 8 7 9 6 5 4
7 6 5 1 3 2 4 9 8
9 4 6 2 1 3 8 7 5
8 5 4 3 2 1 9 6 7
4 9 7 5 6 8 1 3 2
6 8 9 7 4 5 2 1 3
5 7 8 6 9 4 3 2 1

M ′
4 =

1 2 3 4 5 6 7 8 9
2 4 1 8 6 5 3 9 7
3 1 6 5 4 7 9 2 8
6 5 8 2 7 9 1 4 3
5 6 4 7 9 8 2 3 1
4 7 5 9 8 3 6 1 2
7 3 9 6 2 1 8 5 4
8 9 2 1 3 4 5 7 6
9 8 7 3 1 2 4 6 5

It is readily checked that M4 and M ′
4 are mutually orthogonal; M4 and M1 with

Ai = Bi (i = 1, 2, 3) have 73 cells in common.

Let U3 be obtained from M1 by taking A1 = (1 2)r(B1), A2 = B2 and A3 = B3.
Let π = (1 4) be the row permutation acting on U3. Then π(U3) and M2 have 64
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cells in common. �

Theorem 4.5 J∗(9) = I(9).

Proof. This follows immediately from Lemma 4.3 and Lemma 4.4. �

Lemma 4.6 I(10)\{4, 5, 15, 25, 35, 45, 55, 65, 68, 72, 75, 78, 81, 82, 83–85, 87–89,
92, 93, 96} ⊆ J∗(10).

Proof. Apply Theorem 2.3 with v = 10 and n = 3 to get 10a + 7b + J∗(3) ∈ J∗(10)
where a ∈ [0, 7]\{6} and b ∈ [0, 3]\{2}. Direct computation shows that 0, 3, 7, 9, 10,
13, 16, 17, 19–21, 23, 24, 26, 27, 29–31, 33, 34, 36, 37, 39–41, 43, 44, 46, 47, 49–51,
53, 54, 56, 57, 59–61, 64, 66, 70, 71, 73, 74, 77, 79, 80, 86, 91, 94, 100 ∈ J∗(10).

By Theorem 2.6 with v = 10 and n = 3, 10a + 7b + k ∈ J∗(10) where l = 1, 2,
a ∈ [0, 3 + l], b ∈ [0, l] and k ∈ J1(3) which is taken from Lemma 4.2. The other
cases follow by taking suitable integers l, a, b and k as follows:

l 1 2 2 1 1 2 2 1 2 1 2
a 0 0 0 0 1 1 0 1 2 2 3
b 0 10 0 1 0 0 2 1 0 1 0
k 1 2 6 1 1 2 0 1 2 1 0

10a + 7b + k 1 2 6 8 11 12 14 18 22 28 32

l 1 2 1 2 1 2 2 2 2 2
a 3 4 4 5 5 6 6 6 6 6
b 1 0 1 0 1 0 0 1 1 2
k 1 2 1 2 1 2 3 0 2 2

10a + 7b + k 38 42 48 52 58 62 63 67 69 76

�

Lemma 4.7 4, 5, 15, 25, 35, 45, 55, 68, 72, 78, 84, 88, 92, 96 ∈ J∗(10).

Proof. Let Ni (i = 1, 2, 3) be Latin squares of order 10 with an orthogonal mate in
Appendix. It is readily checked that

|N1 ∩ (1 2 3 4)r(6 7 8 9)r(5 10)r(N3)| = 4;

|N1 ∩ (3 8)r(5 10)r(N2)| = 68;

|N1 ∩ (1 2)r(N2)| = 72;

|N1 ∩ (9 10)r(N3)| = 78;

|N1 ∩ (5 10)r(N3)| = 84;

|N1 ∩ (9 10)c(N2)| = 88;

|N1 ∩ N2| = 92;

|N1 ∩ N3| = 96.

Here P is a (3,1,2)-conjugate orthogonal Latin square of order 10 with an empty
subarray on {8, 9, 10} exhibited in the Appendix, which actually comes from [2]. It
is readily checked that:
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|P ∩ πrπc(P )| = 5 where πr = (1 7 6 5 4 3 2) and πc = (1 7 2 5 3 4 6);

|P ∩ πrπc(P )| = 15 where πr = (1 7 6 5 4 3 2) and πc = (1 7 2)(3 6 5 4);

|P ∩ πrπc(P )| = 25 where πr = (1 5 4 3 2) and πc = (2 3 4 5);

|P ∩ πrπc(P )| = 35 where πr = (2 5 4) and πc = (1 5 4 3);

|P ∩ πrπc(P )| = 45 where πr = (3 5) and πc = (1 3)(2 4);

|P ∩ πrπc(P )| = 55 where πr = (3 5) and πc = (3 5). Hence 5, 15, 25, 35, 45, 55 ∈
J∗(10, 3). By Lemma 3.1 and Theorem 2.2, we have 5, 15, 25, 35, 45, 55 ∈ J∗(10). �

Theorem 4.8 I(10) \ {65, 75, 81, 82, 83, 85, 87, 89, 93} ⊆ J∗(10).

