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Abstract

Let J*(v) be the set of all integers k such that there is a pair of Latin
squares L and L’ with their own orthogonal mates on the same v-set, and
with L and L’ having k cells in common. In this article we completely
determine the set J*(v) for integers v > 24 and v = 1,3,4,5,8,9. For
v="Tand 10 < v < 23, there are only a few cases left undecided for the
set J*(v).

1 Introduction

A Latin square of order v is a v X v array in which each cell contains a single element
from a v-set S, such that each element occurs exactly once in each row and exactly

once in each column.

Let S and 5" be v-sets. Two Latin squares L = (a;;) on symbol set S and L' = (b;;)
on symbol set S’ are orthogonal if every element in S x S’ occurs exactly once among
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the v? pairs (a;;,b;;), 1 < 4,7 < v. Bose, Parker and Shrikhande [1] proved that a
pair of orthogonal Latin squares of order v exists if and only if v # 2,6. A Latin
square L of order v is said to possess an orthogonal mate if there exists a Latin
square L’ of the same order such that L and L' are orthogonal. A Latin square of
order v with an orthogonal mate is equivalent to a resolvable T'D(3, v).

Denote by J(v) the set of all integers k such that there is a pair of Latin squares
L and L’ on the same v-set having k cells in common. Let S(t) denote the set of
all non-negative integers less than or equal to ¢, with the exceptions of t — 5, t — 3,
t —2and t — 1. Define I(v) = S(v?). Fu [5] determined completely the set J(v)
and proved that J(v) = I(v) for integer v > 1, except J(3) = I(3) \ {1,2,5} and
J(4) = I(4)\{5,7,10}. Similarly, let J*(v) be the set of all integers k such that there
is a pair of Latin squares L and L’ with their own orthogonal mates on the same
v-set, and L and L’ have k cells in common. By Fu’s result [5] and [1], J*(v) C J(v)
for v # 2,6.

In this article we will study the intersection problem for Latin squares with their
own orthogonal mates.

2 Recursive constructions

Let X be a v-set and P = {S1,S5,,---, S} a partition of a subset S of X. An
incomplete Latin square with k disjoint empty subarrays on Sy, S, -+, Sk respec-
tively, denoted by LS(v,|Si],|S2|, -+, |Sk|), is an |X| by | X| array L indexed by X
satisfying the following properties:

1. A cell of L either contains an element of X or is empty.

2. The subarrays indexed by S; x S; are empty, for 1 <4 < k (these subarrays are
called holes).

3. The elements occurring in row (or column) s € S; of L are precisely those in
X\ S

4. The elements occurring in row (or column) s € X \ (U%_,S;) of L are precisely
those in X.

The type of L is the multiset {|S1],|Sa]," -, |Sk|}. Suppose that L and M are two
Latin squares with k£ common disjoint empty subarrays on Sy, Ss, - -, S,. We say L
and M are orthogonal if their superposition yields every ordered pair in X2\ (U¥_, S?).
We also say M is an orthogonal mate of L. The pair L and M will be denoted by
MOLS(v, 1, ng, - -+, ng) where |S;| =n; for 1 <i < k. If ngy =ng =--- =n, =n,
we write briefly MOLS (v, n¥) for MOLS(v, ny, na, - - -, g ).

Denote by J*(v,n) the set of all integers k such that there is a pair of LS(v,n) L
and L' with their own orthogonal mates on the same set and with the same empty
subarray, and with L and L’ having k cells in common. It is useful to note that
if v > ny +ng+ -+ ng, then a MOLS(v, 1,n1,n9, -+ -, ny) exists if and only if a
MOLS(v, ny,ng, - -+, ng) exists. If any n; is zero we will simply ignore it. It is easy
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to see that J*(v +1,1) ={k—1: k€ J*(v+1)\ {0}}. Next we quote a result as
follows.

Lemma 2.1 [6] For any integers v and n, a MOLS(v,n) exists if and only if v > 3n
and (v,n) # (6,1).

Theorem 2.2 If s € J*(v,n) and t € J*(n), then s+t € J*(v).

Proof. Let I,_,, = {1,2,---,v —n} and Y = {001,009, --,00,}. Let A and B be
LS(v,n) with their own orthogonal mates on the set I,_, UY with the same empty
subarray on Y such that |[AN B| = s. Let C' and D be a pair of orthogonal Latin
squares of order n on the set Y, C" and D’ a pair of orthogonal Latin squares of order
n on the set Y such that C' and C” have t € J*(n) cells in common. By filling the
Latin squares C' and C’ into the holes of A and B, the resulting Latin squares of order
v possess their own orthogonal mates which are obtained by filling Latin squares D
and D’ into the holes of the orthogonal mates of A and B. It is readily checked that
the two resulting Latin squares have s+t cells in common. This completes the proof.
O

Theorem 2.3 If v > 3n andn >3 (n#6), then av + b(v —n) + k € J*(v) for any
integers a € [0,v —n]\ {v—n—1}, b€ [0,n]\ {n—1} and k € J*(n).
Proof. Let I,_, = {1,2,---,v —n} and Y = {001,009, -+,00,}. By Lemma 2.1
there is a MOLS(v,n) A and B on the set I,_,, UY with the same empty subarray
on Y. Let 7 be the element permutation acting on A and B as follows:

=12 v—n—a)(oco; 00y ++ 0Op_p)

where a € [0,v —n]\{v—n—1} and b € [0,n] \ {n — 1}. Then 74 and 7B is also
a MOLS(v,n) on I,_,, UY with the empty subarray on Y at the same location as A
and B. It is readily checked that A and mA have av + b(v —n) cells in common. The
conclusion follows from Theorem 2.2. a

Theorem 2.4 If v is an integer and v # 2,6, then tv € J*(v) for any integer
te[0,v]\ {v—1}.

Proof. For v # 2,6, there exists a Latin square L with an orthogonal mate on

I, ={1,2,---,v}. Let 7 be the element permutation actingon L: m = (12--- v—t)
for t € [0,v] \ {v — 1}. Then 7L is also a Latin square with an orthogonal mate. It
is readily checked that L and 7L have tv cells in common. O

Theorem 2.5 Let m and n be integers greater than or equal to 3, but not equal to
6. Then 327y Y27 kij € J*(mn) where each ki; € J*(m).

