Intersection numbers of Latin squares with their own orthogonal mates*

Yanxun Chang
Department of Mathematics
Northern Jiaotong University
Beijing 100044, CHINA
yxchang@center.njtu.edu.cn
Giovanni Lo Faro
Department of Mathematics
University of Messina
Contrada Papardo, 31 - 98166 Sant' Agata
Messina, ITALY
lofaro@unime.it

Abstract

Let $J^{*}(v)$ be the set of all integers k such that there is a pair of Latin squares L and L^{\prime} with their own orthogonal mates on the same v-set, and with L and L^{\prime} having k cells in common. In this article we completely determine the set $J^{*}(v)$ for integers $v \geq 24$ and $v=1,3,4,5,8,9$. For $v=7$ and $10 \leq v \leq 23$, there are only a few cases left undecided for the set $J^{*}(v)$.

1 Introduction

A Latin square of order v is a $v \times v$ array in which each cell contains a single element from a v-set S, such that each element occurs exactly once in each row and exactly once in each column.

Let S and S^{\prime} be v-sets. Two Latin squares $L=\left(a_{i j}\right)$ on symbol set S and $L^{\prime}=\left(b_{i j}\right)$ on symbol set S^{\prime} are orthogonal if every element in $S \times S^{\prime}$ occurs exactly once among

[^0]the v^{2} pairs $\left(a_{i j}, b_{i j}\right), 1 \leq i, j \leq v$. Bose, Parker and Shrikhande [1] proved that a pair of orthogonal Latin squares of order v exists if and only if $v \neq 2,6$. A Latin square L of order v is said to possess an orthogonal mate if there exists a Latin square L^{\prime} of the same order such that L and L^{\prime} are orthogonal. A Latin square of order v with an orthogonal mate is equivalent to a resolvable $T D(3, v)$.

Denote by $J(v)$ the set of all integers k such that there is a pair of Latin squares L and L^{\prime} on the same v-set having k cells in common. Let $S(t)$ denote the set of all non-negative integers less than or equal to t, with the exceptions of $t-5, t-3$, $t-2$ and $t-1$. Define $I(v)=S\left(v^{2}\right)$. Fu [5] determined completely the set $J(v)$ and proved that $J(v)=I(v)$ for integer $v \geq 1$, except $J(3)=I(3) \backslash\{1,2,5\}$ and $J(4)=I(4) \backslash\{5,7,10\}$. Similarly, let $J^{*}(v)$ be the set of all integers k such that there is a pair of Latin squares L and L^{\prime} with their own orthogonal mates on the same v-set, and L and L^{\prime} have k cells in common. By Fu's result [5] and [1], $J^{*}(v) \subseteq J(v)$ for $v \neq 2,6$.

In this article we will study the intersection problem for Latin squares with their own orthogonal mates.

2 Recursive constructions

Let X be a v-set and $\mathcal{P}=\left\{S_{1}, S_{2}, \cdots, S_{k}\right\}$ a partition of a subset S of X. An incomplete Latin square with k disjoint empty subarrays on $S_{1}, S_{2}, \cdots, S_{k}$ respectively, denoted by $L S\left(v,\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{k}\right|\right)$, is an $|X|$ by $|X|$ array L indexed by X satisfying the following properties:

1. A cell of L either contains an element of X or is empty.
2. The subarrays indexed by $S_{i} \times S_{i}$ are empty, for $1 \leq i \leq k$ (these subarrays are called holes).
3. The elements occurring in row (or column) $s \in S_{i}$ of L are precisely those in $X \backslash S_{i}$.
4. The elements occurring in row (or column) $s \in X \backslash\left(\cup_{i=1}^{k} S_{i}\right)$ of L are precisely those in X.

The type of L is the multiset $\left\{\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{k}\right|\right\}$. Suppose that L and M are two Latin squares with k common disjoint empty subarrays on $S_{1}, S_{2}, \cdots, S_{k}$. We say L and M are orthogonal if their superposition yields every ordered pair in $X^{2} \backslash\left(\cup_{i=1}^{k} S_{i}^{2}\right)$. We also say M is an orthogonal mate of L. The pair L and M will be denoted by $\operatorname{MOLS}\left(v, n_{1}, n_{2}, \cdots, n_{k}\right)$ where $\left|S_{i}\right|=n_{i}$ for $1 \leq i \leq k$. If $n_{1}=n_{2}=\cdots=n_{k}=n$, we write briefly $\operatorname{MOLS}\left(v, n^{k}\right)$ for $\operatorname{MOLS}\left(v, n_{1}, n_{2}, \cdots, n_{k}\right)$.

Denote by $J^{*}(v, n)$ the set of all integers k such that there is a pair of $L S(v, n) L$ and L^{\prime} with their own orthogonal mates on the same set and with the same empty subarray, and with L and L^{\prime} having k cells in common. It is useful to note that if $v>n_{1}+n_{2}+\cdots+n_{k}$, then a $\operatorname{MOLS}\left(v, 1, n_{1}, n_{2}, \cdots, n_{k}\right)$ exists if and only if a $\operatorname{MOLS}\left(v, n_{1}, n_{2}, \cdots, n_{k}\right)$ exists. If any n_{i} is zero we will simply ignore it. It is easy
to see that $J^{*}(v+1,1)=\left\{k-1: k \in J^{*}(v+1) \backslash\{0\}\right\}$. Next we quote a result as follows.

Lemma 2.1 [6] For any integers v and n, a $\operatorname{MOLS}(v, n)$ exists if and only if $v \geq 3 n$ and $(v, n) \neq(6,1)$.
Theorem 2.2 If $s \in J^{*}(v, n)$ and $t \in J^{*}(n)$, then $s+t \in J^{*}(v)$.
Proof. Let $I_{v-n}=\{1,2, \cdots, v-n\}$ and $Y=\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{n}\right\}$. Let A and B be $L S(v, n)$ with their own orthogonal mates on the set $I_{v-n} \cup Y$ with the same empty subarray on Y such that $|A \cap B|=s$. Let C and D be a pair of orthogonal Latin squares of order n on the set Y, C^{\prime} and D^{\prime} a pair of orthogonal Latin squares of order n on the set Y such that C and C^{\prime} have $t \in J^{*}(n)$ cells in common. By filling the Latin squares C and C^{\prime} into the holes of A and B, the resulting Latin squares of order v possess their own orthogonal mates which are obtained by filling Latin squares D and D^{\prime} into the holes of the orthogonal mates of A and B. It is readily checked that the two resulting Latin squares have $s+t$ cells in common. This completes the proof.

Theorem 2.3 If $v \geq 3 n$ and $n \geq 3(n \neq 6)$, then $a v+b(v-n)+k \in J^{*}(v)$ for any integers $a \in[0, v-n] \backslash\{v-n-1\}, b \in[0, n] \backslash\{n-1\}$ and $k \in J^{*}(n)$.

Proof. Let $I_{v-n}=\{1,2, \cdots, v-n\}$ and $Y=\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{n}\right\}$. By Lemma 2.1 there is a $\operatorname{MOLS}(v, n) A$ and B on the set $I_{v-n} \cup Y$ with the same empty subarray on Y. Let π be the element permutation acting on A and B as follows:

$$
\pi=(12 \cdots v-n-a)\left(\infty_{1} \infty_{2} \cdots \infty_{n-b}\right)
$$

where $a \in[0, v-n] \backslash\{v-n-1\}$ and $b \in[0, n] \backslash\{n-1\}$. Then πA and πB is also a $\operatorname{MOLS}(v, n)$ on $I_{v-n} \cup Y$ with the empty subarray on Y at the same location as A and B. It is readily checked that A and πA have $a v+b(v-n)$ cells in common. The conclusion follows from Theorem 2.2.
Theorem 2.4 If v is an integer and $v \neq 2,6$, then $t v \in J^{*}(v)$ for any integer $t \in[0, v] \backslash\{v-1\}$.
Proof. For $v \neq 2,6$, there exists a Latin square L with an orthogonal mate on $I_{v}=\{1,2, \cdots, v\}$. Let π be the element permutation acting on $L: \pi=(12 \cdots v-t)$ for $t \in[0, v] \backslash\{v-1\}$. Then πL is also a Latin square with an orthogonal mate. It is readily checked that L and πL have $t v$ cells in common.

Theorem 2.5 Let m and n be integers greater than or equal to 3, but not equal to 6. Then $\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i j} \in J^{*}(m n)$ where each $k_{i j} \in J^{*}(m)$.

Proof. Let $A=\left(a_{i j}\right)_{n \times n}$ be a Latin square of order n with an orthogonal mate $B=\left(b_{i j}\right)_{n \times n}$. For $i, j=1,2 \cdots, n$, let $C_{i j}$ and $D_{i j}$ be a pair of orthogonal Latin squares of order m, and $C_{i j}^{\prime}$ and $D_{i j}^{\prime}$ a pair of orthogonal Latin squares of order m such that $C_{i j}$ and $C_{i j}^{\prime}$ have $k_{i j} \in J^{*}(m)$ cells in common. Define four Latin squares
$L_{1}, L_{2}, L_{1}^{\prime}$ and L_{2}^{\prime} of order $m n$ as follows:

$$
\begin{aligned}
& \left(a_{11}, C_{11}\right) \cdots\left(a_{1 n}, C_{1 n}\right) \quad\left(b_{11}, D_{11}\right) \cdots\left(b_{1 n}, D_{1 n}\right) \\
& L_{1}=\left(a_{21}, C_{21}\right) \cdots\left(a_{2 n}, C_{2 n}\right) \quad L_{2}=\left(b_{21}, D_{21}\right) \cdots\left(b_{2 n}, D_{2 n}\right) \\
& \left(a_{n 1}, C_{n 1}\right) \cdots\left(a_{n n}, C_{n n}\right) \quad\left(b_{n 1}, D_{n 1}\right) \cdots\left(b_{n n}, D_{n n}\right) \\
& L_{1}^{\prime}=\begin{array}{ccc}
\left(a_{11}, C_{11}^{\prime}\right) & \cdots\left(a_{1 n}, C_{1 n}^{\prime}\right) \\
\left(a_{21}, C_{21}^{\prime}\right) & \cdots & \left(a_{2 n}, C_{2 n}^{\prime}\right) \\
\ldots & \cdots & \ldots
\end{array} \quad L_{2}^{\prime}=\begin{array}{ccc}
\left(b_{11}, D_{11}^{\prime}\right) & \cdots & \left(b_{1 n}, D_{1 n}^{\prime}\right) \\
\left(b_{21}, D_{21}^{\prime}\right) & \cdots & \left(b_{2 n}, D_{2 n}^{\prime}\right) \\
\ldots & \cdots & \ldots
\end{array} \\
& \left(a_{n 1}, C_{n 1}^{\prime}\right) \cdots\left(a_{n n}, C_{n n}^{\prime}\right) \quad\left(b_{n 1}, D_{n 1}^{\prime}\right) \cdots\left(b_{n n}, D_{n n}^{\prime}\right)
\end{aligned}
$$

where $(a, L)=\left(\left(a, l_{i j}\right)\right)$ if $L=\left(l_{i j}\right)$ is a Latin square. Then L_{1} and L_{2}, L_{1}^{\prime} and L_{2}^{\prime} are two pairs of orthogonal Latin squares of order $m n$. It is easy to check that L_{1} and L_{1}^{\prime} have $\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i j}$ cells in common. The conclusion follows immediately.

