Degree conditions for the existence of $[k, k+1]$-factors containing a given Hamiltonian cycle

Haruhide Matsuda*
Department of General Education
Kyushu Tokai University
Choyo, Aso
Kumamoto 869-1404
JAPAN
hmatsuda@ktmail.ktokai-u.ac.jp

Abstract

Let $k \geq 2$ be an integer and G a 2-connected graph of order $|G| \geq 3$ with minimum degree at least k. Suppose that $|G| \geq 8 k-16$ for even $|G|$ and $|G| \geq 6 k-13$ for odd $|G|$. We prove that G has a $[k, k+1]$-factor containing a given Hamiltonian cycle if $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq|G| / 2$ for each pair of nonadjacent vertices x and y in G. This is best possible in the sense that there exists a graph having no k-factor containing a given Hamiltonian cycle under the same conditions. The lower bound of $|G|$ is also sharp.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For $x \in V(G)$, we denote by $\operatorname{deg}_{G}(x)$ the degree of x in G and by $|G|$ the order of G. Put $\delta(G)=\min \left\{\operatorname{deg}_{G}(x) \mid x \in V(G)\right\}$. For $S \subseteq V(G), G[S]$ is the subgraph of G induced by S. We write $G-S$ for $G[V(G) \backslash S]$. We define the distance $d(x, y)$ between two vertices x and y as the minimum of the lengths of the $x-y$ paths of G.

Let a and b be two integers such that $1 \leq a \leq b$. Then a spanning subgraph F of G is called an $[a, b]$-factor if $a \leq \operatorname{deg}_{F}(x) \leq b$ for all $x \in V(G)$. If $a=b=k$, then a $[k, k]$-factor is just a k-factor.

Let us introduce some well-known results relating our theorem.

[^0]Theorem 1 (G. Fan [3]) Let G be a 2-connected graph with $|G| \geq 3$. If for any two nonadjacent vertices x and y of G such that $d(x, y)=2$,

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|}{2}
$$

then G has a Hamiltonian cycle.
Theorem 2 (T. Nishimura [6]) Let $k \geq 3$ be an integer and G a connected graph with $|G| \geq 4 k-3, k|G|$ even, and $\delta(G) \geq k$. If for each pair of nonadjacent vertices x and y of $V(G)$,

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|}{2}
$$

then G has a k-factor.
Combining the two theorems above, we can easily recognize that if a 2-connected graph G satisfies the conditions in Theorem 2, then G has a $[k, k+2]$-factor containing a given Hamiltonian cycle C, which is the union of C and a k-factor of G.

The purpose of this paper is to extend a " $[k, k+2]$-factor containing a given Hamiltonian cycle" to a " $[k, k+1]$-factor containing a given Hamiltonian cycle".

Our main result is the following theorem.
Theorem 3 Let $k \geq 2$ be an integer. Suppose that G is a 2-connected graph of order $|G| \geq 3$ with $|G| \geq 8 k-16$ for even $|G|$ and $|G| \geq 6 k-13$ for odd $|G|$. If $\delta(G) \geq k$ and

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|}{2}
$$

for each pair of nonadjacent vertices x and y of $V(G)$, then G has a $[k, k+1]$-factor containing a given Hamiltonian cycle.

As seen in [2], we know the condition $\delta(G) \geq|G| / 2$ does not guarantee the existence of a k-factor containing a given Hamiltonian cycle of G, which is shown in the following example: Suppose that $|G| \geq 5$ and $k \geq 3$. Put

$$
m= \begin{cases}\frac{|G|}{2}+2 & \text { for even }|G| \text { and } \\ \frac{|G|+3}{2} & \text { for odd }|G|\end{cases}
$$

Let $C:=v_{1} v_{2} \ldots v_{m}$ be a cycle of order m and $P:=v_{m+1} v_{m+2} \ldots v_{|G|}$ a path of order $|G|-m$. Then the join $G:=C+P$ has no k-factor containing Hamiltonian cycle $v_{1} v_{2} \ldots v_{|G|}$, but satisfies $\delta(G) \geq|G| / 2$.