Proof. Let A = (a;j)nxn be a Latin square of order n with an orthogonal mate
B = (bjj)nxn. Fori,j = 1,2---,n, let C;; and D;; be a pair of orthogonal Latin
squares of order m, and Cj; and Dj; a pair of orthogonal Latin squares of order m
such that Cj; and C}; have k;; € J*(m) cells in common. Define four Latin squares
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Ll: L27 Lll

and L), of order mn as follows:

(a117C’11) (Gln,cm) (b117D11) (bllen)

Ly = (a21,Ca1) -+ (azn, C2n) Ly = (ba1, Da1) +++ (ban, D2y)

(anh Cnl) e (an'm Cnn) (bnly Dnl) e (bnny Dnn)

(alhcil) e (al'mC{n) (blhD/ll) e (bITwD/ln)

L/ _ (a’217 Oél) e (G/Q’na Cén) L/ _ (b217 Dl21) e (b2n7 Dl2n)
1= 2

(anh 0%1) T (annv O;m) (bnla D;zl) e (bnny D;m)

where (a, L) = ((a,l;;)) if L = (I;;) is a Latin square. Then Ly and Lo, L} and Lj
are two pairs of orthogonal Latin squares of order mn. It is easy to check that L;
and Lj have 337, 320, kij cells in common. The conclusion follows immediately. O

Let Y7 and Y, be n-sets such that |[Y; NYs| =1 > 1. Let A denote the set of all
Latin squares on Y; with an orthogonal mate, and B the set of all Latin squares on
Y, with an orthogonal mate. Define Ji(n) ={k: |[ANB| =k for A€ A, B € B}.

Theorem 2.6 Let v, n and | be integers such that v > 3n andn >3 (n # 6) and
1<l<n. Then av+blv —n)+k € J*(v) for integers a € [0,v —2n +1], b € [0,]
and k € Ji(n).

Proof. Let I,_, = {1,2,---,v —n} and Y = {oc01,002, -+,00,}. By Lemma 2.1
there is a MOLS(v,n) A and B on the set I,_, UY with the same empty subarray
on Y. Let m be the element permutation acting on A and B as follows:

(00110092 -+ 00,1 n—1—100,_ 100 141 **+ Oppn—In—I+1 -+ v—n—a)
where 1 <1 < mn,a € [0,v—2n+1] and b € [0,]]. Then 7A and 7B is also a
MOLS(v,n) on I,—,, UY with the empty subarray on 7Y at the same location as A
and B. Clearly, |Y N7Y| = 1. Let C and D be a pair of orthogonal Latin squares
of order n on the set Y, and C’ and D’ a pair of orthogonal Latin squares of order
n on the set 7Y such that C' and C”" have k € J;(n) cells in common. By filling the
Latin squares C' and C” into the holes of A and wA, the resulting two Latin squares
of order v possess their own orthogonal mates which are obtained by filling Latin
squares D and D’ into the holes of B and 7B. It is readily checked that the two
resulting LS(v) have av + b(v — n) + k cells in common. This completes the proof.

O

Theorem 2.7 Let v, n > 3, k > 2 and [ be integers such that v > kn and 1 <1 < n.
If there exists a MOLS(v,n*), then av+b(v—n)+>F_ | a; € J*(v) where a € [0,v—kn],
be [0,kl] and a; € Ji(n) fori e [1,k].

Proof. Let X = {1,2,---,v — kn} U (U,Y;) where Y; = {z{" 2{" ... 20} for
i € [1,k]. Let A and B be a MOLS(v,n*) on the set X with k& common disjoint
empty subarrays on Y7, Ya, -+, Yi. For 1 <l < n, a € [0,v—kn] and b € [0, kl], let
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b=sl+twhere )0 <t<l. Then0<i<kandn—t>2. Let ™= m -m be the
element permutation acting on A and B as follows:

7= (:rﬁfll) Igfgl) I;SH))(:E&S”) Ig”?) x$+2>)...(x§k> x§k> ez

for0<s<k—1lorm = (1) for s =k;

n—1
m=| ]I (M 2® Y @ 2@ W gy 1 a2 v —kn).
i=l+1

Then 1A and 7B is also a MOLS(v, n*) on X with k common disjoint empty subar-
rays on wYy, mYa, - - -, Y at the same locations as A and B. It is easy to check that
|Y; N 7Y;| =1 fori € [1,k]. Fori e [1,k], let C; and D; be a pair of orthogonal Latin
squares of order n on Y;, and C] and D} a pair of orthogonal Latin squares of order
n on 7Y; such that C; and C! have a; € Ji(n) cells in common. By filling the Latin
squares Cy, Cf (i € [1,k]) into the holes of A and wA respectively, the resulting Latin
squares of order v possess their own orthogonal mates which are obtained by filling
Latin squares D;, D} (i € [1,k]) into the holes of B and wB. It is readily checked
that the two resulting LS(v) have av + b(v — n) + X, a; cells in common. This
completes the proof. O

For n > 4 and n # 6, 10, it is well known that there are three mutually orthogonal
Latin squares of order n. Now we assume that Ly, Ly and Ls = (a;;)nxn are three
mutually orthogonal Latin squares on I, = {1,2,---,n}. Let T, = {(i,7) : a;; =k}
for k € I,,. Then Ly and Ly are orthogonal and have the same n disjoint transversals
Ti, T, - -+, T,. The following construction is to take the squares L; and Lo, and
replace each cell of them by a ¢ x ¢ array; this array will in general either be a
MOLS(g) or be combined with additional rows and columns to Ly and L, to form a
MOLS(gn + x, z). For each cell in Ty, (k € [1,n]), we add xj rows and columns to L;
and Ly using a MOLS(q + xx, 2x). The construction yields a MOLS(gn + x, x) where
T =344 Tk

Theorem 2.8 Let q, n and x be integers andn >4, n # 6,10 and 1 <z <n. Then
omd; Z?:Qmﬂ d; € J*(gn + z,z) where all d; € J*(¢+ 1,1) for 1 <i < zn and
d; € J*(q) for an+1 < < n%