Let Y_{1} and Y_{2} be n-sets such that $\left|Y_{1} \cap Y_{2}\right|=l \geq 1$. Let \mathcal{A} denote the set of all Latin squares on Y_{1} with an orthogonal mate, and \mathcal{B} the set of all Latin squares on Y_{2} with an orthogonal mate. Define $J_{l}(n)=\{k:|A \cap B|=k$ for $A \in \mathcal{A}, B \in \mathcal{B}\}$.
Theorem 2.6 Let v, n and l be integers such that $v \geq 3 n$ and $n \geq 3(n \neq 6)$ and $1 \leq l<n$. Then $a v+b(v-n)+k \in J^{*}(v)$ for integers $a \in[0, v-2 n+l], b \in[0, l]$ and $k \in J_{l}(n)$.
Proof. Let $I_{v-n}=\{1,2, \cdots, v-n\}$ and $Y=\left\{\infty_{1}, \infty_{2}, \cdots, \infty_{n}\right\}$. By Lemma 2.1 there is a $\operatorname{MOLS}(v, n) A$ and B on the set $I_{v-n} \cup Y$ with the same empty subarray on Y. Let π be the element permutation acting on A and B as follows:
$\left(\infty_{1} 1 \infty_{2} 2 \cdots \infty_{n-l-1} n-l-1 \infty_{n-l} \infty_{n-l+1} \cdots \infty_{n-b} n-l n-l+1 \cdots v-n-a\right)$
where $1 \leq l<n, a \in[0, v-2 n+l]$ and $b \in[0, l]$. Then πA and πB is also a $\operatorname{MOLS}(v, n)$ on $I_{v-n} \cup Y$ with the empty subarray on πY at the same location as A and B. Clearly, $|Y \cap \pi Y|=l$. Let C and D be a pair of orthogonal Latin squares of order n on the set Y, and C^{\prime} and D^{\prime} a pair of orthogonal Latin squares of order n on the set πY such that C and C^{\prime} have $k \in J_{l}(n)$ cells in common. By filling the Latin squares C and C^{\prime} into the holes of A and πA, the resulting two Latin squares of order v possess their own orthogonal mates which are obtained by filling Latin squares D and D^{\prime} into the holes of B and πB. It is readily checked that the two resulting $L S(v)$ have $a v+b(v-n)+k$ cells in common. This completes the proof.

Theorem 2.7 Let $v, n \geq 3, k \geq 2$ and l be integers such that $v \geq k n$ and $1 \leq l<n$. If there exists a $\operatorname{MOLS}\left(v, n^{k}\right)$, then $a v+b(v-n)+\sum_{i=1}^{k} a_{i} \in J^{*}(v)$ where $a \in[0, v-k n]$, $b \in[0, k l]$ and $a_{i} \in J_{l}(n)$ for $i \in[1, k]$.
Proof. Let $X=\{1,2, \cdots, v-k n\} \cup\left(\cup_{i=1}^{k} Y_{i}\right)$ where $Y_{i}=\left\{x_{1}^{(i)}, x_{2}^{(i)}, \cdots, x_{n}^{(i)}\right\}$ for $i \in[1, k]$. Let A and B be a $\operatorname{MOLS}\left(v, n^{k}\right)$ on the set X with k common disjoint empty subarrays on $Y_{1}, Y_{2}, \cdots, Y_{k}$. For $1 \leq l<n, a \in[0, v-k n]$ and $b \in[0, k l]$, let
$b=s l+t$ where $0 \leq t<l$. Then $0 \leq i \leq k$ and $n-t \geq 2$. Let $\pi=\pi_{1} \cdot \pi_{2}$ be the element permutation acting on A and B as follows:

$$
\pi_{1}=\left(x_{t+1}^{(s+1)} x_{t+2}^{(s+1)} \cdots x_{n}^{(s+1)}\right)\left(x_{1}^{(s+2)} x_{2}^{(s+2)} \cdots x_{n}^{(s+2)}\right) \cdots\left(x_{1}^{(k)} x_{2}^{(k)} \cdots x_{n}^{(k)}\right)
$$

for $0 \leq s \leq k-1$ or $\pi_{1}=(1)$ for $s=k$;

$$
\pi_{2}=\left[\prod_{i=l+1}^{n-1}\left(x_{i}^{(1)} x_{i}^{(2)} \cdots x_{i}^{(k)}\right)\right]\left(x_{n}^{(1)} x_{n}^{(2)} \cdots x_{n}^{(k)} a+1 a+2 \cdots v-k n\right) .
$$

Then πA and πB is also a $\operatorname{MOLS}\left(v, n^{k}\right)$ on X with k common disjoint empty subarrays on $\pi Y_{1}, \pi Y_{2}, \cdots, \pi Y_{k}$ at the same locations as A and B. It is easy to check that $\left|Y_{i} \cap \pi Y_{i}\right|=l$ for $i \in[1, k]$. For $i \in[1, k]$, let C_{i} and D_{i} be a pair of orthogonal Latin squares of order n on Y_{i}, and C_{i}^{\prime} and D_{i}^{\prime} a pair of orthogonal Latin squares of order n on πY_{i} such that C_{i} and C_{i}^{\prime} have $a_{i} \in J_{l}(n)$ cells in common. By filling the Latin squares $C_{i}, C_{i}^{\prime}(i \in[1, k])$ into the holes of A and πA respectively, the resulting Latin squares of order v possess their own orthogonal mates which are obtained by filling Latin squares $D_{i}, D_{i}^{\prime}(i \in[1, k])$ into the holes of B and πB. It is readily checked that the two resulting $L S(v)$ have $a v+b(v-n)+\sum_{i=1}^{k} a_{i}$ cells in common. This completes the proof.

For $n \geq 4$ and $n \neq 6,10$, it is well known that there are three mutually orthogonal Latin squares of order n. Now we assume that L_{1}, L_{2} and $L_{3}=\left(a_{i j}\right)_{n \times n}$ are three mutually orthogonal Latin squares on $I_{n}=\{1,2, \cdots, n\}$. Let $\mathcal{T}_{k}=\left\{(i, j): a_{i j}=k\right\}$ for $k \in I_{n}$. Then L_{1} and L_{2} are orthogonal and have the same n disjoint transversals $\mathcal{T}_{1}, \mathcal{T}_{2}, \cdots, \mathcal{T}_{n}$. The following construction is to take the squares L_{1} and L_{2}, and replace each cell of them by a $q \times q$ array; this array will in general either be a $\operatorname{MOLS}(q)$ or be combined with additional rows and columns to L_{1} and L_{2} to form a $\operatorname{MOLS}(q n+x, x)$. For each cell in $\mathcal{T}_{k}(k \in[1, n])$, we add x_{k} rows and columns to L_{1} and L_{2} using a $\operatorname{MOLS}\left(q+x_{k}, x_{k}\right)$. The construction yields a $\operatorname{MOLS}(q n+x, x)$ where $x=\sum_{k=1}^{n} x_{k}$.
Theorem 2.8 Let q, n and x be integers and $n \geq 4, n \neq 6,10$ and $1 \leq x \leq n$. Then $\sum_{i=1}^{x n} d_{i}+\sum_{i=x n+1}^{n^{2}} d_{i} \in J^{*}(q n+x, x)$ where all $d_{i} \in J^{*}(q+1,1)$ for $1 \leq i \leq x n$ and $d_{i} \in J^{*}(q)$ for $x n+1 \leq i \leq n^{2}$.

Proof. Let $x_{k}=1$ for $k \in[1, x]$ and 0 for $k \in[x+1, n]$. When $n \geq 4$ and $n \neq 6,10$ and $1 \leq x \leq n$, let L_{1}, L_{2} and $\mathcal{T}_{k}(1 \leq k \leq n)$ be as above. Then L_{1} and L_{2} are orthogonal and have the same n disjoint transversals $\mathcal{T}_{1}, \mathcal{T}_{2}, \cdots, \mathcal{T}_{n}$. For each cell $(i, j) \in \mathcal{T}_{k}(k \in[1, n])$, let $C_{i j}$ and $D_{i j}$ be $L S\left(q+x_{k}, x_{k}\right)$ with their own orthogonal mates $C_{i j}^{\prime}$ and $D_{i j}^{\prime}$ such that $C_{i j}$ and $D_{i j}$ have $c_{i j} \in J^{*}\left(q+x_{k}, x_{k}\right)$ cells in common. For each cell in $\mathcal{T}_{k}(k \in[1, n])$, we add x_{k} rows and columns to L_{1} using $C_{i j}$. The resulting Latin square A is $L S(q n+x, x)$ with an orthogonal mate which is obtained by adding x_{k} rows and columns to L_{2} using $C_{i j}^{\prime}$ for each cell in $\mathcal{T}_{k}(k \in[1, n])$. Similarly, for each cell in $\mathcal{T}_{k}(k \in[1, n])$, we add x_{k} rows and columns to L_{1} using $D_{i j}$. The resulting Latin square A^{\prime} is also $L S(q n+x, x)$ with an orthogonal mate which is obtained by adding x_{k} rows and columns to L_{2} using $D_{i j}^{\prime}$ for each cell in \mathcal{T}_{k}
$(k \in[1, n])$. It is readily checked that A and A^{\prime} have

$$
\sum_{k=1}^{x} \sum_{(i, j) \in \mathcal{T}_{k}} c_{i j}+\sum_{k=x+1}^{n} \sum_{(i, j) \in \mathcal{T}_{k}} c_{i j}
$$

cells in common. Hence $\sum_{i=1}^{x n} d_{i}+\sum_{i=x n+1}^{n^{2}} d_{i} \in J^{*}(q n+x, x)$ where all $d_{i} \in J^{*}(q+1,1)$ for $1 \leq i \leq x n$ and $d_{i} \in J^{*}(q)$ for $x n+1 \leq j \leq n^{2}$.

