
Degree conditions for the existence of
[k, k + 1]-factors containing a given

Hamiltonian cycle

Haruhide Matsuda∗

Department of General Education
Kyushu Tokai University

Choyo, Aso
Kumamoto 869-1404

JAPAN
hmatsuda@ktmail.ktokai-u.ac.jp

Abstract

Let k ≥ 2 be an integer and G a 2-connected graph of order |G| ≥ 3 with
minimum degree at least k. Suppose that |G| ≥ 8k − 16 for even |G|
and |G| ≥ 6k − 13 for odd |G|. We prove that G has a [k, k + 1]-factor
containing a given Hamiltonian cycle if max{degG(x), degG(y)} ≥ |G|/2
for each pair of nonadjacent vertices x and y in G. This is best possible in
the sense that there exists a graph having no k-factor containing a given
Hamiltonian cycle under the same conditions. The lower bound of |G| is
also sharp.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. Let G be a
graph with vertex set V (G) and edge set E(G). For x ∈ V (G), we denote by degG(x)
the degree of x in G and by |G| the order of G. Put δ(G) = min{degG(x) | x ∈ V (G)}.
For S ⊆ V (G), G[S] is the subgraph of G induced by S. We write G − S for
G[V (G) \ S]. We define the distance d(x, y) between two vertices x and y as the
minimum of the lengths of the x–y paths of G.

Let a and b be two integers such that 1 ≤ a ≤ b. Then a spanning subgraph F
of G is called an [a, b]-factor if a ≤ degF (x) ≤ b for all x ∈ V (G). If a = b = k, then
a [k, k]-factor is just a k-factor.

Let us introduce some well-known results relating our theorem.
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Theorem 1 (G. Fan [3]) Let G be a 2-connected graph with |G| ≥ 3. If for any
two nonadjacent vertices x and y of G such that d(x, y) = 2,

max{degG(x), degG(y)} ≥ |G|
2

,

then G has a Hamiltonian cycle.

Theorem 2 (T. Nishimura [6]) Let k ≥ 3 be an integer and G a connected graph
with |G| ≥ 4k − 3, k|G| even, and δ(G) ≥ k. If for each pair of nonadjacent vertices
x and y of V (G),

max{degG(x), degG(y)} ≥ |G|
2

,

then G has a k-factor.

Combining the two theorems above, we can easily recognize that if a 2-connected
graph G satisfies the conditions in Theorem 2, then G has a [k, k+2]-factor containing
a given Hamiltonian cycle C, which is the union of C and a k-factor of G.

The purpose of this paper is to extend a “[k, k + 2]-factor containing a given
Hamiltonian cycle” to a “[k, k + 1]-factor containing a given Hamiltonian cycle”.

Our main result is the following theorem.

Theorem 3 Let k ≥ 2 be an integer. Suppose that G is a 2-connected graph of order
|G| ≥ 3 with |G| ≥ 8k − 16 for even |G| and |G| ≥ 6k − 13 for odd |G|. If δ(G) ≥ k
and

max{degG(x), degG(y)} ≥ |G|
2

for each pair of nonadjacent vertices x and y of V (G), then G has a [k, k + 1]-factor
containing a given Hamiltonian cycle.

As seen in [2], we know the condition δ(G) ≥ |G|/2 does not guarantee the
existence of a k-factor containing a given Hamiltonian cycle of G, which is shown in
the following example: Suppose that |G| ≥ 5 and k ≥ 3. Put

m =



|G|
2

+ 2 for even |G| and

|G| + 3

2
for odd |G|.

Let C := v1v2 . . . vm be a cycle of order m and P := vm+1vm+2 . . . v|G| a path of
order |G| − m. Then the join G := C + P has no k-factor containing Hamiltonian
cycle v1v2 . . . v|G|, but satisfies δ(G) ≥ |G|/2.

Moreover, the lower bounds of the conditions |G| ≥ 8k − 16 for even |G| and
|G| ≥ 6k − 13 for odd |G| are sharp. In the example above, put 2k ≤ |G| < 8k − 16
for even |G| and 2k − 1 ≤ |G| < 6k − 13 for odd |G|. Then the join G := C + P has
no k-factor containing Hamiltonian cycle v1v2 . . . v|G|, but satisfies δ(G) ≥ |G|/2.

The following theorem is deduced from Theorem 3.
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Theorem 4 (M. Cai, Y. Li, and M. Kano [2]) Let k ≥ 2 be an integer and let
G be a graph of order |G| ≥ 3 with |G| ≥ 8k − 16 for even |G| and |G| ≥ 6k − 13 for
odd |G|. Suppose that

degG(x) + degG(y) ≥ |G|
for each pair of nonadjacent vertices x and y of V (G). Then G has a [k, k+1]-factor
containing a given Hamiltonian cycle.