Proof. Let z, = 1 for k € [1,z] and 0 for k € [v + 1,n]. When n > 4 and n # 6,10
and 1 <z < n,let Ly, Ly and 7 (1 < k < n) be as above. Then L; and Ly are
orthogonal and have the same n disjoint transversals 7;, 75, - -+, 7,,. For each cell
(i,4) € T (k € [1,n]), let C;; and D;; be LS(q + wy, x1) with their own orthogonal
mates C}; and Dj; such that Cy; and D;; have ¢;; € J*(q + ok, %) cells in common.
For each cell in 7; (k € [1,n]), we add zj, rows and columns to Ly using C;;. The
resulting Latin square A is LS(gn+ x, x) with an orthogonal mate which is obtained
by adding z;, rows and columns to Ly using Cj; for each cell in 7, (k € [1,n]).
Similarly, for each cell in 7, (k € [1,n]), we add zy rows and columns to Ly using
D;;. The resulting Latin square A’ is also LS(gn + z,z) with an orthogonal mate
which is obtained by adding x; rows and columns to Ly using ng for each cell in 7,
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(k € [1,n]). It is readily checked that A and A" have

SIDSITRED SR S

k=1 (i,j)€T} k=z+1 (i,5) €T}

cells in common. Hence 5%, d;+3 +1di € J*(qgn+x,x) where all d; € J*(¢+1,1)
for 1 <i <anand d; € J*(q) for zn +1 < j < n? a

3 The set J*(v) for v =3,4,5,7,8

In this section we will consider the set J*(v) where 1 < v < 8 and v # 2,6. Let
L be a Latin square of order n on I,, = {1,2,---,n} with its own orthogonal mate
L'. In what follows let 7,, 7. and 7, be row permutation, column permutation and
element permutation. Then m,m.m.(L) is a Latin square with an orthogonal mate
(L), Let |L N mmeme(L)] = k denote the fact that L and m.m.m.(L) have k
cells in common.

Lemma 3.1 J*(1) = {1}; J*(3) = {0,3,9}; J*(4) = {0,4,8, 16}.
Proof. J*(1) = {1} is trivial. Apply Theorem 2.4 and J*(3) C J(3) to get J*(3) =
{0,3,9}.

Under row permutation and column permutation, there are only two LS(4)s A and
its transpose AT with their own orthogonal mates, where A is listed below:

13452 13452
1113411; 42531 32514
9431 51324 45321
31924 25143 51243
34215 24135
It is easy to check that J*(4) = {0,4, 8,16} by an exhausive search. O

Lemma 3.2 J*(5) = {0-13, 15, 25}.

Proof. Under row permutation, column permutation and element permutation, there
are only two LS(5)s with an orthogonal mate exhibited as above. The conclusion
follows immediately by an exhaustive computer search. O

Lemma 3.3 0,7,14,21,28,35,49 C J*(7).
Proof. This follows immediately from Theorem 2.4. m|
Lemma 3.4 17-20, 22-27, 29-33, 36, 37, 39-41, 45 C J*(7).

Proof. Let K; (i =1,2,3,4,5) be Latin squares of order 7 with an orthogonal mate,
as given in the Appendix. It is readily checked that:

[KiN(2567).(Ks)| =1T;
|[K2M(2345),(K3)| =18;
1,1 (23 4 5),(K>)| = 19:
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|[K>n (1
Ficla
|K71 N
|K1 N
|K> N
Ficia

(567),

(

(

(

(
|Kon (1
N (6

(1

(6

(1

1234
567),
234),
234),

| K>
Fisia
Ficia
|K> N
KN (1

|K; N
1Kz N

N~ =B
Z
Il
O
=

)| =
)| = 32;
)| =

4),(5 6 7),(K3)| = 20;
K3)| =22
T(KQ)‘ = 23;

)
)
)
4),(6.7), Ks) =27;
), (K3)| =
2 4),(K)] = 30;
)T(K2
)T(K?)
)T(KQ
| K1 N Ks| = 36;
| K3 N K| = 37;
(1 4),(F55)| = 30,
(1 4), (K)| = 41;
| Ky N K3| = 43;
|K) N K| = 45.
Lemma 3.5 1-6, 813, 15, 16 C J*(7).
Proof. Letm,. =(14)(23675)and 7, =

33;

(14)(23675) be the row permutation and

column permutation acting on the Latin square K7 which comes from the Appendix.
Let K¢ = m,m.(K1). Then K4 has an orthogonal mate. It is readily checked that:

|K1 N
|K71 N
Ficia
Fisia
Ficia
Fisia
|51 N
|K1 N
|K71 N
|K7 N
Fisia
|K71 N
Fisia

(137 4).(2 6 5).(Ke)| = 1;

(
(
(1
(
(
(1
(
(
(
(
(3
(1

1374265).(Ke)| =2

(
1645).(2 7 3).(Kg)| = 3;
3)e(26574).(Ks)| = 4;

17635).(Kg)| = 5:
1 | =

)

4)e(23675 e(K6)|

)

5 7)e(2 4 6)c(Ks)| = 6;
)
(

1475236), K6)|
125)c(3 4)e(Ko)| =
1253 4).(Kg)| = 11;
156724 3).(Ks)|
4)e(256 7)(Ko)|
2)e(3 4)e(5 6 7)e (K

12;
13;
o)l =
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|K1N(34)e(15672).(Kg)| = 16.

Theorem 3.6 I(7)\ {34,38,40,42} C J*(7).
Proof. This follows immediately from Lemma 3.3 to Lemma 3.5.

Lemma 3.7 0,8,16,24,32,40,48,64 € J*(8).

Proof. This follows immediately from Theorem 2.4.
Lemma 3.8 2, 4, 6, 10-12, 14, 17-23, 25-31, 33, 35-39, 41-47, 49,

60 € J*(8).

52, 53, 56, 57,

Proof. Let L; (i = 1,2,3,4) be Latin squares of order 8 with an orthogonal mate in

Appendix. It is readily checked that

|Lin(18),(23 -+ 6—1t).(Ly)| =6+8 for t =0,1,2,3;

|Lin(12

LN (16 3) (24578).(Ly)| =2
|LiN(123456),.(78).(Ls)| =4
|Li N (163).(2457).(Ls)| = 10;
|L1 N (23):(4578),(La)| = 11;
|L1 N (3 4)(156),(Ls)| = 17;

[L1 N (163):(245).(Ls)| =18;
|L1 N (2 3),(457),(La)| = 19;

|L1 N (7 8)-(15 6),(Ls)| = 21;
|L1 N (1 2),(5 6)(Ls)| = 23;
|L1 N (1 2)-(3 5)r(Ls)| = 25;
|L1 N (16 3)r(2 4)(La)| = 26;
|L1 N (2 3)r(4 5)r(La)| = 27;
|L1 N (156).(Ls)| = 29

|L2 N (2 3 4),(La)| = 31

[L1 N (245),(La)| = 33;

