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Abstract

Let k > 2 be an integer and G a 2-connected graph of order |G| > 3 with
minimum degree at least k. Suppose that |G| > 8k — 16 for even |G|
and |G| > 6k — 13 for odd |G|. We prove that G has a [k, k + 1]-factor
containing a given Hamiltonian cycle if max{deg;(x), degs(y)} > |G|/2
for each pair of nonadjacent vertices x and y in GG. This is best possible in
the sense that there exists a graph having no k-factor containing a given
Hamiltonian cycle under the same conditions. The lower bound of |G| is
also sharp.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. Let G be a
graph with vertex set V(G) and edge set E(G). For z € V(G), we denote by degq(z)
the degree of z in G and by |G| the order of G. Put §(G) = min{deg,(z) | z € V(G)}.
For S C V(G), G[9] is the subgraph of G induced by S. We write G — S for
GIV(G) \ S]. We define the distance d(z,y) between two vertices x and y as the
minimum of the lengths of the z—y paths of G.

Let a and b be two integers such that 1 < a < b. Then a spanning subgraph F
of G is called an [a, b]-factor if a < degp(x) < b for all z € V(G). If a = b=k, then
a [k, k]-factor is just a k-factor.

Let us introduce some well-known results relating our theorem.
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Theorem 1 (G. Fan [3]) Let G be a 2-connected graph with |G| > 3. If for any
two nonadjacent vertices x and y of G such that d(z,y) = 2,

max{deg,(z), degs(y)} > %,

then G has a Hamiltonian cycle.

Theorem 2 (T. Nishimura [6]) Let k > 3 be an integer and G a connected graph
with |G| > 4k — 3, k|G| even, and 6(G) > k. If for each pair of nonadjacent vertices
x and y of V(G),
G
mas{dezg (). dega(s)} > o,
then G has a k-factor.

Combining the two theorems above, we can easily recognize that if a 2-connected
graph G satisfies the conditions in Theorem 2, then G has a [k, k+2]-factor containing
a given Hamiltonian cycle C', which is the union of C' and a k-factor of G.

The purpose of this paper is to extend a “[k, k + 2]-factor containing a given
Hamiltonian cycle” to a “[k, k + 1]-factor containing a given Hamiltonian cycle”.

Our main result is the following theorem.

Theorem 3 Let k > 2 be an integer. Suppose that G is a 2-connected graph of order
|G| > 3 with |G| > 8k — 16 for even |G| and |G| > 6k — 13 for odd |G|. If §(G) > k
and

|G|

maxe{degg (z). degg(v)} > -

for each pair of nonadjacent vertices x and y of V(G), then G has a [k, k + 1]-factor
containing a given Hamiltonian cycle.

As seen in [2], we know the condition §(G) > |G|/2 does not guarantee the
existence of a k-factor containing a given Hamiltonian cycle of G, which is shown in
the following example: Suppose that |G| > 5 and k > 3. Put

G

|—2‘ +2 for even |G| and
)Gl +3

| ‘; for odd |G,

Let C' := v1va... vy be a cycle of order m and P := vpq1Umq2. .. V| a path of
order |G| —m. Then the join G := C' + P has no k-factor containing Hamiltonian
cycle v1vs ... ), but satisfies §(G) > |G|/2.

Moreover, the lower bounds of the conditions |G| > 8k — 16 for even |G| and
|G| > 6k — 13 for odd |G| are sharp. In the example above, put 2k < |G| < 8k — 16
for even |G| and 2k — 1 < |G| < 6k — 13 for odd |G|. Then the join G := C + P has
no k-factor containing Hamiltonian cycle v1v; ... v, but satisfies 6(G) > |G|/2.

The following theorem is deduced from Theorem 3.
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Theorem 4 (M. Cai, Y. Li, and M. Kano [2]) Let k > 2 be an integer and let
G be a graph of order |G| > 3 with |G| > 8k — 16 for even |G| and |G| > 6k — 13 for
odd |G|. Suppose that

degg(z) + degg(y) > |G|
for each pair of nonadjacent vertices x andy of V(G). Then G has a [k, k+1]-factor
containing a given Hamiltonian cycle.