Moreover, the lower bounds of the conditions $|G| \geq 8 k-16$ for even $|G|$ and $|G| \geq 6 k-13$ for odd $|G|$ are sharp. In the example above, put $2 k \leq|G|<8 k-16$ for even $|G|$ and $2 k-1 \leq|G|<6 k-13$ for odd $|G|$. Then the join $G:=C+P$ has no k-factor containing Hamiltonian cycle $v_{1} v_{2} \ldots v_{|G|}$, but satisfies $\delta(G) \geq|G| / 2$.

The following theorem is deduced from Theorem 3.

Theorem 4 (M. Cai, Y. Li, and M. Kano [2]) Let $k \geq 2$ be an integer and let G be a graph of order $|G| \geq 3$ with $|G| \geq 8 k-16$ for even $|G|$ and $|G| \geq 6 k-13$ for odd $|G|$. Suppose that

$$
\operatorname{deg}_{G}(x)+\operatorname{deg}_{G}(y) \geq|G|
$$

for each pair of nonadjacent vertices x and y of $V(G)$. Then G has a $[k, k+1]$-factor containing a given Hamiltonian cycle.

Since a " $[k, k+1]$-factor containing a Hamiltonian cycle" is a 2 -connected $[k, k+1]$ factor, our theorem is an extension of the following theorem on a 2-connected graph.

Theorem 5 (M. Cai [1]) Let $k \geq 3$ be an odd integer and let G be a graph of odd order $|G| \geq 4 k-3$. Suppose that $\delta(G) \geq k$ and

$$
\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\} \geq \frac{|G|}{2}
$$

for each pair of nonadjacent vertices x and y of $V(G)$. Then G has a connected $[k, k+1]$-factor.

2 Proof of Theorem 3

Our proof depends on the following theorem, which is a special case of Lovász's (g, f)-factor theorem.

Theorem 6 (L. Lovász [5]) Let G be a graph and let a and b be integers such that $1 \leq a<b$. Then G has an $[a, b]$-factor if and only if

$$
\gamma(S, T):=b|S|+\sum_{x \in T}\left(\operatorname{deg}_{G-S}(x)-a\right) \geq 0
$$

for all disjoint subsets S and T of $V(G)$.
Proof of Theorem 3 By Theorem 1, G has a Hamiltonian cycle C. For $k=2$, Theorem 3 holds since C itself is a desired factor. Hence we may assume that $k \geq 3$. Put $H:=G-E(C)$ and $r:=k-2$. Note that $r \geq 1, V(H)=V(G)$, and $\delta(H)=\delta(G)-2 \geq r$.

Obviously, G has a required factor if and only if H has an $[r, r+1]$-factor. In order to prove the theorem by reduction to absurdity, we assume that H has no $[r, r+1]$ factor. Then, by Theorem 6, there exist disjoint subsets S and T of $V(H)=V(G)$ satisfying

$$
\begin{equation*}
\gamma(S, T)=(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \leq-1 \tag{1}
\end{equation*}
$$

We choose such subsets S and T so that $|T|$ is as small as possible.
Claim $1|T| \geq r+2$.

Proof If $|T| \leq r+1$, then by (1) and $|S|+\operatorname{deg}_{H-S}(x) \geq \operatorname{deg}_{H}(x) \geq \delta(H) \geq r$ for all $x \in T$, we obtain

$$
\gamma(S, T)=(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \geq \sum_{x \in T}\left(|S|+\operatorname{deg}_{H-S}(x)-r\right) \geq 0
$$

which is a contradiction.

Claim $2 \operatorname{deg}_{H-S}(x) \leq r-1$ for all $x \in T$.
Proof If $\operatorname{deg}_{H-S}(x) \geq r$ for some $x \in T$, then the subsets S and $T \backslash\{x\}$ satisfy (1). This contradicts the choice of S and T.