3 The set $J^{*}(v)$ for $v=3,4,5,7,8$

In this section we will consider the set $J^{*}(v)$ where $1 \leq v \leq 8$ and $v \neq 2,6$. Let L be a Latin square of order n on $I_{n}=\{1,2, \cdots, n\}$ with its own orthogonal mate L^{\prime}. In what follows let π_{r}, π_{c} and π_{e} be row permutation, column permutation and element permutation. Then $\pi_{r} \pi_{c} \pi_{e}(L)$ is a Latin square with an orthogonal mate $\pi_{r} \pi_{c} \pi_{e}\left(L^{\prime}\right)$. Let $\left|L \cap \pi_{r} \pi_{c} \pi_{e}(L)\right|=k$ denote the fact that L and $\pi_{r} \pi_{c} \pi_{e}(L)$ have k cells in common.

Lemma 3.1 $J^{*}(1)=\{1\} ; J^{*}(3)=\{0,3,9\} ; J^{*}(4)=\{0,4,8,16\}$.
Proof. $J^{*}(1)=\{1\}$ is trivial. Apply Theorem 2.4 and $J^{*}(3) \subseteq J(3)$ to get $J^{*}(3)=$ $\{0,3,9\}$.
Under row permutation and column permutation, there are only two $L S(4) \mathrm{s} A$ and its transpose A^{\top} with their own orthogonal mates, where A is listed below:

	13452	1345
213	42531	3251
13	51324	4532
124	25143	51243
3124	34215	2413

It is easy to check that $J^{*}(4)=\{0,4,8,16\}$ by an exhausive search.
Lemma 3.2 $J^{*}(5)=\{0-13,15,25\}$.
Proof. Under row permutation, column permutation and element permutation, there are only two $L S(5)$ s with an orthogonal mate exhibited as above. The conclusion follows immediately by an exhaustive computer search.
Lemma $3.30,7,14,21,28,35,49 \subseteq J^{*}(7)$.
Proof. This follows immediately from Theorem 2.4.
Lemma 3.4 17-20, 22-27, 29-33, 36, 37, 39-41, 45 $\subseteq J^{*}(7)$.
Proof. Let $K_{i}(i=1,2,3,4,5)$ be Latin squares of order 7 with an orthogonal mate, as given in the Appendix. It is readily checked that:

$$
\begin{aligned}
& \left|K_{1} \cap\left(\begin{array}{lll}
2 & 5 & 6
\end{array}\right)_{r}\left(K_{2}\right)\right|=17 ; \\
& \left|K_{2} \cap\left(\begin{array}{ll}
2 & 3
\end{array} 45\right)_{r}\left(K_{3}\right)\right|=18 ; \\
& \left|K_{1} \cap\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)_{r}\left(K_{2}\right)\right|=19 ;
\end{aligned}
$$

$$
\begin{aligned}
& \left|K_{2} \cap(14)_{r}(567)_{r}\left(K_{3}\right)\right|=20 ; \\
& \left|K_{2} \cap\left(\begin{array}{ll}
5 & 6 \\
7
\end{array}\right)_{r}\left(K_{3}\right)\right|=22 ; \\
& \left|K_{1} \cap\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)_{r}\left(K_{2}\right)\right|=23 ; \\
& \left|K_{1} \cap\left(\begin{array}{ll}
5 & 67
\end{array}\right)_{r}\left(K_{2}\right)\right|=24 ; \\
& \left|K_{2} \cap(234)_{r}\left(K_{3}\right)\right|=25 ; \\
& \left|K_{1} \cap(234)_{r}\left(K_{2}\right)\right|=26 ; \\
& \left|K_{2} \cap(14)_{r}(67)_{r}\left(K_{3}\right)\right|=27 ; \\
& \left|K_{2} \cap(67)_{r}\left(K_{3}\right)\right|=29 ; \\
& \left.\left\lvert\, K_{1} \cap\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right.\right)_{r}\left(K_{2}\right) \mid=30 ; \\
& \left|K_{1} \cap(67)_{r}\left(K_{2}\right)\right|=31 ; \\
& \left|K_{2} \cap(12)_{r}\left(K_{3}\right)\right|=32 ; \\
& \left|K_{1} \cap(12)_{r}\left(K_{2}\right)\right|=33 ; \\
& \left|K_{1} \cap K_{5}\right|=36 ; \\
& \left|K_{3} \cap K_{4}\right|=37 ; \\
& \left|K_{1} \cap(14)_{r}\left(K_{2}\right)\right|=39 ; \\
& \left|K_{2} \cap(14)_{r}\left(K_{3}\right)\right|=41 ; \\
& \left|K_{2} \cap K_{3}\right|=43 ; \\
& \left|K_{1} \cap K_{2}\right|=45 .
\end{aligned}
$$

Lemma $3.51-6,8-13,15,16 \subseteq J^{*}(7)$.
Proof. Let $\pi_{r}=(14)(23675)$ and $\pi_{c}=(14)(23675)$ be the row permutation and column permutation acting on the Latin square K_{1} which comes from the Appendix. Let $K_{6}=\pi_{r} \pi_{c}\left(K_{1}\right)$. Then K_{6} has an orthogonal mate. It is readily checked that:

$$
\begin{aligned}
& \left|K_{1} \cap(1374)_{e}(265)_{e}\left(K_{6}\right)\right|=1 ; \\
& \left|K_{1} \cap(1374265)_{e}\left(K_{6}\right)\right|=2 \text {; } \\
& \left|K_{1} \cap(1645)_{e}(273)_{e}\left(K_{6}\right)\right|=3 ; \\
& \left|K_{1} \cap(13)_{e}(26574)_{e}\left(K_{6}\right)\right|=4 ; \\
& \left|K_{1} \cap(17635)_{e}\left(K_{6}\right)\right|=5 \text {; } \\
& \left|K_{1} \cap\left(\begin{array}{lll}
1 & 5 & 7
\end{array}\right)_{e}\left(\begin{array}{ll}
2 & 4
\end{array}\right)_{e}\left(K_{6}\right)\right|=6 ; \\
& \left|K_{1} \cap(14)_{e}(23675)_{e}\left(K_{6}\right)\right|=8 ; \\
& \left|K_{1} \cap(1475236)_{e}\left(K_{6}\right)\right|=9 ; \\
& \left|K_{1} \cap(125)_{e}(34)_{e}\left(K_{6}\right)\right|=10 ; \\
& \left|K_{1} \cap(12534)_{e}\left(K_{6}\right)\right|=11 ; \\
& \left|K_{1} \cap(1567243)_{e}\left(K_{6}\right)\right|=12 ; \\
& \left|K_{1} \cap(34)_{e}(2567)_{e}\left(K_{6}\right)\right|=13 ; \\
& \left|K_{1} \cap(12)_{e}(34)_{e}(567)_{e}\left(K_{6}\right)\right|=15 ;
\end{aligned}
$$

$$
\left|K_{1} \cap(34)_{e}(15672)_{e}\left(K_{6}\right)\right|=16
$$

Theorem 3.6 $I(7) \backslash\{34,38,40,42\} \subseteq J^{*}(7)$.
Proof. This follows immediately from Lemma 3.3 to Lemma 3.5.
Lemma 3.7 0, 8, 16, 24, 32, 40, 48, $64 \in J^{*}(8)$.
Proof. This follows immediately from Theorem 2.4.
Lemma 3.8 2, 4, 6, 10-12, 14, 17-23, 25-31, 33, 35-39, 41-47, 49, 52, 53, 56, 57, $60 \in J^{*}(8)$.

Proof. Let $L_{i}(i=1,2,3,4)$ be Latin squares of order 8 with an orthogonal mate in Appendix. It is readily checked that

$$
\begin{aligned}
& \left.\left\lvert\, L_{1} \cap\left(\begin{array}{ll}
18
\end{array}\right)_{r}\left(\begin{array}{lll}
2 & 3 & \cdots
\end{array}\right)^{\prime}\right.\right)_{r}\left(L_{2}\right) \mid=6+8 t \text { for } t=0,1,2,3 \text {; } \\
& \left|L_{1} \cap(12 \cdots 6-t)_{r}\left(L_{2}\right)\right|=12+8 t \text { for } t=0,1,2,3,4 \text {; } \\
& \left|L_{1} \cap(163)_{r}(24578)_{r}\left(L_{4}\right)\right|=2 ; \\
& \left|L_{1} \cap(123456)_{r}(78)_{r}\left(L_{2}\right)\right|=4 ; \\
& \left|L_{1} \cap(163)_{r}(2457)_{r}\left(L_{4}\right)\right|=10 ; \\
& \left|L_{1} \cap(23)_{r}(4578)_{r}\left(L_{4}\right)\right|=11 ; \\
& \left|L_{1} \cap(34)_{r}(156)_{r}\left(L_{3}\right)\right|=17 ; \\
& \left|L_{1} \cap(163)_{r}(245)_{r}\left(L_{4}\right)\right|=18 ; \\
& \left|L_{1} \cap(23)_{r}(457)_{r}\left(L_{4}\right)\right|=19 ; \\
& \left|L_{1} \cap(78)_{r}\left(\begin{array}{ll}
1 & 5
\end{array}\right)_{r}\left(L_{3}\right)\right|=21 ; \\
& \left|L_{1} \cap(12)_{r}(56)_{r}\left(L_{3}\right)\right|=23 ; \\
& \left|L_{1} \cap(12)_{r}(35)_{r}\left(L_{3}\right)\right|=25 \text {; } \\
& \left|L_{1} \cap(163)_{r}(24)_{r}\left(L_{4}\right)\right|=26 ; \\
& \left|L_{1} \cap(23)_{r}(45)_{r}\left(L_{4}\right)\right|=27 \text {; } \\
& \left|L_{1} \cap(156)_{r}\left(L_{3}\right)\right|=29 \text {; } \\
& \left.\left\lvert\, L_{2} \cap\left(\begin{array}{ll}
2 & 3
\end{array}\right)_{r}\right.\right)_{r}\left(L_{4}\right) \mid=31 ; \\
& \left|L_{1} \cap(245)_{r}\left(L_{4}\right)\right|=33 ; \\
& \left|L_{1} \cap\left(\begin{array}{ll}
2 & 3
\end{array} 4\right)_{r}\left(L_{4}\right)\right|=35 \text {; } \\
& \left|L_{1} \cap(15)_{r}\left(L_{3}\right)\right|=37 \text {; } \\
& \left|L_{1} \cap\binom{5}{6}_{r}\left(L_{2}\right)\right|=38 ; \\
& \left|L_{1} \cap(12)_{r}\left(L_{3}\right)\right|=39 ; \\
& \left|L_{1} \cap(34)_{r}\left(L_{3}\right)\right|=41 ; \\
& \left|L_{1} \cap(163)_{r}\left(L_{4}\right)\right|=42 ; \\
& \left|L_{1} \cap(23)_{r}\left(L_{4}\right)\right|=43 ; \\
& \left|L_{1} \cap(78)_{r}\left(L_{3}\right)\right|=45 ; \\
& \left|L_{1} \cap(18)_{r}\left(L_{2}\right)\right|=46 ;
\end{aligned}
$$

$$
\begin{aligned}
& \left|L_{3} \cap L_{4}\right|=47 ; \\
& \left|L_{1} \cap(36)_{r}\left(L_{4}\right)\right|=49 ; \\
& \left|L_{1} \cap(78)_{r}\left(L_{2}\right)\right|=52 ; \\
& \left|L_{1} \cap L_{3}\right|=53 ; \\
& \left|L_{2} \cap L_{3}\right|=56 ; \\
& \left|L_{1} \cap L_{4}\right|=57 ; \\
& \left|L_{1} \cap L_{2}\right|=60 .
\end{aligned}
$$