Since a “[k, k+1]-factor containing a Hamiltonian cycle” is a 2-connected [k, k+1]-
factor, our theorem is an extension of the following theorem on a 2-connected graph.

Theorem 5 (M. Cai [1]) Let k > 3 be an odd integer and let G be a graph of odd
order |G| > 4k — 3. Suppose that 6(G) > k and

Q

max{deg(z), degs(y)} >

o

for each pair of nonadjacent vertices x and y of V(G). Then G has a connected
[k, k + 1]-factor.

2 Proof of Theorem 3

Our proof depends on the following theorem, which is a special case of Lovész’s
(g, f)-factor theorem.

Theorem 6 (L. Lovasz [5]) Let G be a graph and let a and b be integers such that
1 <a<b. Then G has an [a,b]-factor if and only if

(S, T) :=b|S| + Y (deg_g(x) —a) > 0

zeT

for all disjoint subsets S and T of V(G).

Proof of Theorem 3 By Theorem 1, G has a Hamiltonian cycle C. For k = 2,
Theorem 3 holds since C itself is a desired factor. Hence we may assume that
k>3. Put H:=G— FE(C) and r := k — 2. Note that r > 1, V(H) = V(G), and
0(H)=0(G)—2>r.
Obviously, G has a required factor if and only if H has an [r, 7+ 1]-factor. In order
to prove the theorem by reduction to absurdity, we assume that H has no [r,r + 1]-
factor. Then, by Theorem 6, there exist disjoint subsets S and T of V(H) = V(G)
satisfying
Y(S,T) = (r+1)|S|+ Y _(degy_s(z) —7) < —1. (1)
zeT

We choose such subsets S and T so that |T| is as small as possible.

Claim 1 |T| > r+2.
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Proof If |T| <r+1, then by (1) and |S| +degy_g(z) > degy(z) > 6(H) > r for
all x € T, we obtain

V(S T) = (r+1)|8] + Y _(degy_s(z) =) = D (15| + deg_s(z) —r) 2 0,

zeT zeT

which is a contradiction. [

Claim 2 degy_g(z) <r—1 forallz e T.

Proof If degy_g(x) > r for some z € T, then the subsets S and T \ {z} satisfy
(1). This contradicts the choice of S and 7. [

Claim 3 |S| > 1.
Proof By Claim 2, it follows that

S|+ 7 =12 |5+ degy_g(x) = degy(x) = 6(H) = r
for all € T, implying |S| > 1. |

Write

Gl

U:= {x € V(G) |degg(x) > 5

} and L:=V(G)\U.

Claim 4 G[L] is a complete graph.

Proof  For any two vertices z and y in L, we obtain max{deg,(z), deg;(y)} <
|G|/2 by the definition of L. Thus, zy € E(G). |

Claim 5 |9] < [g] -3

Proof  We first consider the case when |G| is even. Suppose that |S| > |G|/2 — 2.
Put a :=|S| = |G]/2+2 > 0 and 3 := |G| — |S| = |T| > 0. Then it follows from
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Claim 3 and |G| > 8k — 16 = 8r that

Y(S,T) = (r+1)IS|+ Y _(degy_s(x) — )

zeT
= (r+ IS+ degy_s(z) — (|G| - |S| - B)

zeT

= 2r +1)IS| = (G| = B) + Y degyr_s(a
zeT
—(2r+1)(G| 2+a>— (1G] = 53) + > _ degyy_s(x)
zeT
- %' + @+ D(a—2)+rf+ ) degy ()
zeT

> 2r+Da+r8+ Y degy g(x) —2. @)

zeT

If « > 1orf > 2, then we have v(S,T) > 0 by the inequalities above. This
contradicts (1). Hence we may assume that o = 0 and § < 1. We now show that
> ser degy_g(x) > 1 under the assumption a = 0 and § < 1.