Claim $3|S| \geq 1$.
Proof By Claim 2, it follows that

$$
|S|+r-1 \geq|S|+\operatorname{deg}_{H-S}(x) \geq \operatorname{deg}_{H}(x) \geq \delta(H) \geq r
$$

for all $x \in T$, implying $|S| \geq 1$.
Write

$$
U:=\left\{x \in V(G) \left\lvert\, \operatorname{deg}_{G}(x) \geq \frac{|G|}{2}\right.\right\} \text { and } L:=V(G) \backslash U .
$$

Claim $4 G[L]$ is a complete graph.
Proof For any two vertices x and y in L, we obtain $\max \left\{\operatorname{deg}_{G}(x), \operatorname{deg}_{G}(y)\right\}<$ $|G| / 2$ by the definition of L. Thus, $x y \in E(G)$.

Claim $5|S| \leq\left\lceil\frac{|G|}{2}\right\rceil-3$.
Proof We first consider the case when $|G|$ is even. Suppose that $|S| \geq|G| / 2-2$. Put $\alpha:=|S|-|G| / 2+2 \geq 0$ and $\beta:=|G|-|S|-|T| \geq 0$. Then it follows from

Claim 3 and $|G| \geq 8 k-16=8 r$ that

$$
\begin{align*}
\gamma(S, T) & =(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \\
& =(r+1)|S|+\sum_{x \in T} \operatorname{deg}_{H-S}(x)-r(|G|-|S|-\beta) \\
& =(2 r+1)|S|-r(|G|-\beta)+\sum_{x \in T} \operatorname{deg}_{H-S}(x) \\
& =(2 r+1)\left(\frac{|G|}{2}-2+\alpha\right)-r(|G|-\beta)+\sum_{x \in T} \operatorname{deg}_{H-S}(x) \\
& =\frac{|G|}{2}+(2 r+1)(\alpha-2)+r \beta+\sum_{x \in T} \operatorname{deg}_{H-S}(x) \\
& \geq(2 r+1) \alpha+r \beta+\sum_{x \in T} \operatorname{deg}_{H-S}(x)-2 . \tag{2}
\end{align*}
$$

If $\alpha \geq 1$ or $\beta \geq 2$, then we have $\gamma(S, T) \geq 0$ by the inequalities above. This contradicts (1). Hence we may assume that $\alpha=0$ and $\beta \leq 1$. We now show that $\sum_{x \in T} \operatorname{deg}_{H-S}(x) \geq 1$ under the assumption $\alpha=0$ and $\beta \leq 1$.

Suppose that $\sum_{x \in T} \operatorname{deg}_{H-S}(x)=0, \alpha=0$, and $\beta \leq 1$. Since $\alpha=0$, it follows that $|S|=|G| / 2-2$. Write $X:=\bar{S} \cap U$ and $Y:=\bar{S} \cap L$, where $\bar{S}=V(G) \backslash S$.

Since $\sum_{x \in T} \operatorname{deg}_{H-S}(x)=0$ and $\beta \leq 1$, we obtain $E(G[\bar{S}]) \subset C$ and $\operatorname{deg}_{G}(x) \leq$ $\operatorname{deg}_{H-S}(x)+|S|+2=|G| / 2$ for all $x \in \bar{S}$, implying $\operatorname{deg}_{G}(x)=|G| / 2$ for all $x \in X$. Therefore all the edges of C incident to the vertices in X are contained in $E(G[\bar{S}])$. On the other hand, $G[Y]$ is a complete graph by Claim 4 since $Y \subseteq L$.

Thus we obtain

$$
\begin{aligned}
|X|+|Y|-1=|\bar{S}|-1 & \geq|E(G[\bar{S}]) \cap E(C)| \\
& \geq|X|+1+|E(G[Y])|=|X|+1+\frac{|Y|(|Y|-1)}{2}
\end{aligned}
$$

which implies $|Y|-1 \geq 1+|Y|(|Y|-1) / 2$, a contradiction.
Consequently, we have $\sum_{x \in T} \operatorname{deg}_{H-S}(x) \geq 1, \alpha=0$, and $\beta \leq 1$. If $\beta=1$, then by (2), $\gamma(S, T) \geq r+\sum_{x \in T} \operatorname{deg}_{H-S}(x)-2 \geq 0$, which contradicts (1). If $\beta=0$, then $V(H)=S \cup T$ and

$$
\sum_{x \in T} \operatorname{deg}_{H-S}(x)=\sum_{x \in T} \operatorname{deg}_{H-S}(x) \equiv 2|E(H[T])| \equiv 0 \quad(\bmod 2)
$$

Hence $\gamma(S, T) \geq \sum_{x \in T} \operatorname{deg}_{H-S}(x)-2 \geq 0$, which also contradicts (1). Therefore Claim 5 holds for even $|G|$.