Since a “[k, k+1]-factor containing a Hamiltonian cycle” is a 2-connected [k, k+1]-
factor, our theorem is an extension of the following theorem on a 2-connected graph.

Theorem 5 (M. Cai [1]) Let k ≥ 3 be an odd integer and let G be a graph of odd
order |G| ≥ 4k − 3. Suppose that δ(G) ≥ k and

max{degG(x), degG(y)} ≥ |G|
2

for each pair of nonadjacent vertices x and y of V (G). Then G has a connected
[k, k + 1]-factor.

2 Proof of Theorem 3

Our proof depends on the following theorem, which is a special case of Lovász’s
(g, f)-factor theorem.

Theorem 6 (L. Lovász [5]) Let G be a graph and let a and b be integers such that
1 ≤ a < b. Then G has an [a, b]-factor if and only if

γ(S, T ) := b|S| +
∑
x∈T

(degG−S(x) − a) ≥ 0

for all disjoint subsets S and T of V (G).

Proof of Theorem 3 By Theorem 1, G has a Hamiltonian cycle C. For k = 2,
Theorem 3 holds since C itself is a desired factor. Hence we may assume that
k ≥ 3. Put H := G − E(C) and r := k − 2. Note that r ≥ 1, V (H) = V (G), and
δ(H) = δ(G) − 2 ≥ r.

Obviously, G has a required factor if and only if H has an [r, r+1]-factor. In order
to prove the theorem by reduction to absurdity, we assume that H has no [r, r + 1]-
factor. Then, by Theorem 6, there exist disjoint subsets S and T of V (H) = V (G)
satisfying

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r) ≤ −1. (1)

We choose such subsets S and T so that |T | is as small as possible.

Claim 1 |T | ≥ r + 2.
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Proof If |T | ≤ r + 1, then by (1) and |S|+ degH−S(x) ≥ degH(x) ≥ δ(H) ≥ r for
all x ∈ T , we obtain

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r) ≥
∑
x∈T

(|S| + degH−S(x) − r) ≥ 0,

which is a contradiction.

Claim 2 degH−S(x) ≤ r − 1 for all x ∈ T .

Proof If degH−S(x) ≥ r for some x ∈ T , then the subsets S and T \ {x} satisfy
(1). This contradicts the choice of S and T .

Claim 3 |S| ≥ 1.

Proof By Claim 2, it follows that

|S| + r − 1 ≥ |S| + degH−S(x) ≥ degH(x) ≥ δ(H) ≥ r

for all x ∈ T , implying |S| ≥ 1.

Write

U :=

{
x ∈ V (G)

∣∣∣∣degG(x) ≥ |G|
2

}
and L := V (G) \ U.

Claim 4 G[L] is a complete graph.

Proof For any two vertices x and y in L, we obtain max{degG(x), degG(y)} <
|G|/2 by the definition of L. Thus, xy ∈ E(G).

Claim 5 |S| ≤
⌈ |G|

2

⌉
− 3.

Proof We first consider the case when |G| is even. Suppose that |S| ≥ |G|/2− 2.
Put α := |S| − |G|/2 + 2 ≥ 0 and β := |G| − |S| − |T | ≥ 0. Then it follows from

276



Claim 3 and |G| ≥ 8k − 16 = 8r that

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r)

= (r + 1)|S| +
∑
x∈T

degH−S(x) − r(|G| − |S| − β)

= (2r + 1)|S| − r(|G| − β) +
∑
x∈T

degH−S(x)

= (2r + 1)

( |G|
2

− 2 + α

)
− r(|G| − β) +

∑
x∈T

degH−S(x)

=
|G|
2

+ (2r + 1)(α − 2) + rβ +
∑
x∈T

degH−S(x)

≥ (2r + 1)α + rβ +
∑
x∈T

degH−S(x) − 2. (2)

If α ≥ 1 or β ≥ 2, then we have γ(S, T ) ≥ 0 by the inequalities above. This
contradicts (1). Hence we may assume that α = 0 and β ≤ 1. We now show that∑

x∈T degH−S(x) ≥ 1 under the assumption α = 0 and β ≤ 1.
Suppose that

∑
x∈T degH−S(x) = 0, α = 0, and β ≤ 1. Since α = 0, it follows

that |S| = |G|/2 − 2. Write X := S̄ ∩ U and Y := S̄ ∩ L, where S̄ = V (G) \ S.
Since

∑
x∈T degH−S(x) = 0 and β ≤ 1, we obtain E(G[S̄]) ⊂ C and degG(x) ≤

degH−S(x) + |S| + 2 = |G|/2 for all x ∈ S̄, implying degG(x) = |G|/2 for all x ∈ X .
Therefore all the edges of C incident to the vertices in X are contained in E(G[S̄]).
On the other hand, G[Y ] is a complete graph by Claim 4 since Y ⊆ L.