Lemma 3.9 15, 34, 50, 51, 54, 55, $58 \in J^{*}(8)$.
Proof. Let $L_{i}(i=5,6,7,8)$ be Latin squares of order 8 with an orthogonal mate in Appendix. It is checked that $\left|L_{2} \cap L_{5}\right|=50 ;\left|L_{6} \cap L_{8}\right|=51 ;\left|L_{1} \cap L_{5}\right|=54$; $\left.\left.\left|L_{6} \cap L_{7}\right|=55 ;\left|L_{5} \cap L_{6}\right|=58 ; \mid L_{2} \cap(25)_{r} L_{5}\right)|=34 ;| L_{6} \cap(25678)_{r} L_{7}\right) \mid=15$.
Lemma 3.10 1, 3, 5, 7, $9,13 \in J^{*}(8)$.
Proof. Let $\pi_{r}=(18)(27)(36)(45)$ be the row permutation acting on L_{1} which comes from the Appendix. Let $\bar{L}_{1}=\pi_{r}\left(L_{1}\right)$. It is readily checked that

$$
\begin{aligned}
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=1 \text { where } \pi_{c}=(14)(23)(58)(67) \text { and } \pi_{e}=(17)(26)(35) ; \\
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=3 \text { where } \pi_{c}=(18)(27)(36)(45) \text { and } \pi_{e}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(48)(57) \text {; } \\
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=5 \text { where } \pi_{c}=\left(\begin{array}{ll}
1 & 8
\end{array}\right)(27)(36)(45) \text { and } \pi_{e}=\left(\begin{array}{ll}
14
\end{array}\right)(23)(58)(67) \text {; } \\
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=7 \text { where } \pi_{c}=(18)(27)(36)(45) \text { and } \pi_{e}=(18)(27)(36)(45) \text {; } \\
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=9 \text { where } \pi_{c}=(17)(26)(35) \text { and } \pi_{e}=(15)(24)(68) \text {; } \\
& \left|L_{2} \cap \pi_{c} \pi_{e}\left(\bar{L}_{1}\right)\right|=13 \text { where } \pi_{c}=(17)(26)(35) \text { and } \pi_{e}=(16)(25)(34)(78) \text {. }
\end{aligned}
$$

Theorem 3.11 $J^{*}(8)=I(8)$.
Proof. This follows immediately from Lemma 3.7 to Lemma 3.10.

4 The set $J^{*}(v)$ for $9 \leq v \leq 14$

In this section we will consider the set $J^{*}(v)$ where $9 \leq v \leq 14$.
Lemma $4.1 v^{2}-9, v^{2}-6 \in J^{*}(v)$ for any integer $v \geq 9 ; v^{2}-8 \in J^{*}(v)$ for any integer $v \geq 12$.
Proof. It follows immediately by Theorem 2.3 with $n=3$ or 4 and Lemma 3.1.
Lemma $4.2 J_{1}(3)=\{0,1,3\} ; J_{2}(3)=\{0,2,3,6\}$.
Proof. This follows from an exhaustive search.
Lemma 4.3 $I(9) \backslash\{52,58,61,62,64,65,67,68,70,71,73,74,77\} \subseteq J^{*}(9)$.
Proof. Apply Theorem 2.5 with $m=n=3$ to get $\sum_{i=1}^{3} \sum_{j=1}^{3} k_{i j} \in J^{*}(9)$ where each $k_{i j} \in J^{*}(3)=\{0,3,9\}$. Then $3 t \in J^{*}(9)$ for $t \in[0,27] \backslash\{26\}$. By Theorem 2.6 with $v=9, n=3$ and $l=1$ or 2 , we have $9 a+6 b+k \in J^{*}(9)$ where $a \in[0,3+l]$,
$b \in[0, l]$ and $k \in J_{l}(3)$ which is taken from Lemma 4.2. It is readily checked that $1,2,7,8,10,11,14,16,17,19,20,23,25,26,28,29,32,34,35,37,38,41,43,44,47$, $50,53,59 \in J^{*}(9)$.

By the proof of Theorem 2.5, there is a $\operatorname{MOLS}\left(9,3^{2}\right)$. Apply Theorem 2.7 with $v=9, n=3$ and $l=1,2$ to get $9 a+6 b+s+t \in J^{*}(9)$ where $a \in[0,3], b \in[0,2 l]$ and $s, t \in J_{l}(3)$. The remaining cases are obtained by taking suitable integers a, b, l, s and t as follows:

a	b	l	s	t	$9 a+6 b+s+t \in J^{*}(9)$
0	0	2	2	2	4
0	0	2	2	3	5
0	2	1	0	1	13
1	2	1	0	1	22
2	2	1	0	1	31
3	2	1	0	1	40
2	4	2	2	2	46
3	3	2	2	2	49
3	4	2	2	2	55
3	4	2	2	3	56

Lemma $4.452,58,61,62,64,65,67,68,70,71,73,74,77 \in J^{*}(9)$.
Proof. Let M_{i} and $M_{i}^{\prime}(i=1,2)$ be Latin squares of order 9 as follows:

$$
\begin{aligned}
& \begin{array}{ccccccc}
& 4 & 5 & 6 & 7 & 8 & 9
\end{array} A_{1} \begin{array}{ccccccccc}
4 & 5 & 6 & 7 & 8 & 9 \\
6 & 9 & 8 & 7 & 5 & 4 & 6
\end{array} \quad A_{1}^{\prime} \begin{array}{llllll}
6 & 4 & 5 & 8 & 9 & 7 \\
5 & 6 & 4 & 9 & 7 & 8
\end{array} \\
& \begin{array}{llllllllllll}
7 & 6 & 5 & 4 & 9 & 8
\end{array} \quad \begin{array}{llll}
4 & 5 & 6 & 1
\end{array} 3 \\
& M_{1}=\begin{array}{lllllll}
9 & 4 & 6 \\
8 & 5 & 4
\end{array} \quad \begin{array}{lllllllll}
8 & 8 & 7 & 5 \\
9 & 6 & 7
\end{array} \quad M_{1}^{\prime}=\begin{array}{lllll}
5 & 6 & 4 \\
6 & 4 & 5
\end{array} \quad A_{2}^{\prime} \begin{array}{llll}
3 & 2 & 1 \\
2 & 1 & 3
\end{array} \\
& \begin{array}{llllllllll}
4 & 8 & 9 & 7 & 6 & 7 & 9 & 8 & 1 & 2
\end{array} \\
& \begin{array}{lllllllllllll}
6 & 9 & 7 & 5 & 4 & 8 & A_{3}
\end{array} \quad \begin{array}{lllllll}
8 & 7 & 9 & 2 & 3 & 1 & A_{3}^{\prime}
\end{array} \\
& \begin{array}{lllllllllll}
5 & 7 & 8 & 6 & 9 & 4
\end{array} \begin{array}{lllllll}
9 & 8 & 7 & 3 & 1 & 2
\end{array}
\end{aligned}
$$

where A_{1}, A_{2}, A_{3} are any Latin squares on $\{1,2,3\}$, and A_{i}^{\prime} are an orthogonal mate of A_{i} on $\{3 i-2,3 i-1,3 i\}$ for $i=1,2,3$.

$$
123 \quad 132
$$

where $B_{1}=312$ and $B_{2}=B_{3}=213$. It is readily checked that M_{1} and M_{1}^{\prime}, 231

321
M_{2} and M_{2}^{\prime} are mutually orthogonal, M_{1} and M_{2} have $(81-27-4)+\left(r_{1}+r_{2}+r_{3}\right)$ cells in common where $r_{1}, r_{2}, r_{3} \in J^{*}(3)$. So $62,65,68,71,77 \in J^{*}(9)$.

Take $A_{1}=B_{1}, A_{2}=B_{2}$ and A_{3} to be any Latin squares on $\{1,2,3\}$ in M_{1}. Let $\pi=(14)$ be the row permutation acting on M_{1}. Then $\pi\left(M_{1}\right)$ and M_{2} have ($\left.67-9\right)+r$ cells in common where $r \in J^{*}(3)$. Hence $61,67 \in J^{*}(9)$.

Let M_{3} and M_{3}^{\prime} be as follows:
where C is any Latin square on $\{1,2,3\}$ and C^{\prime} is an orthogonal mate of C on $\{7,8,9\}$. It is readily checked that M_{3} and M_{3}^{\prime} are mutually orthogonal. Then M_{2} and M_{3} have $(74-9)+r$ cells in common where $r \in J^{*}(3)$ and hence $74 \in J^{*}(9)$.

Let U_{1} be obtained from M_{1} by taking $A_{1}=\left(\begin{array}{l}12)_{r}\left(B_{1}\right), A_{2}=(23)_{r}\left(B_{2}\right) \text { and } A_{3}, ~\end{array}\right.$ any Latin square on $\{1,2,3\}$. Let $\pi=(14)$ be the row permutation acting on U_{1}. Then $\pi\left(U_{1}\right)$ and M_{2} have $49+r$ cells in common where $r \in J^{*}(3)$. So, $52,58 \in J^{*}(9)$.