Proof. This follows from Lemmas 4.6 and 4.7. �

Lemma 4.9 I(11) \ {4, 5, 7, 15, 26, 37, 48, 59, 70, 78, 81, 86, 89, 92, 94, 98, 100,
101, 102, 103, 104, 106–111, 113, 114, 117} ⊆ J∗(11).

Proof. Apply Theorem 2.3 with v = 11 and n = 3 to get 11a + 8b + k ∈ J∗(11)
where a ∈ [0, 8] \ {7}, b ∈ [0, 3] \ {2} and k ∈ J∗(3). Then 0, 3, 8, 9, 11, 14, 17, 19, 20,
22, 24, 25, 27, 28, 30, 31, 33, 35, 36, 38, 39, 41, 42, 44, 46, 47, 49, 50, 52, 53, 55, 57, 58, 60,
61, 63, 64, 66, 68, 71, 72, 74, 77, 79, 82, 83, 88, 90, 91, 93, 96, 97, 99, 105, 112, 115, 121 ∈
J∗(11).

By Theorem 2.6 with v = 11, n = 3 and l = 1 or 2, 11a+8b+k ∈ J∗(11) where a ∈
[0, 5+ l], b ∈ [0, l] and k ∈ Jl(3) which is taken from Lemma 4.2. It is readily checked
that 1, 2, 6, 10, 12, 13, 16, 18, 21, 23, 29, 32, 34, 40, 43, 45, 51, 54, 56, 62, 65, 67, 69,73,75,
76, 80, 84, 85, 87, 95 ∈ J∗(11) by taking suitable integers l, a, b and k. �

Lemma 4.10 4, 5, 7, 15, 26, 37, 48, 59, 81, 89 ∈ J∗(11).

Proof. Let L = (aij) be a Latin square of order 11 as follows: aij = 6(i + j)
(mod 11). Then L has an orthogonal mate. It is readily checked that

|L ∩ πrπc(L)| = 4 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 7 4 6 10 3 9 2);

|L∩ πrπc(L)| = 5 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 7 2 4 9)(3 6 8 10);

|L ∩ πrπc(L)| = 7 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (2 4)(3 5 7)(8 10 9);

|L ∩ πrπc(L)| = 15 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 7 5 6 8 10 2);

|L∩πrπc(L)| = 26 where πr = (1 8 6 4 2 10 9 7 5 3) and πc = (1 7 2 4 9)(3 6 8 10);

|L ∩ πrπc(L)| = 37 where πr = (1 5 4 3 2) and πc = (1 4 3 2 5);

|L ∩ πrπc(L)| = 48 where πr = (1 5 4 3 2) and πc = (2 5 4);

|L ∩ πrπc(L)| = 59 where πr = (2 5 4) and πc = (1 3 5 4);

|L ∩ πrπc(L)| = 81 where πr = (3 5) and πc = (3 5).

Let A and B be LS(11, 3), πr = (10 11) and πc = (10 11) be row permutation and
column permutation acting on A. Then A and πrπc(A) have their own orthogonal
mates. It is checked that A and πrπc(A) have 80 cells in common and hence 80 ∈
J∗(11, 3). By Lemma 3.1 and Theorem 2.2, 89 ∈ J∗(11). �

Theorem 4.11 I(11) \ {70, 78, 86, 92, 94, 98, 100, 101, 102, 103, 104, 106–111, 113,
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114, 117} ⊆ J∗(11).

Proof. This follows from Lemma 4.9 and Lemma 4.10 �

Lemma 4.12 I(12) \ {103, 106, 107, 109, 115, 118, 119, 121, 122, 125, 127, 130, 131,
134, 137, 140} ⊆ J∗(12).