We next consider the case when $|G|$ is odd. Suppose that $|S| \geq(|G|-3) / 2$. Put $\alpha:=|S|-(|G|-3) / 2 \geq 0$ and $\beta:=|G|-|S|-|T| \geq 0$. Then it follows from Claim 3 and $|G| \geq 6 k-13=6 r-1$ that

$$
\gamma(S, T)=(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \geq(2 r+1) \alpha+r \beta+\sum_{x \in T} \operatorname{deg}_{H-S}(x)-2 .
$$

By the same argument above, we may assume that $\alpha=0, \beta \leq 1$, and $\sum_{x \in T} \operatorname{deg}_{H-S}(x)=0$. Let $X:=\left\{x \in \bar{S} \mid \operatorname{deg}_{G}(x) \geq(|G|+1) / 2\right\}$ and $Y:=\bar{S} \backslash X$. Similarly we obtain

$$
\begin{aligned}
|X|+|Y|-1=|\bar{S}|-1 & \geq|E(G[\bar{S}]) \cap E(C)| \\
& \geq|X|+1+|E(G[Y])|=|X|+1+\frac{|Y|(|Y|-1)}{2}
\end{aligned}
$$

which implies $|Y|-1 \geq 1+|Y|(|Y|-1) / 2$, a contradiction. Therefore Claim 5 holds for odd $|G|$.

Claim $6 T \cap U \neq \emptyset$.
Proof If $T \subseteq L$, then $\left|E_{G}[T]\right|=|T|(|T|-1) / 2$ by Claim 4. Since C is a Hamiltonian cycle, $\left|E_{G}[T] \cap C_{1}\right| \leq|T|-1$ holds. Hence, we obtain
$\sum_{x \in T} \operatorname{deg}_{H-S}(x) \geq 2\left|E_{G}[T] \backslash E_{G}(C)\right| \geq|T|(|T|-1)-2(|T|-1)=(|T|-1)(|T|-2)$.
Then it follows from Claims 1 and 3 that

$$
\begin{aligned}
\gamma(S, T) & =(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \\
& \geq(r+1)|S|+(|T|-1)(|T|-2)-r|T| \\
& \geq(r+1)|S|+(|T|-1) r-r|T|=(r+1)|S|-r \geq 1
\end{aligned}
$$

which contradicts (1).

Claim $7 T \cap L \neq \emptyset$.
Proof Suppose that $T \subseteq U$. For every $x \in T$, it follows from Claim 2 that

$$
\left\lceil\frac{|G|}{2}\right\rceil \leq \operatorname{deg}_{G}(x) \leq \operatorname{deg}_{H-S}(x)+|S|+2 \leq|S|+r+1
$$

which implies $\operatorname{deg}_{H-S}(x) \geq\lceil|G| / 2\rceil-|S|-2$ and $\lceil|G| / 2\rceil-|S|-2-r \leq-1$. Hence

$$
\begin{aligned}
\gamma(S, T) & =(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \\
& \geq(r+1)|S|+|T|\left(\left\lceil\frac{|G|}{2}|-|S|-2-r)\right.\right. \\
& \geq(r+1)|S|+(|G|-|S|)\left(\left\lceil\frac{|G|}{2}|-|S|-2-r)\right.\right.
\end{aligned}
$$