ILin(23 4)T(L4)| 35;

|L1 0 (15),(Ls)| =

ILiN(56 7)r(L2)|

|L1 N (1 2).(Ls)| =

IL1 N (3 4).(Ls)| =

ILin(16 3)T(L4)|

[L1 N (2 3)r(La)| = 43;

[L1 0 (7 8),(Ls)| = 45;

[L1 N (1 8),(Ly)| = 46;

-6 —1t),(Ly)| =12+ 8¢t for t = 0,1,2,3,4;



|L1 0 (3 6),(La)| = 49;
[L1 N (7 8),(La)| = 52;

|Ly N Ly| = 53;
|Ls N Ls| = 56;
|Ly N Ly| = 57,
|L1 N Ly| = 60. |

Lemma 3.9 15,34,50,51,54,55,58 € J*(8).

Proof. Let L; (i = 5,6,7,8) be Latin squares of order 8 with an orthogonal mate
in Appendix. It is checked that |Le N Ls| = 50; |Lg N Lg| = 51; |Ly N Ls| = 54;
|Le¢ N L7| = 55; |Ls N Lg| = 58; |[LaN (2 5),Ls)| =34; |[LgN (256 78),.Ly)| =15. O

Lemma 3.10 1,3,5,7,9,13 € J*(8).

Proof.  Let m, = (1 8)(2 7)(3 6)(4 5) be the row permutation acting on L; which
comes from the Appendix. Let L; = m,(L;). It is readily checked that

)-

|Ly N wemo(Ly)| = 1 where 7. = (1 4)(2 3)(58)(6 7) and 7, = (1 7)(2 6)(3 5);

|Ly N memo(L1)| = 3 where 7. = (1 8)(2 7)(36)(4 5) and 7, = (1 3)(4 8)(5 7);

|Ly N meme(Ly)| = 5 where m. = (1 8)(2 7)(3 6)(4 5) and 7, = (1 4)(2 3)(5 8)(6 7);

|Ly N mome(Ly)| = 7 where 7, = (1 8)(2 7)(3 6)(4 5) and 7. = (1 8)(2 7)(3 6)(4 5);

|Ly N weme(Ly)| = 9 where 7. = (1 7)(2 6)(3 5) and 7, = (1 5)(2 4)(6 8);

|Lo N 7eme(Le)| = 13 where m. = (1 7)(2 6)(3 5) and m. = (1 6)(2 5)(3 4)(7 8). O
Theorem 3.11 J*(8) = I(8).
Proof. This follows immediately from Lemma 3.7 to Lemma 3.10. O

4 The set J*(v) for 9 <v < 14

In this section we will consider the set J*(v) where 9 < v < 14.

Lemma 4.1 v* -9, v> —6 € J*(v) for any integer v > 9; v — 8 € J*(v) for any
integer v > 12.

Proof. Tt follows immediately by Theorem 2.3 with n = 3 or 4 and Lemma 3.1. O
Lemma 4.2 J;(3) = {0, 1,3}; J2(3) = {0,2, 3,6}.

Proof. This follows from an exhaustive search. a
Lemma 4.3 I1(9)\ {52,58,61,62,64,65,67, 68,70,71, 73,74, 77} C J*(9).

Proof.  Apply Theorem 2.5 with m = n = 3 to get 7 12 1kij € J*(9) where
each k;; € J*(3) = {0,3,9}. Then 3t € J*(9) for ¢t € [0,27] \ {26} By Theorem 2.6
with v =9, n =3 and l =1 or 2, we have 9a + 60+ k € J*(9) where a € [0,3 + 1],
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b € [0,]] and k € J;(3) which is taken from Lemma 4.2. It is readily checked
that 1,2,7,8, 10, 11, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 32, 34, 35, 37, 38, 41, 43, 44, 47,
50,53, 59 € J*(9).

By the proof of Theorem 2.5, there is a MOLS(9,3%). Apply Theorem 2.7 with
v=9,n=3and [l =1,2toget 9a+ 6b+ s +¢ € J*(9) where a € [0,3], b € [0, 2]]
and s,t € Ji(3). The remaining cases are obtained by taking suitable integers a, b,
[, s and t as follows:

ablst 9a+6b+s+teJ(9)
0022 2 4
0022 3 5
0210 1 13
1210 1 22
2210 1 31
3210 1 40
2422 2 46
3322 2 49
3422 2 55
3422 3 56

Lemma 4.4 52,58,61,62,64, 65,67, 68,70,71, 73,74, 77 € J*(9).
Proof. Let M; and M] (i = 1,2) be Latin squares of order 9 as follows:

456789 456789

A 987546 A 645897

8796 5 4 564978

76 5 498 456 132

Mi=9 46 A 875 M=5614 A, 321

8 5 4 96 7 6 45 2 13
489765 798123

6 975 48 A 879231 A
57869 4 98 731 2

!/

; are an orthogonal mate

2

where A;, Ay, A3 are any Latin squares on {1,2,3}, and
of A; on {3i—2,3i — 1,3i} fori =1,2,3.

4 56798 123456789

B, 98 75 46 291643857

8 796 5 4 318524976

76 5 4 89 456789132
My=9 46 DBy 875 My=534867291
8 5 4 96 7 642975318

4 8 97 6 5 789132465

6 9 75 48 DB 875391624
5786 9 4 967218543
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123 132
where By = 3 12 and By = B3 = 2 1 3. It is readily checked that M; and My,
231 321

M, and M are mutually orthogonal, M; and M, have (81 — 27 —4) + (ry + 1y +73)
cells in common where 71, 79,73 € J*(3). So 62,65,68,71,77 € J*(9).

Take A; = B;, Ay = By and Az to be any Latin squares on {1,2,3} in M;. Let
7w = (14) be the row permutation acting on M;. Then m(M;) and M, have (67—9)+r
cells in common where 7 € J*(3). Hence 61,67 € J*(9).