Proof. Apply Theorem 2.5 with n = 4 and m = 3 to get
∑4

i=1

∑4
j=1 kij ∈ J∗(12)

where each kij ∈ J∗(3) = {0, 3, 9}. Then 3t ∈ J∗(12) for any integers t ∈ [0, 48]\{47}.
Similarly,

∑3
i=1

∑3
j=1 kij ∈ J∗(12) where each kij ∈ J∗(4) = {0, 4, 8, 16}. Then

4t ∈ J∗(12) for any integer t ∈ [0, 36] \ {35}.
By the proof of Theorem 2.5, there is a MOLS(12, 3k) for k = 2, 3. Apply Theorem

2.7 with k = 3 and l = 2 to get 12a+9b+
∑3

i=1 ai ∈ J∗(12) where a ∈ [0, 3], b ∈ [0, 6]
and ai ∈ J2(3) for i ∈ [1, 3]. Clearly,

∑3
i=1 ai ∈ {0, 2–12,14, 15, 18}. Hence, {0, 2–

102, 104, 105, 108} ⊆ J∗(12). Apply Theorem 2.7 with n = 3, k = 2 and l = 1, 2 to
get 12a+9b+ s+ t ∈ J∗(12) where a ∈ [0, 6], b ∈ [0, 2l] and s, t ∈ Jl(3). Then 1, 110,
113 ∈ J∗(12) by taking suitable l, s and t. �

Lemma 4.13 I(12) \ {115, 118, 119, 121, 122, 125, 127, 130, 131, 134, 137, 140} ⊆
J∗(12).

Proof. Let L(A1, · · · , A4) and L′(A′
1, · · · , A′

4) be Latin squares on I4 × I3 (where
It = {1, 2, · · · , t} for t = 3, 4) as follows.

L =

(1, A1) (2, B) (4, B) (3, B)
(2, B) (1, A2) (3, B) (4, B)
(4, B) (3, B) (1, A3) (2, B)
(3, B) (4, B) (2, B) (1, A4)

L′ =

(1, A′
1) (2, B′) (4, B′) (3, B′)

(2, B′) (1, A′
2) (3, B′) (4, B′)

(4, B′) (3, B′) (1, A′
3) (2, B′)

(3, B′) (4, B′) (2, B′) (1, A′
4)

where Ai (i = 1, 2, 3, 4) are any Latin squares on I3 and B is fixed Latin square on
I3. A′

i (i = 1, 2, 3, 4) is an orthogonal mate of Ai on I3 and B′ is an orthogonal mate
of B on I3. It is easy to see that L(A1, · · · , A4) and L′(A′

1, · · · , A′
4) are mutually

orthogonal.

Let π = ((1, 1) (2, 1)) be the element permutation on L(B1, · · · , B4). It is readily
checked that L(A1, · · · , A4) and π(L(B1, · · · , B4)) have 96 +

∑4
i=1 ri cells in common

where each ri ∈ J2(3) = {0, 2, 3, 6}. Hence 103, 106, 107, 109 ∈ J∗(12). The conclu-
sion follows from Lemma 4.12. �

Lemma 4.14 Let a, b be integers such that min{a, b} ≥ 6. For any integer
n ∈ [0, 3a + 4b] \ {1, 2, 5, 3a + 4b − 19, 3a + 4b − 13, 3a + 4b − 11, 3a + 4b − 10, 3a +
4b − 7, 3a + 4b − 4}, n can be written as 3s + 4t where s ∈ [0, a] \ {a − 1} and
t ∈ [0, b] \ {b − 1}.
Proof. This follows immediately. �

Lemma 4.15 I(13) \ {150, 156, 158, 159, 162, 165} ⊆ J∗(13).

Proof. Apply Theorem 2.8 with n = 4, q = 3 and x = 1 to get
∑4

i=1 di +
∑16

i=5 di ∈
J∗(13, 1) where di ∈ J∗(4, 1) = {3, 7, 15} for i ∈ [1, 4] and di ∈ J∗(3) for i ∈ [5, 16].
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It is easy to see that

4∑
i=1

di ∈ {4t + 12 : t ∈ [0, 12] \ {11}},

16∑
i=5

di ∈ {3s : s ∈ [0, 36] \ {35}}.

Then 3s + 4t + 13 ∈ J∗(13) where s ∈ [0, 36] \ {35} and t ∈ [0, 12] \ {11}. When
k ∈ I(13) \ { 0 − 12, 14, 15, 18, 150, 156, 158, 159, 162, 165}, k ∈ J∗(13) by Lemma
4.14.

By the proof of Theorem 2.8, there is a MOLS(13, 34). Apply Theorem 2.7
with l = 2 to get 13a + 10b +

∑4
i=1 ai ∈ J∗(13) where a ∈ [0, 1], b ∈ [0, 8] and

ai ∈ J2(3) for i ∈ [1, 3]. It is easy to see that
∑4

i=1 ai ∈ {0, 2− 18, 20, 21, 24}. Hence,
{0, 2− 12, 14, 15, 18} ⊆ J∗(13). Similarly, 1 ∈ J∗(13) by Theorem 2.7 with l = 1. �

Lemma 4.16 I(14) \ {5, 7, 19, 21, 35, 49, 63, 77, 91, 105, 119, 133, 141, 147, 149,
155, 161, 167, 169–173, 175, 177–179, 181–183, 185, 186, 189, 192} ⊆ J∗(14).