Thus we obtain

|X | + |Y | − 1 = |S̄| − 1 ≥ |E(G[S̄]) ∩ E(C)|
≥ |X | + 1 + |E(G[Y ])| = |X | + 1 +

|Y |(|Y | − 1)

2
,

which implies |Y | − 1 ≥ 1 + |Y |(|Y | − 1)/2, a contradiction.
Consequently, we have

∑
x∈T degH−S(x) ≥ 1, α = 0, and β ≤ 1. If β = 1, then

by (2), γ(S, T ) ≥ r +
∑

x∈T degH−S(x)− 2 ≥ 0, which contradicts (1). If β = 0, then
V (H) = S ∪ T and

∑
x∈T

degH−S(x) =
∑
x∈T

degH−S(x) ≡ 2|E(H[T ])| ≡ 0 (mod 2).

Hence γ(S, T ) ≥ ∑
x∈T degH−S(x) − 2 ≥ 0, which also contradicts (1). Therefore

Claim 5 holds for even |G|.
We next consider the case when |G| is odd. Suppose that |S| ≥ (|G| − 3)/2. Put

α := |S| − (|G| − 3)/2 ≥ 0 and β := |G| − |S| − |T | ≥ 0. Then it follows from Claim
3 and |G| ≥ 6k − 13 = 6r − 1 that

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r) ≥ (2r + 1)α + rβ +
∑
x∈T

degH−S(x) − 2.
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By the same argument above, we may assume that α = 0, β ≤ 1, and∑
x∈T degH−S(x) = 0. Let X := {x ∈ S̄ | degG(x) ≥ (|G| + 1)/2} and Y := S̄ \ X .

Similarly we obtain

|X | + |Y | − 1 = |S̄| − 1 ≥ |E(G[S̄]) ∩ E(C)|
≥ |X | + 1 + |E(G[Y ])| = |X | + 1 +

|Y |(|Y | − 1)

2
,

which implies |Y |− 1 ≥ 1+ |Y |(|Y |− 1)/2, a contradiction. Therefore Claim 5 holds
for odd |G|.

Claim 6 T ∩ U 
= ∅.

Proof If T ⊆ L, then |EG[T ]| = |T |(|T | − 1)/2 by Claim 4. Since C is a Hamil-
tonian cycle, |EG[T ] ∩ C1| ≤ |T | − 1 holds. Hence, we obtain

∑
x∈T

degH−S(x) ≥ 2|EG[T ] \ EG(C)| ≥ |T |(|T | − 1) − 2(|T | − 1) = (|T | − 1)(|T | − 2).

Then it follows from Claims 1 and 3 that

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r)

≥ (r + 1)|S| + (|T | − 1)(|T | − 2) − r|T |
≥ (r + 1)|S| + (|T | − 1)r − r|T | = (r + 1)|S| − r ≥ 1,

which contradicts (1).

Claim 7 T ∩ L 
= ∅.

Proof Suppose that T ⊆ U . For every x ∈ T , it follows from Claim 2 that

⌈ |G|
2

⌉
≤ degG(x) ≤ degH−S(x) + |S| + 2 ≤ |S| + r + 1,

which implies degH−S(x) ≥ �|G|/2− |S| − 2 and �|G|/2− |S| − 2− r ≤ −1. Hence

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r)

≥ (r + 1)|S| + |T |
(⌈ |G|

2

⌉
− |S| − 2 − r

)

≥ (r + 1)|S| + (|G| − |S|)
(⌈ |G|

2

⌉
− |S| − 2 − r

)
.
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Put f(|S|) := (r + 1)|S| + (|G| − |S|)(�|G|/2 − |S| − 2 − r). Then by Claim 5 and
|G| ≥ 6r − 1,

f ′(|S|) = r + 1 −
(⌈ |G|

2

⌉
− |S| − 2 − r

)
− (|G| − |S|)

= 2r + 3 −
⌈ |G|

2

⌉
− |G| + 2|S|

≤ 2r + 3 −
⌈ |G|

2

⌉
− |G| + 2

(⌈ |G|
2

⌉
− 3

)
= 2r − 3 +

⌈ |G|
2

⌉
− |G| < 0.