Let M3 and M} be as follows:

123456789 123456789
312987546 2416 35897
231879654 3165 24978
865 497 654 123
Msy=946 C 875 Mj=532 C'" 461
754 9638 465 312
489765132 7981 43256
697548213 87926 1534
578694321 987312645

where C' is any Latin square on {1,2,3} and C’ is an orthogonal mate of C' on
{7,8,9}. It is readily checked that M; and M} are mutually orthogonal. Then M,
and Mz have (74 — 9) + r cells in common where r € J*(3) and hence 74 € J*(9).
Let U; be obtained from M; by taking A; = (1 2),(By), A2 = (2 3),(B2) and A
any Latin square on {1,2,3}. Let 7 = (1 4) be the row permutation acting on Uj.
Then 7(U;) and M, have 49+ cells in common where r € J*(3). So, 52,58 € J*(9).

Let Us be obtained from Mj by taking C' = (1 3),(Bz). Let m; = (4 6) be the row
permutation acting on U;. Then m;(Us) and M; have 70 cells in common.

Let M, and Mj be as follows:

M, M) =

Il
LD = 00 © 3 o W+~
~ 00 © Tl I~ OO W+~ N
00 © ~J = O UL — N W
S UL W N 0 O
O = N = W= o Ut
= Ot~ W O© 3o
LW N — © 00O Ut
N = WO © U=
= W N~ OO0 OO
© 00 J = UTLOY W N
00 © W ~J O UL — = 1N
NN O O 000~ W
LW H OO N Tt 0 =
= W N OO WO~ O Ot
N = = W oo O g Ut
= U100 O N = O W
O J Ut = Wk DN O o
TGO B N H Woo ~J ©

It is readily checked that My and M) are mutually orthogonal; My and M; with
A; = B; (i=1,2,3) have 73 cells in common.

Let Us be obtained from M; by taking A; = (1 2),(B1), Ay = Bs and A3 = Bs.
Let m = (1 4) be the row permutation acting on Us. Then 7(Us) and M, have 64
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cells in common.

Theorem 4.5 J*(9) = 1(9).

Proof. This follows immediately from Lemma 4.3 and Lemma 4.4.

Lemma 4.6 1(10)\ {4, 5, 15, 25, 35, 45, 55, 65, 68, 72, 75, 78, 81, 82, 83-85, 87-89

92, 93, 96} C J*(10).

Proof. Apply Theorem 2.3 with v = 10 and n = 3 to get 10a + 7b + J*(3) € J*(10)
where a € [0,7]\{6} and b € [0, 3]\ {2}. Direct computation shows that 0, 3, 7, 9, 10,
13, 16, 17, 19 21, 23, 24, 26, 27, 2931, 33, 34, 36, 37, 39 41, 43, 44, 46, 47, 49 51,
53, 54, 56, 57, 59-61, 64, 66, 70, 71, 73, 74, 77, 79, 80, 86, 91, 94, 100 € J*(10).

By Theorem 2.6 with v = 10 and n = 3, 10a + 7b + k € J*(10) where | = 1,2,
a€[0,3+1],be€l0,] and k € J;(3) which is taken from Lemma 4.2. The other

cases follow by taking suitable integers [, a, b and k as follows:

2
0
0
2
2

S Qo
.

k

1
0
0
1
10a+ 70+ Fk 1

DO OO N

1
0
1
1
8

1
3
1
1

N O =N
— = s

l
a
b
k

10a +7b+ k 38 42 48

Lemma 4.7 4,5,15,25,35,45,55,68,72,78,84,88,92,96 € J*(10).
Proof. Let N; (i =1,2,3) be Latin squares of order 10 with an orthogonal mate in

Appendix. It is readily checked that

INy 0 (123 4),(6 7809),.(510),(Ns)| = 4;

[N1 N (3 8),(5 10),(N2)| = 68;
[N, 11 (12), (W) = 72

[N N (9 10),(N3)| = 78;

[N N (5 10),(N3)| = 84;

[N, (1 (9 10).(Na)| = 88:

N, N N = 92;

N, N Ny = 96.

Here P is a (3,1,2)-conjugate orthogonal Latin square of order 10 with an empty
subarray on {8,9,10} exhibited in the Appendix, which actually comes from [2]. It

is readily checked that:

== O = =

N O Ot N

(5§
[N
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N O =N

—
[\

1
5
1
1

o8

2
0
2
0

1

>
[

N OO N

D

2

(=)
w

1
1
1
1

W O O N

8

o= o N B oo

(@)
3

1
2
1
1

2

SRS o

D
=)

2
3
0
0

3

NS}

NN O DN
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|PN7me(P)] =5 wherem, =(1765432)and .= (172534 6);
|P N 7me(P 1765432)and 7, =(172)(3654);

(P)|

(P)| = 15 where 7, = (

|P N 7pme(P)] (15432)and 7. = (2345);
(P) (
(P) (

= 25 where 7, =
|P N 7.me(P)| = 35 where m, = (25 4) and 7. = (1 5 4 3);
|P N 7me(P)| = 45 where 7, = (3 5) and 7. = (1 3)(2 4);

|P N mm.(P)] = 55 where 7, = (3 5) and 7. = (3 5). Hence 5,15,25,35,45,55 €
J*(10,3). By Lemma 3.1 and Theorem 2.2, we have 5, 15,25, 35,45, 55 € J*(10). O

Theorem 4.8 1(10)\ {65,75,81,82,83,85,87,89,93} C J*(10).

Proof. This follows from Lemmas 4.6 and 4.7. o
Lemma 4.9 I(11)\ {4, 5, 7, 15, 26, 37, 48, 59, 70, 78, 81, 86, 89, 92, 94, 98, 100,
101, 102, 103, 104, 106-111, 113, 114, 117} C J*(11).

Proof. Apply Theorem 2.3 with v = 11 and n = 3 to get 1la 4+ 80 + k € J*(11)
where a € [0,8]\ {7}, b € [0,3]\ {2} and k € J*(3). Then 0,3,8, 9,11, 14,17, 19, 20,
22,24,25,27,28, 30,31, 33,35, 36, 38, 39,41, 42, 44,46, 47, 49, 50, 52, 53, 55, 57, 58, 60,
61,63, 64,66, 68, 71,72, 74, 77,79, 82, 83, 88,90, 91,93, 96,97, 99, 105, 112,115,121 €
J(11).

By Theorem 2.6 withv =11, n =3 and ! =1 or 2, 11a+8b+k € J*(11) where a €
[0,5+1], b€ [0,1] and k € J;(3) which is taken from Lemma 4.2. It is readily checked
that 1,2,6,10,12,13, 16, 18,21, 23,29, 32, 34,40, 43, 45, 51, 54, 56, 62, 65, 67, 69,73,75,
76,80,84,85,87,95 € J*(11) by taking suitable integers [, a, b and k. a
Lemma 4.10 4,5,7,15,26,37,48,59,81,89 € J*(11).