Proof. Apply Theorem 2.3 with v = 14 and n = 3 or 4 to get 14a + (14 − n)b + k ∈
J∗(14) where a ∈ [0, 14 − n] \ {13 − n}, b ∈ [0, n] \ {n − 1} and k ∈ J∗(n) where
n = 3, 4. Then I(14) \ {1, 2, 5–7, 12, 13, 15, 19, 21, 27, 29, 35, 41, 43, 49, 55, 57,
63, 69, 71, 77, 83, 85, 91, 97, 99, 105, 111, 113, 119, 125, 127, 133, 139, 141, 143,
147, 149, 151, 153, 155, 161, 167, 169–173, 175, 177–179, 181–183, 185, 186, 189,
192} ⊆ J∗(14) by taking suitable n, a and b.

By Theorem 2.6 with v = 14, n = 3 and l = 1, 2, 14a + 11b + k ∈ J∗(14) where
a ∈ [0, 8 + l], b ∈ [0, l] and k ∈ Jl(3). The remaining cases follow immediately by
taking suitable k, a and b. �

Lemma 4.17 5, 7, 19, 21, 35, 49, 63, 77, 91, 105, 133 ∈ J∗(14).

Proof. Here Q is a (3,2,1)-conjugate orthogonal Latin square of order 14 with an
empty subarray on {A, B, C, D} exhibited in the Appendix which comes from [3]. It
is readily checked that:

|Q∩πrπc(Q)| = 5 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 6 5)(2 10 3 7 8 4 9);

|Q∩πrπc(Q)| = 7 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 4 8 5)(2 10 9 7 3 6);

|Q∩πrπc(Q)| = 11 where πr = (10 9 8 7 6 5 4 3 2 1) and πc = (1 8 5 10 9 7 3 4)(2 6);

|Q ∩ πrπc(Q)| = 35 where πr = (1 8 5 10 9 7 3 6) and πc = (1 9 10 4)(6 7);

|Q ∩ πrπc(Q)| = 45 where πr = (1 5 9 3 6 2 7) and πc = (1 5 9 3 6 2 7);

|Q ∩ πrπc(Q)| = 47 where πr = (1 7 5 6 8 10 2) and πc = (1 7 8 4 6 10);

|Q ∩ πrπc(Q)| = 69 where πr = (1 5 4 3 2) and πc = (1 5 4 3 2);

|Q ∩ πrπc(Q)| = 83 where πr = (1 5 4 3 2) and πc = (1 4 5);

|Q ∩ πrπc(Q)| = 105 where πr = (2 5 4) and πc = (2 5 4);

|Q ∩ πrπc(Q)| = 117 where πr = (1 2 4) and πc = (2 5).
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Hence, 5, 7, 11, 35, 45, 47, 69, 83, 105, 117 ∈ J∗(14, 4). The conclusion follows from
Lemma 3.1 and Theorem 2.2. �

Theorem 4.18 I(14) \ {119, 141, 147, 149, 155, 161, 167, 169–173, 175, 177–179,
181–183, 185, 186, 189, 192} ⊆ J∗(14).

Proof. This follows from Lemma 4.16 and Lemma 4.17. �

5 Conclusions

Lemma 5.1 I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v) for integer v = 15, 20.

Proof. Apply Theorem 2.5 with n = v
5

and m = 5 to get
∑n

i=1

∑n
j=1 kij ∈ J∗(v)

where each kij ∈ J∗(5). By Lemma 3.2, J∗(5) = {0 − 13, 15, 25}. For any integer
k ∈ I(v) \ {v2 − 11, v2 − 9, v2 − 8, v2 − 7, v2 − 6, v2 − 4}, it is easy to check that there
exist kij ∈ J∗(5) such that k =

∑n
i=1

∑n
j=1 kij . Then I(v)\{v2−11, v2−9, v2−8, v2−

7, v2 − 6, v2 − 4} ⊆ J∗(v). The other three cases follow by Lemma 4.1. �

Lemma 5.2 I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v) for integers v = 16, 18, 22.

Proof. Let v = 3n + x where v, n and x (1 ≤ x < n) are taken as follows: (v, n, x) =
(16, 5, 1), (18, 5, 3), (22, 7, 1). Apply Theorem 2.8 with q = 3 to get

∑xn
i=1 di +∑n2

i=xn+1 di ∈ J∗(v, x) where di ∈ J∗(4, 1) = {3, 7, 15} for i ∈ [1, xn] and di ∈ J∗(3) =
{0, 3, 9} for i ∈ [xn + 1, n2]. It is easy to see that

xn∑
i=1

di ∈ {4t + 3xn : t ∈ [0, 3xn] \ {3xn − 1} },

n2∑
i=xn+1

di ∈ {3s : s ∈ [0, 3n(n − x)] \ {3n(n − x) − 1} }.