Hence we have

f(|S|) ≥ f

(⌈ |G|
2

⌉
− 3

)
= (r + 1)

(⌈ |G|
2

⌉
− 3

)
+

(
|G| −

⌈ |G|
2

⌉
+ 3

)
(1 − r)

= r

(
2

⌈ |G|
2

⌉
− |G|

)
+ |G| − 6r ≥ 0.

The last inequality follows from the condition that |G| ≥ 8r for even |G| and
|G| ≥ 6r − 1 for odd |G|. This contradicts (1).

Put
T1 := T ∩ U and T2 := T ∩ L.

By Claims 6 and 7, we have |T1| ≥ 1, and |T2| ≥ 1. It is clear that degH−S(x) ≥
degG(x) − |S| − 2 for all x ∈ T . In particular, for every x ∈ T1,

degH−S(x) ≥



|G|
2

− |S| − 2 if |G| is even and

|G|
2

− |S| − 3

2
if |G| is odd.

(3)

It follows from Claim 2 that


|G|
2

− r − |S| − 1 ≤ 0 if |G| is even and

|G|
2

− r − |S| − 1

2
≤ 0 if |G| is odd.

(4)

By Claim 5 and the inequalities above, we have r ≥ 2.

Claim 8 |T2| ≤ r + 2.

Proof Since T2 is a complete subgraph by Claim 4, degH−S(x) ≥ |T2| − 3 for all
x ∈ T2. Thus we have |T2| − 3 ≤ degH−S(x) ≤ r − 1 by Claim 2, which implies
|T2| ≤ r + 2.
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To complete the proof, we consider two cases according to whether |G| is even or
odd. For even |G|, using (3), (4), Claims 5 and 8, and |G| ≥ 8r, we obtain

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r)

≥ (r + 1)|S| + |T1|
( |G|

2
− |S| − 2

)
− r(|T1| + |T2|)

= (r + 1)|S| + |T1|
( |G|

2
− |S| − 2 − r

)
− r|T2|

≥ (r + 1)|S| + (|G| − |S| − |T2|)
( |G|

2
− |S| − 2 − r

)
− r|T2|

=

( |G|
2

− |S| − 3

)2

+

( |G|
2

− |S| − 3

) ( |G|
2

+ 3 − 2r − |T2|
)

+ |G| − 6r − |T2|
≥ 2r − |T2| ≥ 0.

This contradicts (1).
We next assume |G| is odd. Let β := |G| − |S| − |T |. Since G[T2] is a complete

graph, we obtain∑
x∈T2

degH−S(x) ≥ 2|E(G[T2]) \ E(C)|

≥ |T2|(|T2| − 1) − 2(|T2| − 1) = (|T2| − 1)(|T2| − 2). (5)

Using (3), (4), Claims 5 and 8, the inequality above, and |G| ≥ 6r− 1, we obtain

γ(S, T ) = (r + 1)|S| +
∑
x∈T

(degH−S(x) − r)

≥ (r + 1)|S| + |T1|
( |G|

2
− |S| − 3

2

)
+ (|T2| − 1)(|T2| − 2) − r(|T1| + |T2|)

= (r + 1)|S| + |T1|
( |G|

2
− |S| − 3

2
− r

)
− r|T2| + (|T2| − 1)(|T2| − 2)

= (r + 1)|S| + (|G| − |S| − |T2| − β)

( |G|
2

− |S| − 3

2
− r

)
− r|T2|

+ (|T2| − 1)(|T2| − 2)

≥
( |G|

2
− |S| − 5

2

)2

+ r − 1 + (|T2| − 1)(|T2| − 2) − |T2| + β.

By the inequality above, we obtain γ(S, T ) ≥ 0 unless |S| = (|G| − 5)/2, |T2| =
2, r = 2, β = 0, and (5) holds throughout with equality. Hence we need to consider
only the case |S| = (|G| − 5)/2, |T2| = 2, r = 2, β = 0, and (5) holds throughout
with equality. Since |T2| = 2 and (5) holds throughout with equality, we have
|E(G[T2])| = |E(G[T2]) ∩ E(C)| = 1. From |S| = (|G| − 5)/2 and r = 2, it follows
from Claim 2 and (4) that

degH−S(x) = 1 and degG(x) =
|G| + 1

2
for all x ∈ T1.
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This implies that all the edges of C incident to the vertices in T1 are contained in
E(G[T ]) \ E(G[T2]). Thus the number of such edges is at least |T1| + 1. Therefore
|E(G[T ]) ∩ C| ≥ |T1| + 1 + 1 = |T |, contradicting the fact C is a Hamiltonian cycle
of G. Finally, Theorem 1 is proved.
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