Proof. Let L = (a;) be a Latin square of order 11 as follows: a;; = 6(i + j)
(mod 11). Then L has an orthogonal mate. It is readily checked that

|LN7me(L)] =4 where 7, = (1098765432 1)and 7. = (17461039 2);

|LN (L) =5 where 7, = (1098 765432 1) and m. = (1724 9)(3 6 8 10);

|LN7me(L)] =7 where m,, = (109876 54321) and 7. = (24)(35 7)(8 10 9);

|L N, (L)| = 15 where m, = (1098 765432 1) and 7, = (175 6 8 10 2);

|LNmm.(L)| =26 where m, = (18642109753)and 7, = (17249)(36810);

|L N m,me(L)| = 37 where m, = (154 32) and 7, = (1 43 2 5);

|LN7me(L)| = 48 where m, = (154 3 2) and m. = (2 5 4);

|L N m,me(L)| =59 where m, = (25 4) and 7, = (1 3 5 4);

|L N 7.me(L)| = 81 where m, = (3 5) and 7. = (3 5).

Let A and B be LS(11,3), m, = (10 11) and 7. = (10 11) be row permutation and
column permutation acting on A. Then A and 7w, 7.(A) have their own orthogonal
mates. It is checked that A and m,7.(A) have 80 cells in common and hence 80 €
J*(11,3). By Lemma 3.1 and Theorem 2.2, 89 € J*(11). a

Theorem 4.11 I(11)\ {70,78,86,92,94,98,100, 101,102, 103,104, 106-111, 113,
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114,117} C J*(11).
Proof. This follows from Lemma 4.9 and Lemma 4.10 |

Lemma 4.12 (12)\ {103,106,107,109, 115, 118,119, 121,122, 125, 127, 130, 131,
134, 137, 140} C J*(12).

Proof. Apply Theorem 2.5 with n = 4 and m = 3 to get Y1, Z?-:l ki € J*(12)
where each k;; € J*(3) = {0,3,9}. Then 3¢t € J*(12) for any integers ¢ € [0, 48]\{47}.
Similarly, Y7, 3%, ki € J*(12) where each kj; € J*(4) = {0,4,8,16}. Then
4t € J*(12) for any integer ¢ € [0,36] \ {35}.

By the proof of Theorem 2.5, there is a MOLS(12 3%) for k = 2,3. Apply Theorem
2.7 with k =3 and [ = 2 to get 12a+9b+2 1 a; € J*(12) where a € [0,3], b € [0, 6]
and a; € Jo(3) for i € [1,3]. Clearly, Y2, a; € {0,2-12,14,15,18}. Hence, {0,2-
102,104, 105,108} C J*(12). Apply Theorem 2.7 with n =3, k =2 and [ = 1,2 to
get 12a+9b+ s+t € J*(12) where a € [0,6], b € [0,2]] and s,t € J;(3). Then 1,110,

113 € J*(12) by taking suitable I, s and ¢. O
Lemma 4.13 I(12)\ {115,118, 119, 121,122, 125, 127, 130, 131, 134, 137, 140} C
J*(12).

Proof. Let L(Ai,---,As) and L'(A},---, A}) be Latin squares on I, X I3 (where
I, ={1,2,---,t} for t = 3,4) as follows.

(LAI) (273) (4aB) (3>B) (17’4/1) (27Bl) (4aB/) (378,)
L= (273) (17’42) (3,3) (4>B) L = (273/) (1>A2) (3aB/) (478,)
(4.B) (3,B) (1,43) (2,B) (4,B) (3,B) (1,45) (2,B)
(3.B) (4,B) (2,B) (1,A) (3,B) (4,B) (2,B') (1, 4))

where A; (i = 1,2,3,4) are any Latin squares on I3 and B is fixed Latin square on
I3. A} (i =1,2,3,4) is an orthogonal mate of A; on I3 and B’ is an orthogonal mate
of B on I3. It is easy to see that L(Aj,---,Ay) and L'(A4],---, A}) are mutually
orthogonal.

Let 7 = ((1,1) (2,1)) be the element permutation on L(By,---, By). It is readily
checked that L(Ay,- -+, Ay) and 7(L(By, - -+, By)) have 96 + >, r; cells in common
where each r; € J5(3) = {0,2,3,6}. Hence 103,106,107,109 € J*(12). The conclu-
sion follows from Lemma 4.12. a

Lemma 4.14 Let a, b be integers such that min{a,b} > 6. For any integer
n € [0,3a + 46]\ {1,2,5,3a + 4b — 19,3a + 4b — 13,3a + 4b — 11, 3a + 4b — 10, 3a +
4b — 7,3a + 4b — 4}, n can be written as 3s + 4t where s € [0,a] \ {a — 1} and
te[0,0]\ {b—1}.

Proof. This follows immediately. |

Lemma 4.15 [(13)\ {150, 156, 158, 159, 162, 165} C J*(13).

Proof. Apply Theorem 2.8 with n =4, ¢ =3 and 2 = 1 to get S0, d; + 215 d
J*(13,1) where d; € J*(4,1) = {3,7,15} for i € [1,4] and d; € J*(3 ) for i € [5, 16]
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It is easy to see that

idi e{4t+12: te[0,12]\ {11}},

i=1

id € {3s: s€0,36]\ {35}}.

Then 3s + 4t + 13 € J*(13) where s € [0,36] \ {35} and ¢ € [0,12] \ {11}. When
ke I(13)\ { 0 — 12,14, 15, 18, 150, 156, 158, 159, 162, 165}, k € J*(13) by Lemma
4.14.

By the proof of Theorem 2.8, there is a MOLS(13,3%). Apply Theorem 2.7
with [ = 2 to get 13a + 10b + >'_, a; € J*(13) where a € [0,1], b € [0,8] and
a; € Jo(3) for i € [1,3]. It is easy to see that 1, a; € {0,2 — 18,20, 21, 24}. Hence,
{0,2—12,14,15,18} C J*(13). Similarly, 1 € J*(13) by Theorem 2.7 with [ =1. O
Lemma 4.16 I(14) \ {5,7,19,21,35,49,63,77,91,105, 119, 133, 141, 147, 149,
155,161, 167, 169173, 175, 177-179, 181-183, 185, 186, 189, 192} C J*(14).