Let U_{2} be obtained from M_{3} by taking $C=\left(\begin{array}{ll}13\end{array}\right)_{r}\left(B_{2}\right)$. Let $\pi_{1}=\left(\begin{array}{ll}4 & 6\end{array}\right)$ be the row permutation acting on U_{2}. Then $\pi_{1}\left(U_{2}\right)$ and M_{2} have 70 cells in common.

Let M_{4} and M_{4}^{\prime} be as follows:

$$
\begin{aligned}
& 123456789 \quad 123456789 \\
& 312987546 \quad 241865397 \\
& 231879654 \quad 316547928 \\
& 765132498 \quad 658279143 \\
& M_{4}=946213875 \quad M_{4}^{\prime}=564798231 \\
& 854321967 \quad 475983612 \\
& 497568132 \quad 739621854 \\
& 689745213 \quad 892134576 \\
& 578694321 \quad 987312465
\end{aligned}
$$

It is readily checked that M_{4} and M_{4}^{\prime} are mutually orthogonal; M_{4} and M_{1} with $A_{i}=B_{i}(i=1,2,3)$ have 73 cells in common.

Let U_{3} be obtained from M_{1} by taking $A_{1}=(12)_{r}\left(B_{1}\right), A_{2}=B_{2}$ and $A_{3}=B_{3}$. Let $\pi=(14)$ be the row permutation acting on U_{3}. Then $\pi\left(U_{3}\right)$ and M_{2} have 64
cells in common.
Theorem 4.5 $J^{*}(9)=I(9)$.
Proof. This follows immediately from Lemma 4.3 and Lemma 4.4.
Lemma 4.6 $I(10) \backslash\{4,5,15,25,35,45,55,65,68,72,75,78,81,82,83-85,87-89$, $92,93,96\} \subseteq J^{*}(10)$.

Proof. Apply Theorem 2.3 with $v=10$ and $n=3$ to get $10 a+7 b+J^{*}(3) \in J^{*}(10)$ where $a \in[0,7] \backslash\{6\}$ and $b \in[0,3] \backslash\{2\}$. Direct computation shows that $0,3,7,9,10$, $13,16,17,19-21,23,24,26,27,29-31,33,34,36,37,39-41,43,44,46,47,49-51$, $53,54,56,57,59-61,64,66,70,71,73,74,77,79,80,86,91,94,100 \in J^{*}(10)$.

By Theorem 2.6 with $v=10$ and $n=3,10 a+7 b+k \in J^{*}(10)$ where $l=1,2$, $a \in[0,3+l], b \in[0, l]$ and $k \in J_{1}(3)$ which is taken from Lemma 4.2. The other cases follow by taking suitable integers l, a, b and k as follows:

l	1	2	2	1	1	2	2	1	2	1	2
a	0	0	0	0	1	1	0	1	2	2	3
b	0	10	0	1	0	0	2	1	0	1	0
k	1	2	6	1	1	2	0	1	2	1	0
$10 a+7 b+k$	1	2	6	8	11	12	14	18	22	28	32
l		1	2	1	2	1	2	2	2	2	2
a	3	4	4	5	5	6	6	6	6	6	
b	1	0	1	0	1	0	0	1	1	2	
k	1	2	1	2	1	2	3	0	2	2	
$10 a+7 b+k$	38	42	48	52	58	62	63	67	69	76	

Lemma $4.74,5,15,25,35,45,55,68,72,78,84,88,92,96 \in J^{*}(10)$.
Proof. Let $N_{i}(i=1,2,3)$ be Latin squares of order 10 with an orthogonal mate in Appendix. It is readily checked that

$$
\begin{aligned}
& \left.\left\lvert\, N_{1} \cap\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right.\right) \left._{r}\left(\begin{array}{ll}
6 & 7
\end{array} 9\right)_{r}(510)_{r}\left(N_{3}\right) \right\rvert\,=4 ; \\
& \left|N_{1} \cap\left(\begin{array}{ll}
3 & 8
\end{array}\right)_{r}\left(\begin{array}{ll}
(510
\end{array}\right)_{r}\left(N_{2}\right)\right|=68 ; \\
& \left|N_{1} \cap(12)_{r}\left(N_{2}\right)\right|=72 \text {; } \\
& \left|N_{1} \cap(910)_{r}\left(N_{3}\right)\right|=78 ; \\
& \left|N_{1} \cap(510)_{r}\left(N_{3}\right)\right|=84 ; \\
& \left|N_{1} \cap(910)_{c}\left(N_{2}\right)\right|=88 ; \\
& \left|N_{1} \cap N_{2}\right|=92 ; \\
& \left|N_{1} \cap N_{3}\right|=96 \text {. }
\end{aligned}
$$

Here P is a (3,1,2)-conjugate orthogonal Latin square of order 10 with an empty subarray on $\{8,9,10\}$ exhibited in the Appendix, which actually comes from [2]. It is readily checked that:
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=5$ where $\pi_{r}=\left(\begin{array}{ll}1765432)\end{array}\right)$ and $\pi_{c}=(1725346)$;
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=15$ where $\pi_{r}=\left(\begin{array}{ll}1765432)\end{array}\right)$ and $\pi_{c}=(172)(3654)$;
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=25$ where $\pi_{r}=\left(\begin{array}{lll}1 & 5 & 4 \\ 2\end{array}\right)$ and $\pi_{c}=\left(\begin{array}{ll}2 & 3\end{array} 4\right)$;
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=35$ where $\pi_{r}=\left(\begin{array}{lll}2 & 5 & 4\end{array}\right)$ and $\pi_{c}=\left(\begin{array}{lll}1 & 5 & 4\end{array}\right)$;
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=45$ where $\pi_{r}=\left(\begin{array}{ll}3 & 5\end{array}\right)$ and $\pi_{c}=(13)(24)$;
$\left|P \cap \pi_{r} \pi_{c}(P)\right|=55$ where $\pi_{r}=(35)$ and $\pi_{c}=(35)$. Hence $5,15,25,35,45,55 \in$ $J^{*}(10,3)$. By Lemma 3.1 and Theorem 2.2, we have 5, 15, 25, 35, 45, $55 \in J^{*}(10)$.
Theorem $4.8 I(10) \backslash\{65,75,81,82,83,85,87,89,93\} \subseteq J^{*}(10)$.
Proof. This follows from Lemmas 4.6 and 4.7.
Lemma $4.9 I(11) \backslash\{4,5,7,15,26,37,48,59,70,78,81,86,89,92,94,98,100$, $101,102,103,104,106-111,113,114,117\} \subseteq J^{*}(11)$.
Proof. Apply Theorem 2.3 with $v=11$ and $n=3$ to get $11 a+8 b+k \in J^{*}(11)$ where $a \in[0,8] \backslash\{7\}, b \in[0,3] \backslash\{2\}$ and $k \in J^{*}(3)$. Then $0,3,8,9,11,14,17,19,20$, $22,24,25,27,28,30,31,33,35,36,38,39,41,42,44,46,47,49,50,52,53,55,57,58,60$, $61,63,64,66,68,71,72,74,77,79,82,83,88,90,91,93,96,97,99,105,112,115,121 \in$ $J^{*}(11)$.

By Theorem 2.6 with $v=11, n=3$ and $l=1$ or $2,11 a+8 b+k \in J^{*}(11)$ where $a \in$ $[0,5+l], b \in[0, l]$ and $k \in J_{l}(3)$ which is taken from Lemma 4.2. It is readily checked that $1,2,6,10,12,13,16,18,21,23,29,32,34,40,43,45,51,54,56,62,65,67,69,73,75$, $76,80,84,85,87,95 \in J^{*}(11)$ by taking suitable integers l, a, b and k.
Lemma $4.104,5,7,15,26,37,48,59,81,89 \in J^{*}(11)$.
Proof. Let $L=\left(a_{i j}\right)$ be a Latin square of order 11 as follows: $a_{i j}=6(i+j)$ $(\bmod 11)$. Then L has an orthogonal mate. It is readily checked that

$$
\begin{aligned}
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=4 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=\left(\begin{array}{l}
174610392) ; ~
\end{array}\right. \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=5 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(17249)(36810) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=7 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(24)(357)(8109) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=15 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(17568102) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=26 \text { where } \pi_{r}=(18642109753) \text { and } \pi_{c}=(17249)(36810) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=37 \text { where } \pi_{r}=\left(\begin{array}{lll}
1 & 5 & 4 \\
2
\end{array}\right) \text { and } \pi_{c}=\left(\begin{array}{lll}
1 & 4 & 2
\end{array}\right) \text {); } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=48 \text { where } \pi_{r}=\left(\begin{array}{ll}
1 & 5 \\
4 & 3
\end{array}\right) \text { and } \pi_{c}=\left(\begin{array}{ll}
2 & 5
\end{array}\right) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=59 \text { where } \pi_{r}=\left(\begin{array}{lll}
2 & 5 & 4
\end{array}\right) \text { and } \pi_{c}=\left(\begin{array}{lll}
1 & 3 & 5
\end{array}\right) \text {; } \\
& \left|L \cap \pi_{r} \pi_{c}(L)\right|=81 \text { where } \pi_{r}=(35) \text { and } \pi_{c}=(35) \text {. }
\end{aligned}
$$

Let A and B be $L S(11,3), \pi_{r}=(1011)$ and $\pi_{c}=(1011)$ be row permutation and column permutation acting on A. Then A and $\pi_{r} \pi_{c}(A)$ have their own orthogonal mates. It is checked that A and $\pi_{r} \pi_{c}(A)$ have 80 cells in common and hence $80 \in$ $J^{*}(11,3)$. By Lemma 3.1 and Theorem 2.2, $89 \in J^{*}(11)$.

Theorem $4.11 I(11) \backslash\{70,78,86,92,94,98,100,101,102,103,104,106-111,113$,
$114,117\} \subseteq J^{*}(11)$.
Proof. This follows from Lemma 4.9 and Lemma 4.10
Lemma 4.12 $I(12) \backslash\{103,106,107,109,115,118,119,121,122,125,127,130,131$, $134,137,140\} \subseteq J^{*}(12)$.
Proof. Apply Theorem 2.5 with $n=4$ and $m=3$ to get $\sum_{i=1}^{4} \sum_{j=1}^{4} k_{i j} \in J^{*}(12)$ where each $k_{i j} \in J^{*}(3)=\{0,3,9\}$. Then $3 t \in J^{*}(12)$ for any integers $t \in[0,48] \backslash\{47\}$. Similarly, $\sum_{i=1}^{3} \sum_{j=1}^{3} k_{i j} \in J^{*}(12)$ where each $k_{i j} \in J^{*}(4)=\{0,4,8,16\}$. Then $4 t \in J^{*}(12)$ for any integer $t \in[0,36] \backslash\{35\}$.