Suppose that » . degy ¢(x) =0, « =0, and § < 1. Since a = 0, it follows
that |S| = |G|/2 — 2. Write X :=SNU and Y := SN L, where S = V(G) \ S.

Since >,y degy_g(r) = 0 and 8 < 1, we obtain E(G[S]) C C and degg(z) <
degy_s(z) +|S|+ 2 =|G|/2 for all x € §, implying deg.(z) = |G|/2 for all z € X.
Therefore all the edges of C incident to the vertices in X are contained in E(G[9]).
On the other hand, G[Y] is a complete graph by Claim 4 since Y C L.

Thus we obtain

[ X[+[Y]-1=18] =12 |E(G[S])n E(C)]
Y|(Y] -1
RN )
which implies |Y]| —1> 1+ |Y|(|Y] —1)/2, a contradiction.
Consequently, we have > _,degy_s(x) > 1, « =0, and § < 1. If § = 1, then
by (2), v(S,T) > r+3  crdegy_g(z)—2 >0, Wthh contradicts (1). If 8 = 0, then
V(H)=SUT and

ZdegH s(z chgH s(x)=2/E(H[T))| =0 (mod 2).

zeT zeT

Hence v(S,T) > > crdegy g(x) —2 > 0, which also contradicts (1). Therefore
Claim 5 holds for even |G|.

We next consider the case when |G| is odd. Suppose that |S| > (|G| —3)/2. Put
a:=|S|=(|G|=3)/2>0and §:= |G| —|S| —|T| > 0. Then it follows from Claim
3 and |G| > 6k — 13 = 6r — 1 that

VS, T) = (r+ DIS| + Y (degy_g(x) —r) = 2r + Da+rf+ Y degy_g(z) — 2.

zeT zeT
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By the same argument above, we may assume that « = 0, § < 1, and
>serdegy_g(z) = 0. Let X := {z € § | degg(z) > (|G| +1)/2} and Y := S\ X.
Similarly we obtain

X[+ Y] =1=18] - 1> |E(G[S]) N E(C)|
YIY -1

> |X|+ 1+ |B@GY])] = |X| + 1+ —5—,

which implies |Y]|—1 > 1+ |Y|(|]Y| —1)/2, a contradiction. Therefore Claim 5 holds
for odd |G|.
Claim 6 TNU # 0.

Proof If T C L, then |Eg[T]| = |T|(|]T] — 1)/2 by Claim 4. Since C' is a Hamil-
tonian cycle, |Eg[T] N C1| < |T| — 1 holds. Hence, we obtain

> degy_s(z) = 2|E6[T)\ Ec(O)| = IT|(T] = 1) = 2(T| = 1) = (IT] = 1)(IT| - 2).

zeT

Then it follows from Claims 1 and 3 that
VS, T) = (r+1)[S| + D (degy_g(x) — 1)
zeT
(r+ DS+ (T = D(T] - 2) — r|T]|

>
Z (r+ DS+ (T = Vr = r[T] = (r+ DI|S| = r > 1,

which contradicts (1). [

Claim 7 TN L #0.

Proof  Suppose that T'C U. For every x € T, it follows from Claim 2 that
G
[%—‘ < degs(r) < degy_g(z)+|S|+2 < |S|+r+1,
which implies deg;,_o(z) > [|G|/2] —|S| —2 and [|G]/2] —|S| —2—r < —1. Hence

Y(S.T) = (r+ DIS|+ Y _(deg_g(x) —7)

zeT

> (r+1)|S[+ 1T GGW — 18] —2—1»)