Proof. Apply Theorem 2.3 with v = 14 and n = 3 or 4 to get 14da + (14 —n)b+ k €
J*(14) where a € [0,14 —n]\ {13 —n}, b € [0,n] \ {n — 1} and k € J*(n) where
n = 3,4. Then I(14)\ {1, 2, 5-7, 12, 13, 15, 19, 21, 27, 29, 35, 41, 43, 49, 55, 57,
63, 69, 71, 77, 83, 85, 91, 97, 99, 105, 111, 113, 119, 125, 127, 133, 139, 141, 143,
147, 149, 151, 153, 155, 161, 167, 169173, 175, 177-179, 181 183, 185, 186, 189,
192} C J*(14) by taking suitable n, a and b.

By Theorem 2.6 with v = 14, n = 3 and | = 1,2, 14a + 11b + k € J*(14) where
a€[0,8+1],be[0,]] and k € J;(3). The remaining cases follow immediately by
taking suitable k, a and b. |

Lemma 4.17 5,7,19,21,35,49,63,77,91,105,133 € J*(14).

Proof. Here @Q is a (3,2,1)-conjugate orthogonal Latin square of order 14 with an
empty subarray on {4, B, C, D} exhibited in the Appendix which comes from [3]. Tt
is readily checked that:

|QNm,7m(Q)| =5 where m, = (10987654321)and 7, = (165)(21037849);
| QN7 (Q)] =7 where m, = (1098765432 1) and 7. = (1485)(21097 36);
|QN7,7m(Q)| = 11 where w, = (1098765432 1) and 7. = (185109 734)(26);
|Q Nmme(Q)] =35 where m,, = (185109 73 6) and 7. = (1 9 10 4)(6 7);

|Q Nmme(Q)| =45 where 7, = (159362 7) and 7. =(1593627);

|Q N7, 7me(Q)] = 47 where m, = (1 756 8 10 2) and . = (1 7 8 4 6 10);

|Q N7 (Q)] = 69 where 7, = (15432) and 7. = (1543 2);

|Q N7, 7m.(Q)] = 83 where m, = (1 54 3 2) and m, = (1 4 5);

|Q N7 (Q)| = 105 where 7, = (2 5 4) and 7. = (2 5 4);
|Q Nm,7m.(Q)] = 117 where m, = (1 2 4) and 7, = (2 5).
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Hence, 5,7,11,35,45,47,69, 83,105,117 € J*(14,4). The conclusion follows from
Lemma 3.1 and Theorem 2.2. O

Theorem 4.18 I(14)\ {119, 141, 147, 149, 155, 161, 167, 169-173, 175, 177-179,
181-183, 185, 186, 189, 192} C J*(14).

Proof. This follows from Lemma 4.16 and Lemma 4.17. O

5 Conclusions

Lemma 5.1 I(v)\ {v? —11,v% — 7,0% — 4} C J*(v) for integer v = 15, 20.

Proof.  Apply Theorem 2.5 with n = ¢ and m = 5 to get >\, X7 kij € J*(v)
where each k;; € J*(5). By Lemma 3.2, J*(5) = {0 — 13,15,25}. For any integer
ke I(v)\{v?—11,v2 - 9,v? — 8,0 — 7,v% — 6,v2 — 4}, it is easy to check that there
exist k;; € J*(5) such that k = 7, >0, kij. Then I(v)\ {v* —11,v* = 9,v° —8,v* —
7,02 — 6,0 — 4} C J*(v). The other three cases follow by Lemma 4.1. O
Lemma 5.2 I(v)\ {v? — 11,v? — 7,02 — 4} C J*(v) for integers v = 16, 18, 22.
Proof. Let v = 3n+ x where v, n and z (1 <z < n) are taken as follows: (v,n x)
(16,5,1), (18, 5, 3),(22,7,1). Apply Theorem 2.8 with ¢ = 3 to get >7% d
Z?im“ d; € J*(v,z) where d; € J*(4,1) = {3,7,15} for i € [1,2n] and d; € J*(3 )
{0,3,9} for i € [zn + 1,n2]. It is easy to see that

rn

> di € {4t +3an: t €[0,3zn] \ {3zn — 1} },

i=1

,n2
> die{3s: s€0,3n(n—x)]\ {3n(n—z) — 1} }.
i=xn+1
Then 3s + 4t + 3zn + k € J*(v) where s € [0,3n(n — z)] \ {3n(n —x) — 1}, t €
[0,3zn] \ {3zn — 1} and k € J*(z). By Lemma 4.14 and {0,2?} C J*(x), it is not
difficult to check that I(v)\ ([0, 3zn—1]U{3zn+1, 3zn+2, 3zn+5, v* —19, v2 —13,
v? — 11, v2 =10, v* = 7, v% — 4}) C J*(v).
By the proof of Theorem 2.8, there is a MOLS(v,3™). Apply Theorem 2.7 with

Il =2toget av+blv—3)+ X0 € J(v) where a € [0,z], b € [0,2n] and
a; € Jo(3) ={0,2,3,6} for i € [1,n]. It is easy to see that 6(n — 1) > v — 3 by the
choices of v, n as above, and

Zal € (2,6(n —1)]U{0,6n —4,6n — 3,6n}.
Hence, [2,3zn —1]U{0,32zn + 1, 3zn+2, 3zn + 5} C J*(v). Similarly, 1 € J*(v) by
Theorem 2.7 with [ = 1. By Lemma 2.1 there is a MOLS(v,5) and hence v? — 25 €

J*(v,5). Then v? — 19, v? — 13, v?* — 10 € J*(v) by Theorem 2.2 and Lemma 3.2.
This completes the proof. O
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Lemma 5.3 I(v)\ {v?—11,v? —7,0% —4} C J*(v) for integers v = 17,19, 21, 23.