By the proof of Theorem 2.5, there is a $\operatorname{MOLS}\left(12,3^{k}\right)$ for $k=2,3$. Apply Theorem 2.7 with $k=3$ and $l=2$ to get $12 a+9 b+\sum_{i=1}^{3} a_{i} \in J^{*}(12)$ where $a \in[0,3], b \in[0,6]$ and $a_{i} \in J_{2}(3)$ for $i \in[1,3]$. Clearly, $\sum_{i=1}^{3} a_{i} \in\{0,2-12,14,15,18\}$. Hence, $\{0,2-$ $102,104,105,108\} \subseteq J^{*}(12)$. Apply Theorem 2.7 with $n=3, k=2$ and $l=1,2$ to get $12 a+9 b+s+t \in J^{*}(12)$ where $a \in[0,6], b \in[0,2 l]$ and $s, t \in J_{l}(3)$. Then 1,110 , $113 \in J^{*}(12)$ by taking suitable l, s and t.
Lemma $4.13 I(12) \backslash\{115,118,119,121,122,125,127,130,131,134,137,140\} \subseteq$ $J^{*}(12)$.
Proof. Let $L\left(A_{1}, \cdots, A_{4}\right)$ and $L^{\prime}\left(A_{1}^{\prime}, \cdots, A_{4}^{\prime}\right)$ be Latin squares on $I_{4} \times I_{3}$ (where $I_{t}=\{1,2, \cdots, t\}$ for $\left.t=3,4\right)$ as follows.

$$
L=\begin{array}{ccccccc}
\left(1, A_{1}\right) & (2, B) & (4, B) & (3, B) \\
(2, B) & \left(1, A_{2}\right) & (3, B) & (4, B) \\
(4, B) & (3, B) & \left(1, A_{3}\right) & (2, B) \\
(3, B) & (4, B) & (2, B) & \left(1, A_{4}\right) & \left.\left.L^{\prime}=\begin{array}{llll}
\left(1, A_{1}^{\prime}\right) & \left(2, B^{\prime}\right) & \left(4, B^{\prime}\right) & \left(3, B^{\prime}\right) \\
\left(4, B^{\prime}\right) & \left(1, A_{2}^{\prime}\right) & \left(3, B^{\prime}\right) & \left(4, B^{\prime}\right) \\
\left(4, B^{\prime}\right) & \left(1, A_{3}^{\prime}\right) & \left(2, B^{\prime}\right) \\
\left(3, B^{\prime}\right) & \left(4, B^{\prime}\right) & \left(2, B^{\prime}\right) & \left(1, A_{4}^{\prime}\right)
\end{array}\right) . \begin{array}{lll}
(2)
\end{array}\right)
\end{array}
$$

where $A_{i}(i=1,2,3,4)$ are any Latin squares on I_{3} and B is fixed Latin square on $I_{3} . A_{i}^{\prime}(i=1,2,3,4)$ is an orthogonal mate of A_{i} on I_{3} and B^{\prime} is an orthogonal mate of B on I_{3}. It is easy to see that $L\left(A_{1}, \cdots, A_{4}\right)$ and $L^{\prime}\left(A_{1}^{\prime}, \cdots, A_{4}^{\prime}\right)$ are mutually orthogonal.

Let $\pi=((1,1)(2,1))$ be the element permutation on $L\left(B_{1}, \cdots, B_{4}\right)$. It is readily checked that $L\left(A_{1}, \cdots, A_{4}\right)$ and $\pi\left(L\left(B_{1}, \cdots, B_{4}\right)\right)$ have $96+\sum_{i=1}^{4} r_{i}$ cells in common where each $r_{i} \in J_{2}(3)=\{0,2,3,6\}$. Hence 103, 106, 107, $109 \in J^{*}(12)$. The conclusion follows from Lemma 4.12.
Lemma 4.14 Let a, b be integers such that $\min \{a, b\} \geq 6$. For any integer $n \in[0,3 a+4 b] \backslash\{1,2,5,3 a+4 b-19,3 a+4 b-13,3 a+4 b-11,3 a+4 b-10,3 a+$ $4 b-7,3 a+4 b-4\}, n$ can be written as $3 s+4 t$ where $s \in[0, a] \backslash\{a-1\}$ and $t \in[0, b] \backslash\{b-1\}$.

Proof. This follows immediately.
Lemma 4.15 $I(13) \backslash\{150,156,158,159,162,165\} \subseteq J^{*}(13)$.
Proof. Apply Theorem 2.8 with $n=4, q=3$ and $x=1$ to get $\sum_{i=1}^{4} d_{i}+\sum_{i=5}^{16} d_{i} \in$ $J^{*}(13,1)$ where $d_{i} \in J^{*}(4,1)=\{3,7,15\}$ for $i \in[1,4]$ and $d_{i} \in J^{*}(3)$ for $i \in[5,16]$.

It is easy to see that

$$
\begin{gathered}
\sum_{i=1}^{4} d_{i} \in\{4 t+12: t \in[0,12] \backslash\{11\}\}, \\
\sum_{i=5}^{16} d_{i} \in\{3 s: s \in[0,36] \backslash\{35\}\}
\end{gathered}
$$

Then $3 s+4 t+13 \in J^{*}(13)$ where $s \in[0,36] \backslash\{35\}$ and $t \in[0,12] \backslash\{11\}$. When $k \in I(13) \backslash\{0-12,14,15,18,150,156,158,159,162,165\}, k \in J^{*}(13)$ by Lemma 4.14.

By the proof of Theorem 2.8, there is a $\operatorname{MOLS}\left(13,3^{4}\right)$. Apply Theorem 2.7 with $l=2$ to get $13 a+10 b+\sum_{i=1}^{4} a_{i} \in J^{*}(13)$ where $a \in[0,1], b \in[0,8]$ and $a_{i} \in J_{2}(3)$ for $i \in[1,3]$. It is easy to see that $\sum_{i=1}^{4} a_{i} \in\{0,2-18,20,21,24\}$. Hence, $\{0,2-12,14,15,18\} \subseteq J^{*}(13)$. Similarly, $1 \in J^{*}(13)$ by Theorem 2.7 with $l=1$.
Lemma $4.16 \quad I(14) \backslash\{5,7,19,21,35,49,63,77,91,105,119,133,141,147,149$, $155,161,167,169-173,175,177-179,181-183,185,186,189,192\} \subseteq J^{*}(14)$.
Proof. Apply Theorem 2.3 with $v=14$ and $n=3$ or 4 to get $14 a+(14-n) b+k \in$ $J^{*}(14)$ where $a \in[0,14-n] \backslash\{13-n\}, b \in[0, n] \backslash\{n-1\}$ and $k \in J^{*}(n)$ where $n=3,4$. Then $I(14) \backslash\{1,2,5-7,12,13,15,19,21,27,29,35,41,43,49,55,57$, $63,69,71,77,83,85,91,97,99,105,111,113,119,125,127,133,139,141,143$, 147, 149, 151, 153, 155, 161, 167, 169-173, 175, 177-179, 181-183, 185, 186, 189, $192\} \subseteq J^{*}(14)$ by taking suitable n, a and b.

By Theorem 2.6 with $v=14, n=3$ and $l=1,2,14 a+11 b+k \in J^{*}(14)$ where $a \in[0,8+l], b \in[0, l]$ and $k \in J_{l}(3)$. The remaining cases follow immediately by taking suitable k, a and b.
Lemma 4.17 5, 7, 19, 21, 35, 49, $63,77,91,105,133 \in J^{*}(14)$.
Proof. Here Q is a (3,2,1)-conjugate orthogonal Latin square of order 14 with an empty subarray on $\{A, B, C, D\}$ exhibited in the Appendix which comes from [3]. It is readily checked that:

$$
\begin{aligned}
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=5 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(165)(21037849) ; \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=7 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(1485)(2109736) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=11 \text { where } \pi_{r}=(10987654321) \text { and } \pi_{c}=(185109734)(26) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=35 \text { where } \pi_{r}=(185109736) \text { and } \pi_{c}=(19104)(67) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=45 \text { where } \pi_{r}=\left(\begin{array}{ll}
1 & 5 \\
9 & 3
\end{array} 627\right) \text { and } \pi_{c}=\left(\begin{array}{ll}
1593627
\end{array}\right) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=47 \text { where } \pi_{r}=\left(\begin{array}{ll}
17568102)
\end{array}\right) \text { and } \pi_{c}=(1784610) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=69 \text { where } \pi_{r}=\left(\begin{array}{lll}
1 & 5 & 4
\end{array} 2\right) \text { and } \pi_{c}=\left(\begin{array}{lll}
1 & 5 & 4
\end{array} 2\right) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=83 \text { where } \pi_{r}=\left(\begin{array}{lll}
1 & 5 & 4 \\
2
\end{array}\right) \text { and } \pi_{c}=\left(\begin{array}{ll}
1 & 4
\end{array}\right) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=105 \text { where } \pi_{r}=\left(\begin{array}{ll}
2 & 5
\end{array}\right) \text { and } \pi_{c}=(254) \text {; } \\
& \left|Q \cap \pi_{r} \pi_{c}(Q)\right|=117 \text { where } \pi_{r}=\left(\begin{array}{ll}
1 & 2
\end{array}\right) \text { and } \pi_{c}=\binom{2}{5} \text {. }
\end{aligned}
$$

Hence, $5,7,11,35,45,47,69,83,105,117 \in J^{*}(14,4)$. The conclusion follows from Lemma 3.1 and Theorem 2.2.

Theorem 4.18 $I(14) \backslash\{119,141,147,149,155,161,167,169-173,175,177-179$, 181-183, 185, 186, 189, 192\} $\subseteq J^{*}(14)$.

Proof. This follows from Lemma 4.16 and Lemma 4.17.