Put $f(|S|):=(r+1)|S|+(|G|-|S|)(\lceil|G| / 2\rceil-|S|-2-r)$. Then by Claim 5 and $|G| \geq 6 r-1$,

$$
\begin{aligned}
f^{\prime}(|S|) & =r+1-\left(\left\lceil\frac{|G|}{2}\right\rceil-|S|-2-r\right)-(|G|-|S|) \\
& =2 r+3-\left\lceil\frac{|G|}{2}\right\rceil-|G|+2|S| \\
& \leq 2 r+3-\left\lceil\frac{|G|}{2}\right\rceil-|G|+2\left(\left\lceil\frac{|G|}{2}\right\rceil-3\right)=2 r-3+\left\lceil\frac{|G|}{2}\right\rceil-|G|<0
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
f(|S|) & \geq f\left(\left\lceil\frac{|G|}{2}\right\rceil-3\right)=(r+1)\left(\left\lceil\frac{|G|}{2}\right\rceil-3\right)+\left(|G|-\left\lceil\frac{|G|}{2}\right\rceil+3\right)(1-r) \\
& =r\left(2\left\lceil\frac{|G|}{2}\right\rceil-|G|\right)+|G|-6 r \geq 0
\end{aligned}
$$

The last inequality follows from the condition that $|G| \geq 8 r$ for even $|G|$ and $|G| \geq 6 r-1$ for odd $|G|$. This contradicts (1).

Put

$$
T_{1}:=T \cap U \text { and } T_{2}:=T \cap L
$$

By Claims 6 and 7 , we have $\left|T_{1}\right| \geq 1$, and $\left|T_{2}\right| \geq 1$. It is clear that $\operatorname{deg}_{H-S}(x) \geq$ $\operatorname{deg}_{G}(x)-|S|-2$ for all $x \in T$. In particular, for every $x \in T_{1}$,

$$
\operatorname{deg}_{H-S}(x) \geq \begin{cases}\frac{|G|}{2}-|S|-2 & \text { if }|G| \text { is even and } \tag{3}\\ \frac{|G|}{2}-|S|-\frac{3}{2} & \text { if }|G| \text { is odd. }\end{cases}
$$

It follows from Claim 2 that

$$
\begin{cases}\frac{|G|}{2}-r-|S|-1 \leq 0 & \text { if }|G| \text { is even and } \tag{4}\\ \frac{|G|}{2}-r-|S|-\frac{1}{2} \leq 0 & \text { if }|G| \text { is odd. }\end{cases}
$$

By Claim 5 and the inequalities above, we have $r \geq 2$.
Claim $8\left|T_{2}\right| \leq r+2$.
Proof Since T_{2} is a complete subgraph by Claim 4, $\operatorname{deg}_{H-S}(x) \geq\left|T_{2}\right|-3$ for all $x \in T_{2}$. Thus we have $\left|T_{2}\right|-3 \leq \operatorname{deg}_{H-S}(x) \leq r-1$ by Claim 2, which implies $\left|T_{2}\right| \leq r+2$.

To complete the proof, we consider two cases according to whether $|G|$ is even or odd. For even $|G|$, using (3), (4), Claims 5 and 8 , and $|G| \geq 8 r$, we obtain

$$
\begin{aligned}
& \gamma(S, T)=(r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \\
& \geq(r+1)|S|+\left|T_{1}\right|\left(\frac{|G|}{2}-|S|-2\right)-r\left(\left|T_{1}\right|+\left|T_{2}\right|\right) \\
& =(r+1)|S|+\left|T_{1}\right|\left(\frac{|G|}{2}-|S|-2-r\right)-r\left|T_{2}\right| \\
& \geq(r+1)|S|+\left(|G|-|S|-\left|T_{2}\right|\right)\left(\frac{|G|}{2}-|S|-2-r\right)-r\left|T_{2}\right| \\
& =\left(\frac{|G|}{2}-|S|-3\right)^{2}+\left(\frac{|G|}{2}-|S|-3\right)\left(\frac{|G|}{2}+3-2 r-\left|T_{2}\right|\right)+|G|-6 r-\left|T_{2}\right| \\
& \geq 2 r-\left|T_{2}\right| \geq 0 .
\end{aligned}
$$

This contradicts (1).
We next assume $|G|$ is odd. Let $\beta:=|G|-|S|-|T|$. Since $G\left[T_{2}\right]$ is a complete graph, we obtain

$$
\begin{align*}
\sum_{x \in T_{2}} \operatorname{deg}_{H-S}(x) & \geq 2\left|E\left(G\left[T_{2}\right]\right) \backslash E(C)\right| \\
& \geq\left|T_{2}\right|\left(\left|T_{2}\right|-1\right)-2\left(\left|T_{2}\right|-1\right)=\left(\left|T_{2}\right|-1\right)\left(\left|T_{2}\right|-2\right) \tag{5}
\end{align*}
$$