Then 3s + 4t + 3xn + k ∈ J∗(v) where s ∈ [0, 3n(n − x)] \ {3n(n − x) − 1}, t ∈
[0, 3xn] \ {3xn − 1} and k ∈ J∗(x). By Lemma 4.14 and {0, x2} ⊆ J∗(x), it is not
difficult to check that I(v)\ ([0, 3xn−1]∪{3xn+1, 3xn+2, 3xn+5, v2−19, v2−13,
v2 − 11, v2 − 10, v2 − 7, v2 − 4}) ⊆ J∗(v).

By the proof of Theorem 2.8, there is a MOLS(v, 3n). Apply Theorem 2.7 with
l = 2 to get av + b(v − 3) +

∑n
i=1 ai ∈ J∗(v) where a ∈ [0, x], b ∈ [0, 2n] and

ai ∈ J2(3) = {0, 2, 3, 6} for i ∈ [1, n]. It is easy to see that 6(n − 1) > v − 3 by the
choices of v, n as above, and

n∑
i=1

ai ∈ [2, 6(n − 1)] ∪ {0, 6n − 4, 6n − 3, 6n}.

Hence, [2, 3xn− 1]∪ {0, 3xn + 1, 3xn + 2, 3xn + 5} ⊆ J∗(v). Similarly, 1 ∈ J∗(v) by
Theorem 2.7 with l = 1. By Lemma 2.1 there is a MOLS(v, 5) and hence v2 − 25 ∈
J∗(v, 5). Then v2 − 19, v2 − 13, v2 − 10 ∈ J∗(v) by Theorem 2.2 and Lemma 3.2.
This completes the proof. �
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Lemma 5.3 I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v) for integers v = 17, 19, 21, 23.

Proof. Let v = 4n + x where v, n and x (1 ≤ x < n) are taken as follows: (v, n, x) =
(17, 4, 1), (19, 4, 3), (21, 5, 1) and (23, 5, 3). Apply Theorem 2.8 with q = 4 to get∑xn

i=1 di +
∑n2

i=xn+1 di ∈ J∗(v, x) where di ∈ J∗(5, 1) = {0 − 12, 14, 24} for i ∈ [1, xn]
and di ∈ J∗(4) = {0, 4, 8, 16} for i ∈ [xn + 1, n2]. It is easy to see that

xn∑
i=1

di ∈ S(24xn) \ {24xn − 11, 24xn − 9, 24xn − 8, 24xn − 7, 24xn − 6, 24xn − 4},

n2∑
i=xn+1

di ∈ {4t : t ∈ [0, 4n(n − x)] \ {4n(n − x) − 1} }.

Then s+4t+k ∈ J∗(v) where s ∈ S(24xn)\{24xn−11, 24xn−9, 24xn−8, 24xn−7,
24xn− 6, 24xn− 4}, t ∈ [0, 4n(n− x)] \ {4n(n− x)− 1} and {0, x2} ⊆ J∗(x). Hence
I(v) \ {v2 − 11, v2 − 9, v2 − 8, v2 − 7, v2 − 6, v2 − 4} ⊆ J∗(v). The other cases follow
from Lemma 4.1. �

Theorem 5.4 I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v) for any integers 15 ≤ v ≤ 20;
I(v) \ {v2 − 11, v2 − 7} ⊆ J∗(v) for v = 21, 22, 23.

Proof. By Lemmas 5.1 to 5.3, I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v) for any integer
15 ≤ v ≤ 23. Apply Theorem 2.3 with n = 7 and Theorem 3.6 to get v2 − 4 ∈ J∗(v)
for v = 21, 22, 23. �

Now we are in position to present the main result.

Main Theorem J∗(v) = I(v) for any integer v ≥ 24.

Proof. When 24 ≤ v ≤ 37, apply Theorem 2.3 with n = 8 to get av + b(v− 8) + k ∈
J∗(v) for any integers a ∈ [0, v − 8] \ {v − 9}, b ∈ [0, 8] \ {7} and k ∈ J∗(8). Note
that 2v < 6(v − 8) and 2(v − 8) ≤ 58. Then J∗(v) = I(v).

When 38 ≤ v ≤ 44, similarly apply Theorem 2.3 with n = 9 to get J∗(v) = I(v).