>(r+1)8|+(IGI—ISI><[GW 181 =2~ )
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Put f(|S]) == (r+ 1)|S| + (|G| — |S)([IG]/2] = |S| — 2 — r). Then by Claim 5 and
|G| > 6r — 17

rsh=r+1- (5| <1512 - g1 - 150

=2r+3— [gl — |G| + 29|

carvo- [ 290 -5) a5+ [€1) -ja1 <o

Hence we have

21 (1919 <o (9] (-9
= (2[5 - 11) 161 -0 20

The last inequality follows from the condition that |G| > 8r for even |G| and
|G| > 6r — 1 for odd |G|. This contradicts (1). [

Put
Ty :=TNU and Ty :=TnN L.
By Claims 6 and 7, we have [T1| > 1, and |Ty| > 1. It is clear that degy_g(x) >
degg(x) — |S| — 2 for all z € T. In particular, for every = € T,

|G| — 15| =2 if |G| is even and
dengs(l') > |G| (3)
— 18] == if |G] is odd.
It follows from Claim 2 that

G
16l —r—|S|—=1<0 if|G]is even and
&l . (4)
— —r—|5—-=<0 if|G|is odd.
2 2
By Claim 5 and the inequalities above, we have r > 2.

Claim 8 [Ty <r+ 2.

Proof  Since T5 is a complete subgraph by Claim 4, degy_g(x) > |T2| — 3 for all
x € Ty. Thus we have T3] — 3 < degy_g(z) < r — 1 by Claim 2, which implies
Tl <r+2 |
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To complete the proof, we consider two cases according to whether |G| is even or
odd. For even |G|, using (3), (4), Claims 5 and 8, and |G| > 8r, we obtain

Y(S,T) = (r+1)IS| + ) _(degy_g(z) — )

zeT

G
> (sl + 7l (150~ 151 - 2) = 7 + 172

G
= (r+ 1I|S| + |T1] (7| —1S]—2 —r) — [Ty

> (r 4+ 18] + (1G] — 1] - [Ta)) ('G' 5| —2 - ) [Ty

G G G
(|2| |S|—3> +<|—2‘—\S| 3) (‘2—|+3 2r—\T2|>+|G\—6r—|T2|

This contradicts (1).
We next assume |G| is odd. Let 3 := |G| — |S| — |T]. Since G[T3] is a complete
graph, we obtain
Y degy_s(x) = 2AE(G[T]) \ E(C))
z€Ty
2 [Ll(IT] = 1) = 2(1T2 = 1) = (T2 = D(T2] - 2). (5)
Using (3), (4), Claims 5 and 8, the inequality above, and |G| > 6r — 1, we obtain
Y(S,T) = (r+1)IS| + ) _(degy_s(z) =)

€T

G
> (r+1)|S| + |Ty] (' |

. —) (1T — )T~ 2) — (T3] + [T3])

G|

= (r+1)|S| + |71 < =[] -5 - r) — Tl + (T3] = (T2 — 2)

— sl + (61 - 181~ 17 - 5) (5 =151 - 3 =) i
INCAREARE
> (B -1s1-3) v -1 gm- 00 -2 - 111+ 6

By the inequality above, we obtain (S, T) > 0 unless |S| = (|G| — 5)/2, |Ta| =
2, r=2, =0, and (5) holds throughout with equality. Hence we need to consider
only the case |S| = (|G| —5)/2, |Tz] =2, r =2, =0, and (5) holds throughout
with equality. Since [T3] = 2 and (5) holds throughout with equality, we have
|E(G[T:])| = |[E(GT2])) N E(C)| = 1. From |S| = (|G| — 5)/2 and r = 2, it follows
from Claim 2 and (4) that

|G| +1

2

degy_g(z) =1 and degq(z) = for all z € T7.
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This implies that all the edges of C' incident to the vertices in 7} are contained in
E(G[T)) \ E(G[T3]). Thus the number of such edges is at least |T}| + 1. Therefore
|E(G[T])) N C| > |T1| + 1+ 1 = |T, contradicting the fact C' is a Hamiltonian cycle
of G. Finally, Theorem 1 is proved. [
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