Proof. Let v = 4n + x where v, n and = (1 < = < n) are taken as follows: (v,n,z) =
(17,4,1), (19,4,3), (21,5,1) and (23,5,3). Apply Theorem 2.8 with ¢ = 4 to get

od; E?:Q.m“ d; € J*(v,z) where d; € J*(5,1) = {0 — 12,14,24} for i € [1,zn]
and d; € J*(4) = {0,4,8,16} for i € [zn + 1,n?]. It is easy to see that

> d; € S(24an) \ {24an — 11, 24zn — 9, 24an — 8, 24an — 7, 24xn — 6, 24zn — 4},

i=1

712
Y die{4t: te0,4n(n—2)]\ {4n(n —z) -1} }.
i=rn+1
Then s+4t+k € J*(v) where s € S(24zn)\ {24zn—11,24xn—9,24zn—8, 24xn—7,
24xn — 6, 24zn — 4}, t € [0,4n(n — )]\ {4n(n — z) — 1} and {0,22} C J*(x). Hence
I(W)\ {v? = 11,02 = 9,02 — 8,0 — 7,02 — 6,0 — 4} C J*(v). The other cases follow
from Lemma 4.1. |

Theorem 5.4 I(v)\ {v?—11,v? — 7,02 — 4} C J*(v) for any integers 15 < v < 20;
I(v)\ {v* = 11,0 = 7} C J*(v) for v =21,22,23.

Proof. By Lemmas 5.1 to 5.3, I(v)\ {v® — 11,v* — 7,02 — 4} C J*(v) for any integer
15 < v < 23. Apply Theorem 2.3 with n = 7 and Theorem 3.6 to get v —4 € J*(v)
for v = 21,22, 23. m|

Now we are in position to present the main result.
Main Theorem J*(v) = I(v) for any integer v > 24.

Proof. When 24 < v < 37, apply Theorem 2.3 with n = 8 to get av +b(v—8)+k €
J*(v) for any integers a € [0,v — 8]\ {v —9}, b € [0,8] \ {7} and k € J*(8). Note
that 2v < 6(v — 8) and 2(v — 8) < 58. Then J*(v) = I(v).

When 38 < v < 44, similarly apply Theorem 2.3 with n =9 to get J*(v) = I(v).

When v > 45, let n = [§] where [¥] denotes the integer part of a real number
“” Then n > 15. By the induction and Theorem 5.4, I(n) \ {n? — 11,n2 —
7,n? — 4} C J*(n). Apply Theorem 2.3 to get av + b(v — n) + k € J*(v) for any
integers a € [0,v —n]\{v —n—1}, b € [0,n]\ {n — 1} and k € J*(n). For
any integer i € I(v)\ {v? — 11,0% — 7,0 — 4}, it is easy to check that there exist
a € [0,v—n]\{v—n—1}, b € [0,n]\{n—1} and k € J*(n) such that i = av+b(v—n)+k.
Then I(v) \ {v? — 11,v% — 7,0* — 4} C J*(v). By Theorem 3.11, 53,57,60 € J*(8).
Apply Theorem 2.3 with n = 8 to get v? — 11,092 — 7,v* — 4 € J*(v). This completes
the proof. O
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Appendix

K, (i =1,2,3,4,5) are Latin squares of order 7 with an orthogonal mate K/ as follows:

1234567 1234567
2315674 7142356
6741352 5617243
Ki=3576241 Ki=6721435
5462713 35676124
7153426 4365712
4627135 2453671
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1234567
6571243
4315672

1=7123456

1534267
2315674
6741352
3276541
5462713
7153426
4627135

Ky =

3657124
5462731
2746315

1234567
3516742
4753216
1=2465371

3574261

2315674
6741352
K3=1236547

7321654
5647123
6172435

5462713
7153426
4627135

1234567
4716325
3475612

"=5127436

1534267
2365714
6741352
Ky=3276541

7643251

5412673
7153426
4627135

6352174
2561743

1234567
4653271

1234567
2316754
6547312
3675241
5462173
7153426
4721635

2476135
7541326
6317452
3725614
5162743

Ki =

Ks =

L; (1 <14 < 8) are Latin squares of order 8 with an orthogonal mate L} as follows:

12345678
51824736
28157463

12345678
63218547
46781325

~ 10
o0 AN
O 00
O —~
— ™M
[a VI o
™ <
< ©
Il
~r—
3
o
— 00
™ <
< o
© I~
0 O
o0 O
~
Il
—
~

37468152

24157836
81436752
57823164

76583214

85672341
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12345678
21456783
34617852

12345678
63218547
46781325

~ <t
© ™
» -
)
00
— I~
0 ©
<t 10
Il
~
)
™ —
— 00
SRS
< ™
© I~
0 ©
0 10
~ o

Ly =

67831425

24157836
87436152

78563241

83274516

51823764

12345678
21854763
38176542

12345678
63281547

46718325

© 0
00 ™
™
N
— o
< I~
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N; (i =1,2,3) are Latin squares of order 10 with an orthogonal mate N/ as follows:

1234567890
9348625017

9416382750
3805271649

0176439528
2960178345
5627043981

2749160583
1638054927
0527493816

6589704132

/_
1=

N

4961837205
8350726194

Ny =

8412956703
3895210674

7294615038

7051382469
4703891256

6183509472
5072948361

1278563490
2396018745

9416382750
3805271649

6804195372
4567301829

2749160538
1638054927
0527493861

7143829506
5012436987
9451782063
0739654218

/_
5 =

N.

4961837205
8350726194

Ny =

7294615083

3980247651

6183509472
5072948316

8625970134
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1278563490
21657843009
0357891246

9416382750
3805271649

2749160583
1638054927
0527493861

9483216057

8012459763
3621045978
5734920681

Nj =

4961837205
8350726194

N3 =

6849107532
7590632814

7294615038

6183509472
5072948316

4906378125

P and @ are exhibited as follows (Note that P is a (3,1,2)-conjugate orthogonal Latin

square of order 10 with an empty subarray on {8,9, 10}, which comes from [2]; Q is a (3,2,1)-
conjugate orthogonal Latin square of order 14 with an empty subarray on {4, B,C, D},

which comes from [3]):

06 A5 B9C3DT7T78421

8 1 7A6 B0C4D9532

D9 28 A7B1C50643

1 52 8 3109 476
9 2 6 3 8 410517

109 3 7 4 8 5621

6 D039 A8B2C1754
C7D140A9B32865

4 C 8D 2

1 A0B3976

5

6 109 4 1 5 8 732

B5C9D362A14087

8§ 7109 5 2 6 143

2 B6CO0D473A5198
A3 B7C1D58 462009

7T 8 1109 6 3 254

4 1 8 2109 7365

5 A4B8C2DG6 97310
1234567890
78 90123456

3456 789012

1

2 3 45 6 7
345 6 71 2
5 6 71 2 3 4

90123456 78
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