When v ≥ 45, let n = [v
3
] where [∗] denotes the integer part of a real number

“*”. Then n ≥ 15. By the induction and Theorem 5.4, I(n) \ {n2 − 11, n2 −
7, n2 − 4} ⊆ J∗(n). Apply Theorem 2.3 to get av + b(v − n) + k ∈ J∗(v) for any
integers a ∈ [0, v − n] \ {v − n − 1}, b ∈ [0, n] \ {n − 1} and k ∈ J∗(n). For
any integer i ∈ I(v) \ {v2 − 11, v2 − 7, v2 − 4}, it is easy to check that there exist
a ∈ [0, v−n]\{v−n−1}, b ∈ [0, n]\{n−1} and k ∈ J∗(n) such that i = av+b(v−n)+k.
Then I(v) \ {v2 − 11, v2 − 7, v2 − 4} ⊆ J∗(v). By Theorem 3.11, 53, 57, 60 ∈ J∗(8).
Apply Theorem 2.3 with n = 8 to get v2 − 11, v2 − 7, v2 − 4 ∈ J∗(v). This completes
the proof. �
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Appendix

Ki (i = 1, 2, 3, 4, 5) are Latin squares of order 7 with an orthogonal mate K ′
i as follows:

K1 =

1 2 3 4 5 6 7
2 3 1 5 6 7 4
6 7 4 1 3 5 2
3 5 7 6 2 4 1
5 4 6 2 7 1 3
7 1 5 3 4 2 6
4 6 2 7 1 3 5

K ′
1 =

1 2 3 4 5 6 7
7 1 4 2 3 5 6
5 6 1 7 2 4 3
6 7 2 1 4 3 5
3 5 7 6 1 2 4
4 3 6 5 7 1 2
2 4 5 3 6 7 1
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K2 =

1 5 3 4 2 6 7
2 3 1 5 6 7 4
6 7 4 1 3 5 2
3 2 7 6 5 4 1
5 4 6 2 7 1 3
7 1 5 3 4 2 6
4 6 2 7 1 3 5

K ′
2 =

1 2 3 4 5 6 7
6 5 7 1 2 4 3
4 3 1 5 6 7 2
7 1 2 3 4 5 6
3 6 5 7 1 2 4
5 4 6 2 7 3 1
2 7 4 6 3 1 5

K3 =

3 5 7 4 2 6 1
2 3 1 5 6 7 4
6 7 4 1 3 5 2
1 2 3 6 5 4 7
5 4 6 2 7 1 3
7 1 5 3 4 2 6
4 6 2 7 1 3 5

K ′
3 =

1 2 3 4 5 6 7
3 5 1 6 7 4 2
4 7 5 3 2 1 6
2 4 6 5 3 7 1
7 3 2 1 6 5 4
5 6 4 7 1 2 3
6 1 7 2 4 3 5

K4 =

1 5 3 4 2 6 7
2 3 6 5 7 1 4
6 7 4 1 3 5 2
3 2 7 6 5 4 1
5 4 1 2 6 7 3
7 1 5 3 4 2 6
4 6 2 7 1 3 5

K ′
4 =

1 2 3 4 5 6 7
4 7 1 6 3 2 5
3 4 7 5 6 1 2
5 1 2 7 4 3 6
7 6 4 3 2 5 1
6 3 5 2 1 7 4
2 5 6 1 7 4 3

K5 =

1 2 3 4 5 6 7
2 3 1 6 7 5 4
6 5 4 7 3 1 2
3 6 7 5 2 4 1
5 4 6 2 1 7 3
7 1 5 3 4 2 6
4 7 2 1 6 3 5

K ′
5 =

1 2 3 4 5 6 7
4 6 5 3 2 7 1
2 4 7 6 1 3 5
7 5 4 1 3 2 6
6 3 1 7 4 5 2
3 7 2 5 6 1 4
5 1 6 2 7 4 3

Li (1 ≤ i ≤ 8) are Latin squares of order 8 with an orthogonal mate L′
i as follows:

L1 =

1 2 3 4 5 6 7 8
6 3 2 1 8 5 4 7
4 6 7 8 1 3 2 5
7 8 5 6 4 2 1 3
3 5 6 7 2 4 8 1
2 4 1 5 7 8 3 6
8 1 4 3 6 7 5 2
5 7 8 2 3 1 6 4

L′
1 =

1 2 3 4 5 6 7 8
5 1 8 2 4 7 3 6
2 8 1 5 7 4 6 3
4 3 2 1 6 5 8 7
6 4 7 3 1 8 2 5
3 7 4 6 8 1 5 2
7 6 5 8 3 2 1 4
8 5 6 7 2 3 4 1
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L2 =

1 2 3 4 5 6 7 8
6 3 2 1 8 5 4 7
4 6 7 8 1 3 2 5
7 8 5 6 4 2 1 3
3 5 6 7 2 4 8 1
2 4 1 5 7 8 3 6
8 7 4 3 6 1 5 2
5 1 8 2 3 7 6 4