5 Conclusions

Lemma 5.1 $I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$ for integer $v=15,20$.
Proof. Apply Theorem 2.5 with $n=\frac{v}{5}$ and $m=5$ to get $\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i j} \in J^{*}(v)$ where each $k_{i j} \in J^{*}(5)$. By Lemma $3.2, J^{*}(5)=\{0-13,15,25\}$. For any integer $k \in I(v) \backslash\left\{v^{2}-11, v^{2}-9, v^{2}-8, v^{2}-7, v^{2}-6, v^{2}-4\right\}$, it is easy to check that there exist $k_{i j} \in J^{*}(5)$ such that $k=\sum_{i=1}^{n} \sum_{j=1}^{n} k_{i j}$. Then $I(v) \backslash\left\{v^{2}-11, v^{2}-9, v^{2}-8, v^{2}-\right.$ $\left.7, v^{2}-6, v^{2}-4\right\} \subseteq J^{*}(v)$. The other three cases follow by Lemma 4.1.
Lemma 5.2 $I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$ for integers $v=16,18,22$.
Proof. Let $v=3 n+x$ where v, n and $x(1 \leq x<n)$ are taken as follows: $(v, n, x)=$ $(16,5,1),(18,5,3),(22,7,1)$. Apply Theorem 2.8 with $q=3$ to get $\sum_{i=1}^{x n} d_{i}+$ $\sum_{i=x n+1}^{n^{2}} d_{i} \in J^{*}(v, x)$ where $d_{i} \in J^{*}(4,1)=\{3,7,15\}$ for $i \in[1, x n]$ and $d_{i} \in J^{*}(3)=$ $\{0,3,9\}$ for $i \in\left[x n+1, n^{2}\right]$. It is easy to see that

$$
\begin{gathered}
\sum_{i=1}^{x n} d_{i} \in\{4 t+3 x n: t \in[0,3 x n] \backslash\{3 x n-1\}\}, \\
\sum_{i=x n+1}^{n^{2}} d_{i} \in\{3 s: s \in[0,3 n(n-x)] \backslash\{3 n(n-x)-1\}\} .
\end{gathered}
$$

Then $3 s+4 t+3 x n+k \in J^{*}(v)$ where $s \in[0,3 n(n-x)] \backslash\{3 n(n-x)-1\}, t \in$ $[0,3 x n] \backslash\{3 x n-1\}$ and $k \in J^{*}(x)$. By Lemma 4.14 and $\left\{0, x^{2}\right\} \subseteq J^{*}(x)$, it is not difficult to check that $I(v) \backslash\left([0,3 x n-1] \cup\left\{3 x n+1,3 x n+2,3 x n+5, v^{2}-19, v^{2}-13\right.\right.$, $\left.\left.v^{2}-11, v^{2}-10, v^{2}-7, v^{2}-4\right\}\right) \subseteq J^{*}(v)$.

By the proof of Theorem 2.8, there is a $\operatorname{MOLS}\left(v, 3^{n}\right)$. Apply Theorem 2.7 with $l=2$ to get $a v+b(v-3)+\sum_{i=1}^{n} a_{i} \in J^{*}(v)$ where $a \in[0, x], b \in[0,2 n]$ and $a_{i} \in J_{2}(3)=\{0,2,3,6\}$ for $i \in[1, n]$. It is easy to see that $6(n-1)>v-3$ by the choices of v, n as above, and

$$
\sum_{i=1}^{n} a_{i} \in[2,6(n-1)] \cup\{0,6 n-4,6 n-3,6 n\}
$$

Hence, $[2,3 x n-1] \cup\{0,3 x n+1,3 x n+2,3 x n+5\} \subseteq J^{*}(v)$. Similarly, $1 \in J^{*}(v)$ by Theorem 2.7 with $l=1$. By Lemma 2.1 there is a $\operatorname{MOLS}(v, 5)$ and hence $v^{2}-25 \in$ $J^{*}(v, 5)$. Then $v^{2}-19, v^{2}-13, v^{2}-10 \in J^{*}(v)$ by Theorem 2.2 and Lemma 3.2. This completes the proof.

Lemma 5.3 $I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$ for integers $v=17,19,21,23$.
Proof. Let $v=4 n+x$ where v, n and $x(1 \leq x<n)$ are taken as follows: $(v, n, x)=$ $(17,4,1),(19,4,3),(21,5,1)$ and $(23,5,3)$. Apply Theorem 2.8 with $q=4$ to get $\sum_{i=1}^{x n} d_{i}+\sum_{i=x n+1}^{n^{2}} d_{i} \in J^{*}(v, x)$ where $d_{i} \in J^{*}(5,1)=\{0-12,14,24\}$ for $i \in[1, x n]$ and $d_{i} \in J^{*}(4)=\{0,4,8,16\}$ for $i \in\left[x n+1, n^{2}\right]$. It is easy to see that

$$
\begin{gathered}
\sum_{i=1}^{x n} d_{i} \in S(24 x n) \backslash\{24 x n-11,24 x n-9,24 x n-8,24 x n-7,24 x n-6,24 x n-4\}, \\
\sum_{i=x n+1}^{n^{2}} d_{i} \in\{4 t: t \in[0,4 n(n-x)] \backslash\{4 n(n-x)-1\}\}
\end{gathered}
$$

Then $s+4 t+k \in J^{*}(v)$ where $s \in S(24 x n) \backslash\{24 x n-11,24 x n-9,24 x n-8,24 x n-7$, $24 x n-6,24 x n-4\}, t \in[0,4 n(n-x)] \backslash\{4 n(n-x)-1\}$ and $\left\{0, x^{2}\right\} \subseteq J^{*}(x)$. Hence $I(v) \backslash\left\{v^{2}-11, v^{2}-9, v^{2}-8, v^{2}-7, v^{2}-6, v^{2}-4\right\} \subseteq J^{*}(v)$. The other cases follow from Lemma 4.1.

Theorem 5.4 $I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$ for any integers $15 \leq v \leq 20$; $I(v) \backslash\left\{v^{2}-11, v^{2}-7\right\} \subseteq J^{*}(v)$ for $v=21,22,23$.
Proof. By Lemmas 5.1 to $5.3, I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$ for any integer $15 \leq v \leq 23$. Apply Theorem 2.3 with $n=7$ and Theorem 3.6 to get $v^{2}-4 \in J^{*}(v)$ for $v=21,22,23$.

Now we are in position to present the main result.
Main Theorem $J^{*}(v)=I(v)$ for any integer $v \geq 24$.
Proof. When $24 \leq v \leq 37$, apply Theorem 2.3 with $n=8$ to get $a v+b(v-8)+k \in$ $J^{*}(v)$ for any integers $a \in[0, v-8] \backslash\{v-9\}, b \in[0,8] \backslash\{7\}$ and $k \in J^{*}(8)$. Note that $2 v<6(v-8)$ and $2(v-8) \leq 58$. Then $J^{*}(v)=I(v)$.

When $38 \leq v \leq 44$, similarly apply Theorem 2.3 with $n=9$ to get $J^{*}(v)=I(v)$.
When $v \geq 45$, let $n=\left[\frac{v}{3}\right]$ where [$*$] denotes the integer part of a real number "**. Then $n \geq 15$. By the induction and Theorem 5.4, $I(n) \backslash\left\{n^{2}-11, n^{2}-\right.$ $\left.7, n^{2}-4\right\} \subseteq J^{*}(n)$. Apply Theorem 2.3 to get $a v+b(v-n)+k \in J^{*}(v)$ for any integers $a \in[0, v-n] \backslash\{v-n-1\}, b \in[0, n] \backslash\{n-1\}$ and $k \in J^{*}(n)$. For any integer $i \in I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\}$, it is easy to check that there exist $a \in[0, v-n] \backslash\{v-n-1\}, b \in[0, n] \backslash\{n-1\}$ and $k \in J^{*}(n)$ such that $i=a v+b(v-n)+k$. Then $I(v) \backslash\left\{v^{2}-11, v^{2}-7, v^{2}-4\right\} \subseteq J^{*}(v)$. By Theorem 3.11, 53, 57, $60 \in J^{*}(8)$. Apply Theorem 2.3 with $n=8$ to get $v^{2}-11, v^{2}-7, v^{2}-4 \in J^{*}(v)$. This completes the proof.

Acknowledgement

Thanks to Dr. G. Nordo for kindly making a program which is used to find some values in Theorem 3.6 and Theorem 4.5. A part of this work was undertaken while the first author was visiting the University of Messina. He expresses his sincere thanks to I.N.D.A.M. for financial support and to the University of Messina for the kind hospitality.

References

[1] R.C. Bose, E.T. Parker and S. Shrikhande, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Canad. J. Math., 12 (1960), 189-203.
[2] F.E. Bennett, On conjugate orthogonal idempotent Latin squares, Ars Combinatoria 19 (1985), 37-50.
[3] F.E. Bennett, Lisheng Wu and L. Zhu, Some new conjugate orthogonal Latin squares, J. Combin. Theory (A) 46 (1987), 314-318.
[4] J.W. Brown, E.T. Parker, More on order 10 turn-squares, Ars Combinatoria, 35 (1993), 125-127.
[5] H.L. Fu, On the construction of certain types of Latin squares having prescribed intersections, Ph.D. Thesis, Auburn University, 1980.
[6] K. Heinrich and L. Zhu, Existence of orthogonal Latin squares with aligned subsquares, Discrete Math. 59 (1986), 69-78.

Appendix

$K_{i}(i=1,2,3,4,5)$ are Latin squares of order 7 with an orthogonal mate K_{i}^{\prime} as follows:

1234567	1234567
23115674	7142356
6741352	5617243
$K_{1}=3576241$	$K_{1}^{\prime}=67214435$
5462713	3576124
7153426	4365712
4627135	2453671

$$
\begin{aligned}
& 1534267 \quad 1234567 \\
& 2315674 \quad 6571243 \\
& 6741352 \quad 4315672 \\
& K_{2}=3276541 \quad K_{2}^{\prime}=7123456 \\
& 5462713 \quad 3657124 \\
& 7153426 \quad 5462731 \\
& 4627135 \quad 2746315 \\
& 3574261 \quad 1234567 \\
& 2315674 \quad 3516742 \\
& 6741352 \quad 4753216 \\
& K_{3}=12336547 \quad K_{3}^{\prime}=2465371 \\
& 5462713 \quad 7321654 \\
& 7153426 \\
& 4627135 \\
& 5647123 \\
& 6172435 \\
& 1534267 \quad 1234567 \\
& 2365714 \quad 4716325 \\
& 6741352 \quad 3475612 \\
& K_{4}=\begin{array}{llllllll}
3 & 2 & 7 & 6 & 5 & 4 & 1 \\
5 & 4 & 1 & 2 & 6 & 7 & 3
\end{array} \quad K_{4}^{\prime}=\begin{array}{lllllll}
5 & 1 & 2 & 7 & 4 & 3 & 6 \\
7 & 6 & 4 & 3 & 2 & 5 & 1
\end{array} \\
& 7153426 \quad 6352174 \\
& 4627135 \quad 2561743
\end{aligned}
$$