Using (3), (4), Claims 5 and 8 , the inequality above, and $|G| \geq 6 r-1$, we obtain

$$
\begin{aligned}
\gamma(S, T)= & (r+1)|S|+\sum_{x \in T}\left(\operatorname{deg}_{H-S}(x)-r\right) \\
\geq & (r+1)|S|+\left|T_{1}\right|\left(\frac{|G|}{2}-|S|-\frac{3}{2}\right)+\left(\left|T_{2}\right|-1\right)\left(\left|T_{2}\right|-2\right)-r\left(\left|T_{1}\right|+\left|T_{2}\right|\right) \\
= & (r+1)|S|+\left|T_{1}\right|\left(\frac{|G|}{2}-|S|-\frac{3}{2}-r\right)-r\left|T_{2}\right|+\left(\left|T_{2}\right|-1\right)\left(\left|T_{2}\right|-2\right) \\
= & (r+1)|S|+\left(|G|-|S|-\left|T_{2}\right|-\beta\right)\left(\frac{|G|}{2}-|S|-\frac{3}{2}-r\right)-r\left|T_{2}\right| \\
& +\left(\left|T_{2}\right|-1\right)\left(\left|T_{2}\right|-2\right) \\
\geq & \left(\frac{|G|}{2}-|S|-\frac{5}{2}\right)^{2}+r-1+\left(\left|T_{2}\right|-1\right)\left(\left|T_{2}\right|-2\right)-\left|T_{2}\right|+\beta .
\end{aligned}
$$

By the inequality above, we obtain $\gamma(S, T) \geq 0$ unless $|S|=(|G|-5) / 2,\left|T_{2}\right|=$ $2, r=2, \beta=0$, and (5) holds throughout with equality. Hence we need to consider only the case $|S|=(|G|-5) / 2,\left|T_{2}\right|=2, r=2, \beta=0$, and (5) holds throughout with equality. Since $\left|T_{2}\right|=2$ and (5) holds throughout with equality, we have $\left|E\left(G\left[T_{2}\right]\right)\right|=\left|E\left(G\left[T_{2}\right]\right) \cap E(C)\right|=1$. From $|S|=(|G|-5) / 2$ and $r=2$, it follows from Claim 2 and (4) that

$$
\operatorname{deg}_{H-S}(x)=1 \text { and } \quad \operatorname{deg}_{G}(x)=\frac{|G|+1}{2} \quad \text { for all } x \in T_{1}
$$

This implies that all the edges of C incident to the vertices in T_{1} are contained in $E(G[T]) \backslash E\left(G\left[T_{2}\right]\right)$. Thus the number of such edges is at least $\left|T_{1}\right|+1$. Therefore $|E(G[T]) \cap C| \geq\left|T_{1}\right|+1+1=|T|$, contradicting the fact C is a Hamiltonian cycle of G. Finally, Theorem 1 is proved.

Acknowledgment

The author is grateful to Professor M. Kano and the referee for their help and valuable comments.

References

[1] M. Cai, Connected [$k, k+1$]-factors of graphs, Discrete Mathematics 169 (1997), 1-16.
[2] M. Cai, Y. Li and M. Kano, A [k,k+1]-factor containing given Hamiltonian cycle, Science in China (ser. A) 41 (1998), 933-938.
[3] G. Fan, New sufficient conditions for cycles in Graphs, J. Combin. Theory (ser. A) 37 (1984), 221-227.
[4] M. Kano, Some current results and problems on factors of graphs, Proc. 3rd China-USA Internat. Conf. on Graph Theory and Its Application, World Sci. Publishing, River Edge, NJ (1994), 93-98.
[5] L. Lov́asz, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970), 391-416.
[6] T. Nishimura, A degree condition for the existence of k-factors, J. Graph Theory 16 (1992), 141-151.

[^0]: * This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists, 13740084, 2001