L′
2 =

1 2 3 4 5 6 7 8
2 1 4 5 6 7 8 3
3 4 6 1 7 8 5 2
4 5 1 8 2 3 6 7
5 6 7 2 8 1 3 4
6 7 8 3 1 4 2 5
7 8 5 6 3 2 4 1
8 3 2 7 4 5 1 6

L3 =

1 2 3 4 5 6 7 8
6 3 2 8 1 5 4 7
4 6 7 1 8 3 2 5
8 7 5 6 4 2 1 3
3 5 6 7 2 4 8 1
2 4 1 5 7 8 3 6
7 8 4 3 6 1 5 2
5 1 8 2 3 7 6 4

L′
3 =

1 2 3 4 5 6 7 8
2 1 8 5 4 7 6 3
3 8 1 7 6 5 4 2
7 5 4 1 2 3 8 6
4 6 7 2 1 8 3 5
5 7 6 3 8 1 2 4
6 4 5 8 3 2 1 7
8 3 2 6 7 4 5 1

L4 =

1 2 7 4 5 6 3 8
6 3 2 1 8 5 4 7
4 6 1 8 7 3 2 5
7 8 5 6 4 2 1 3
3 5 6 7 2 4 8 1
2 4 3 5 1 8 7 6
8 1 4 3 6 7 5 2
5 7 8 2 3 1 6 4

L′
4 =

1 2 3 4 5 6 7 8
5 4 7 2 1 8 3 6
2 1 8 3 4 5 6 7
8 5 2 7 6 1 4 3
6 3 4 1 8 7 2 5
3 8 1 6 7 4 5 2
7 6 5 8 3 2 1 4
4 7 6 5 2 3 8 1

L5 =

1 2 7 4 5 6 3 8
6 3 2 1 8 5 4 7
7 6 1 8 4 3 2 5
4 8 5 6 7 2 1 3
3 5 6 7 2 4 8 1
2 4 3 5 1 8 7 6
8 1 4 3 6 7 5 2
5 7 8 2 3 1 6 4

L′
5 =

1 2 3 4 5 6 7 8
3 1 4 2 7 8 6 5
6 5 7 3 1 2 8 4
8 4 1 7 2 3 5 6
4 7 8 1 6 5 2 3
7 3 5 6 8 1 4 2
5 6 2 8 4 7 3 1
2 8 6 5 3 4 1 7

L6 =

1 6 7 4 5 3 2 8
6 3 2 1 8 5 4 7
7 2 1 8 4 6 3 5
4 8 5 6 7 2 1 3
3 5 6 7 2 4 8 1
2 4 3 5 1 8 7 6
8 1 4 3 6 7 5 2
5 7 8 2 3 1 6 4

L′
6 =

1 2 3 4 5 6 7 8
3 1 4 7 6 2 8 5
8 6 5 3 1 7 2 4
2 5 1 6 7 8 4 3
4 7 8 2 3 5 1 6
5 3 7 8 2 4 6 1
7 8 6 5 4 1 3 2
6 4 2 1 8 3 5 7
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L7 =

1 2 7 4 5 6 3 8
6 3 2 1 8 5 4 7
7 8 1 6 4 3 2 5
4 6 5 8 7 2 1 3
3 5 6 7 2 4 8 1
2 4 3 5 1 8 7 6
8 1 4 3 6 7 5 2
5 7 8 2 3 1 6 4

L′
7 =

1 2 3 4 5 6 7 8
3 1 6 8 4 2 5 7
5 3 2 7 1 8 4 6
6 4 7 2 8 1 3 5
2 8 5 1 7 3 6 4
8 7 4 3 6 5 2 1
7 5 8 6 2 4 1 3
4 6 1 5 3 7 8 2

L8 =

1 2 7 4 5 6 3 8
6 3 2 1 8 5 4 7
7 8 1 6 4 3 2 5
4 6 5 8 7 2 1 3
3 5 6 7 2 1 8 4
2 4 3 5 1 8 7 6
8 1 4 3 6 7 5 2
5 7 8 2 3 4 6 1

L′
8 =

1 2 3 4 5 6 7 8
5 1 4 2 3 8 6 7
6 5 7 3 1 2 8 4
8 4 1 7 2 3 5 6
3 7 8 1 6 4 2 5
7 3 5 6 8 1 4 2
4 6 2 8 7 5 3 1
2 8 6 5 4 7 1 3

Ni (i = 1, 2, 3) are Latin squares of order 10 with an orthogonal mate N ′
i as follows:

N1 =

9 4 1 6 3 8 2 7 5 0
3 8 0 5 2 7 1 6 4 9
2 7 4 9 1 6 0 5 8 3
1 6 3 8 0 5 4 9 2 7
0 5 2 7 4 9 3 8 1 6
4 9 6 1 8 3 7 2 0 5
8 3 5 0 7 2 6 1 9 4
7 2 9 4 6 1 5 0 3 8
6 1 8 3 5 0 9 4 7 2
5 0 7 2 9 4 8 3 6 1

N ′
1 =

1 2 3 4 5 6 7 8 9 0
9 3 4 8 6 2 5 0 1 7
0 1 7 6 4 3 9 5 2 8
2 9 6 0 1 7 8 3 4 5
5 6 2 7 0 4 3 9 8 1
6 5 8 9 7 0 4 1 3 2
8 4 1 2 9 5 6 7 0 3
3 8 9 5 2 1 0 6 7 4
7 0 5 1 3 8 2 4 6 9
4 7 0 3 8 9 1 2 5 6

N2 =

9 4 1 6 3 8 2 7 5 0
3 8 0 5 2 7 1 6 4 9
2 7 4 9 1 6 0 5 3 8
1 6 3 8 0 5 4 9 2 7
0 5 2 7 4 9 3 8 6 1
4 9 6 1 8 3 7 2 0 5
8 3 5 0 7 2 6 1 9 4
7 2 9 4 6 1 5 0 8 3
6 1 8 3 5 0 9 4 7 2
5 0 7 2 9 4 8 3 1 6

N ′
2 =

1 2 7 8 5 6 3 4 9 0
2 3 9 6 0 1 8 7 4 5
6 8 0 4 1 9 5 3 7 2
4 5 6 7 3 0 1 8 2 9
7 1 4 3 8 2 9 5 0 6
5 0 1 2 4 3 6 9 8 7
9 4 5 1 7 8 2 0 6 3
0 7 3 9 6 5 4 2 1 8
3 9 8 0 2 4 7 6 5 1
8 6 2 5 9 7 0 1 3 4
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N3 =

9 4 1 6 3 8 2 7 5 0
3 8 0 5 2 7 1 6 4 9
2 7 4 9 1 6 0 5 8 3
1 6 3 8 0 5 4 9 2 7
0 5 2 7 4 9 3 8 6 1
4 9 6 1 8 3 7 2 0 5
8 3 5 0 7 2 6 1 9 4
7 2 9 4 6 1 5 0 3 8
6 1 8 3 5 0 9 4 7 2
5 0 7 2 9 4 8 3 1 6

N ′
3 =

1 2 7 8 5 6 3 4 9 0
2 1 6 5 7 8 4 3 0 9
0 3 5 7 8 9 1 2 4 6
9 4 8 3 2 1 6 0 5 7
8 0 1 2 4 5 9 7 6 3
3 6 2 1 0 4 5 9 7 8
5 7 3 4 9 2 0 6 8 1
6 8 4 9 1 0 7 5 3 2
7 5 9 0 6 3 2 8 1 4
4 9 0 6 3 7 8 1 2 5

P and Q are exhibited as follows (Note that P is a (3,1,2)-conjugate orthogonal Latin
square of order 10 with an empty subarray on {8, 9, 10}, which comes from [2]; Q is a (3,2,1)-
conjugate orthogonal Latin square of order 14 with an empty subarray on {A,B,C,D},
which comes from [3]):

1 5 2 8 3 10 9 4 7 6
9 2 6 3 8 4 10 5 1 7
10 9 3 7 4 8 5 6 2 1
6 10 9 4 1 5 8 7 3 2
8 7 10 9 5 2 6 1 4 3
7 8 1 10 9 6 3 2 5 4
4 1 8 2 10 9 7 3 6 5
2 3 4 5 6 7 1
3 4 5 6 7 1 2
5 6 7 1 2 3 4

P

0 6 A 5 B 9 C 3 D 7 8 4 2 1
8 1 7 A 6 B 0 C 4 D 9 5 3 2
D 9 2 8 A 7 B 1 C 5 0 6 4 3
6 D 0 3 9 A 8 B 2 C 1 7 5 4
C 7 D 1 4 0 A 9 B 3 2 8 6 5
4 C 8 D 2 5 1 A 0 B 3 9 7 6
B 5 C 9 D 3 6 2 A 1 4 0 8 7
2 B 6 C 0 D 4 7 3 A 5 1 9 8
A 3 B 7 C 1 D 5 8 4 6 2 0 9
5 A 4 B 8 C 2 D 6 9 7 3 1 0
1 2 3 4 5 6 7 8 9 0
7 8 9 0 1 2 3 4 5 6
3 4 5 6 7 8 9 0 1 2
9 0 1 2 3 4 5 6 7 8

Q
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