$L_{i}(1 \leq i \leq 8)$ are Latin squares of order 8 with an orthogonal mate L_{i}^{\prime} as follows:

$$
\left.L_{1}=\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 3 & 2 & 1 & 8 & 5 & 4 & 7 \\
4 & 6 & 7 & 8 & 1 & 3 & 2 & 5
\end{array} \quad \quad \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
7 & 8 & 5 & 6 & 4 & 2 & 1 & 3
\end{array} \quad \begin{array}{lllllll}
2 & 8 & 8 & 1 & 5 & 7 & 7
\end{array}\right) 6
$$

$$
\begin{aligned}
& 12345678 \\
& \begin{array}{llllllll}
6 & 3 & 2 & 1 & 8 & 5 & 4 & 7
\end{array} \\
& 46781325 \\
& L_{2}=\begin{array}{llllllll}
7 & 8 & 5 & 6 & 4 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \\
& 24157836 \\
& 87436152 \\
& 51823764 \\
& L_{2}^{\prime}=\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 1 & 4 & 5 & 6 & 7 & 8 & 3 \\
3 & 4 & 6 & 1 & 7 & 8 & 5 & 2 \\
4 & 5 & 1 & 8 & 2 & 3 & 6 & 7 \\
5 & 6 & 7 & 2 & 8 & 1 & 3 & 4 \\
6 & 7 & 8 & 3 & 1 & 4 & 2 & 5 \\
7 & 8 & 5 & 6 & 3 & 2 & 4 & 1 \\
8 & 3 & 2 & 7 & 4 & 5 & 1 & 6
\end{array} \\
& \begin{array}{llllllll}
1 & 2 & 3 & 5 & 7
\end{array} \\
& \begin{array}{llllllll}
6 & 3 & 2 & 8 & 1 & 5 & 4
\end{array} \\
& 46718325 \\
& L_{3}=\begin{array}{llllllll}
8 & 7 & 5 & 6 & 4 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \\
& 24157836 \\
& 78436152 \\
& 51823764 \\
& 12345678 \\
& 21854763 \\
& \begin{array}{llllllll}
3 & 8 & 1 & 7 & 5 & 4 & 2
\end{array} \\
& L_{3}^{\prime}=\begin{array}{llllllll}
7 & 5 & 4 & 1 & 2 & 3 & 8 & 6 \\
4 & 6 & 7 & 2 & 1 & 8 & 3 & 5
\end{array} \\
& 57638124 \\
& \begin{array}{lllllll}
64 & 5 & 8 & 2 & 1
\end{array} \\
& 83267451 \\
& \begin{array}{llllllll}
1 & 2 & 7 & 5 & 6 & 8
\end{array} \\
& \begin{array}{llllllll}
6 & 3 & 2 & 1 & 8 & 5 & 4
\end{array} \\
& 46187325 \\
& L_{4}=\begin{array}{llllllll}
7 & 8 & 5 & 6 & 4 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \\
& 24351876 \\
& 81436752 \\
& 57823164 \\
& \begin{array}{ll}
12345678
\end{array} \\
& 54721836 \\
& 21834567 \\
& L_{4}^{\prime}=\begin{array}{llllllll}
8 & 5 & 2 & 7 & 6 & 1 & 4 & 3 \\
6 & 3 & 4 & 1 & 8 & 7 & 2 & 5
\end{array} \\
& \begin{array}{llllllll}
3 & 8 & 1 & 6 & 7 & 5 & 2
\end{array} \\
& \begin{array}{llllllll}
7 & 6 & 5 & 8 & 3 & 2 & 1 & 4
\end{array} \\
& 47652381 \\
& \begin{array}{lllllll}
123 & 6 & 8
\end{array} \\
& 31427865 \\
& \begin{array}{llllllll}
6 & 5 & 7 & 3 & 1 & 8 & 4
\end{array} \\
& L_{5}=\begin{array}{llllllll}
4 & 8 & 5 & 6 & 7 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \\
& 24351876 \\
& 81436752 \\
& 57823164 \\
& L_{5}^{\prime}=\begin{array}{llllllll}
8 & 4 & 1 & 7 & 2 & 3 & 5 & 6 \\
4 & 7 & 8 & 1 & 6 & 5 & 2 & 3 \\
7 & 3 & 5 & 6 & 8 & 1 & 4 & 2 \\
5 & 6 & 2 & 8 & 4 & 7 & 3 & 1 \\
2 & 8 & 6 & 5 & 3 & 4 & 1 & 7
\end{array} \\
& 12345678 \\
& \begin{array}{llllll}
3 & 1 & 7 & 6 & 8
\end{array} \\
& 86531724 \\
& L_{6}=\begin{array}{llllllll}
4 & 8 & 5 & 6 & 7 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \\
& 24351876 \\
& 81436752 \\
& L_{6}^{\prime}=\begin{array}{llllllll}
2 & 5 & 1 & 6 & 7 & 8 & 4 & 3 \\
4 & 7 & 8 & 2 & 3 & 5 & 1 & 6
\end{array} \\
& 53782461 \\
& 57823164 \\
& \begin{array}{llllllll}
7 & 8 & 6 & 5 & 4 & 3 & 2
\end{array} \\
& 64218357
\end{aligned}
$$

$$
\begin{aligned}
& 12745638 \quad 12345678 \\
& 63218547 \quad 31684257 \\
& 78164325 \quad 53271846 \\
& L_{7}=\begin{array}{llllllll}
4 & 6 & 5 & 8 & 7 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 4 & 8 & 1
\end{array} \quad L_{7}^{\prime}=\begin{array}{llllllll}
6 & 4 & 7 & 2 & 8 & 1 & 3 & 5 \\
2 & 8 & 5 & 1 & 7 & 3 & 6 & 4
\end{array} \\
& 24351876 \quad 87436521 \\
& 81436752 \quad 75862413 \\
& 57823164 \quad 46153782 \\
& 12745638 \quad 12345678 \\
& 63218547 \quad 51423867 \\
& 78164325 \quad 65731284 \\
& L_{8}=\begin{array}{llllllll}
4 & 6 & 5 & 8 & 7 & 2 & 1 & 3 \\
3 & 5 & 6 & 7 & 2 & 1 & 8 & 4 \\
2 & 4 & 3 & 5 & 1 & 8 & 7 & 6
\end{array} \quad L_{8}^{\prime}=\begin{array}{llllllll}
8 & 4 & 1 & 7 & 2 & 3 & 5 & 6 \\
3 & 7 & 8 & 1 & 6 & 4 & 2 & 5 \\
7 & 3 & 5 & 6 & 8 & 1 & 4 &
\end{array} \\
& 24351876 \quad 73568142 \\
& 81436752 \quad 46287531 \\
& 57823461 \quad 28654713
\end{aligned}
$$

$N_{i}(i=1,2,3)$ are Latin squares of order 10 with an orthogonal mate N_{i}^{\prime} as follows:

$$
\begin{aligned}
& \begin{array}{llllllllll}
9 & 4 & 1 & 6 & 3 & 8 & 2 & 5 & 0
\end{array} \\
& \begin{array}{lllllllll}
1 & 2 & 4 & 5 & 7 & 9 & 0
\end{array} \\
& 3805271649 \\
& 27491664583 \\
& 1638054927 \\
& N_{1}=\begin{array}{llllllllll}
0 & 5 & 2 & 7 & 4 & 9 & 3 & 8 & 1 & 6 \\
4 & 9 & 6 & 1 & 8 & 3 & 7 & 2 & 0 & 5
\end{array} \\
& 8350726194 \\
& 7294615038 \\
& \begin{array}{lllllllll}
6 & 1 & 8 & 3 & 5 & 9 & 7 & 2
\end{array} \\
& 5072948361 \\
& \begin{array}{llllllllll}
9 & 4 & 1 & 6 & 3 & 8 & 2 & 7 & 5 & 0
\end{array} \\
& 38105271649 \\
& 2749164538 \\
& \begin{array}{lllllllll}
1 & 6 & 3 & 8 & 0 & 4 & 9 & 7
\end{array} \\
& N_{2}=\begin{array}{llllllllll}
0 & 5 & 2 & 7 & 4 & 9 & 3 & 8 & 6 & 1 \\
4 & 9 & 6 & 1 & 8 & 3 & 7 & 2 & 0 & 5
\end{array} \\
& 8350726194 \\
& 7294615083 \\
& \begin{array}{lllllllll}
6 & 1 & 8 & 5 & 0 & 4 & 7
\end{array} \\
& 5072948316
\end{aligned}
$$

P and Q are exhibited as follows (Note that P is a $(3,1,2)$-conjugate orthogonal Latin square of order 10 with an empty subarray on $\{8,9,10\}$, which comes from $[2] ; Q$ is a $(3,2,1)$ conjugate orthogonal Latin square of order 14 with an empty subarray on $\{A, B, C, D\}$, which comes from [3]):

										8	1	7	A	6	B	0	C	4	D	9	5	3	2	
1	5	2	8	3	10	9	4	7	6		D	9	2	8	A	7	B	1	C	5	0	6	4	3
9	2	6	3	8	4	10	5	1	7		6	D	0	3	9	A	8	B	2	C	1	7	5	4
10	9	3	7	4	8	5	6	2	1		C	7	D	1	4	0	A	9	B	3	2	8	6	5
6	10	9	4	1	5	8	7	3	2		4	C	8	D	2	5	1	A	0	B	3	9	7	6
8	7	10	9	5	2	6	1	4	3		B	5	C	9	D	3	6	2	A	1	4	0	8	7
7	8	1	10	9	6	3	2	5	4		2	B	6	C	0	D	4	7	3	A	5	1	9	8
4	1	8	2	10	9	7	3	6	5		A	3	B	7	C	1	D	5	8	4	6	2	0	9
2	3	4	5	6	7	1					5	A	4	B	8	C	2	D	6	9	7	3	1	0
3	4	5	6	7	1	2				1	2	3	4	5	6	7	8	9	0					
5	6	7	1	2	3	4				7	8	9	0	1	2	3	4	5	6					
									3	4	5	6	7	8	9	0	1	2						
			P						9	0	1	2	3	4	5	6	7	8						

Q

(Received 27/9/2001)

[^0]: * Supported by NSFC grant 10071002 and SRFDP under No. 20010004001 for the first author, and by confin. M.U.R.S.T. "Strutture geometriche, combinatorie e loro applicazioni" and I.N.D.A.M. (G.N.S.A.G.A.) for the second author.

