Extensions of α-polynomial classes

D. Rautenbach
Lehrstuhl II für Mathematik
RWTH Aachen
D-52056 Aachen
Germany
rauten@math2.rwth-aaachen.de
I. E. Zverovich
RUTCOR-Rutgers Center for Operations Research
Rutgers, The State University of New Jersey
640 Bartholomew Rd, Piscataway
NJ 08854-8003, U.S.A.
igor@rutcor.rutgers.edu
I. I. Zverovich
ASA Institute of Technology, New York
ASA Institute of Technology
151 Lawrence Street, Brooklyn
NY 11201, U.S.A.

Abstract

Let $\alpha(G)$ be the stability number of a graph G. A class of graphs \mathcal{P} is called α-polynomial if there exists a polynomial-time algorithm to determine $\alpha(G)$ for $G \in \mathcal{P}$. For every hereditary α-polynomial class \mathcal{P} we construct a hereditary extension of \mathcal{P} which is either an α-polynomial class or α can be approximated in polynomial time in the extended class.

1 Introduction

Let $G=(V(G), E(G))$ be a graph. A set $S \subseteq V(G)$ is called stable if no two vertices in S are adjacent. The stability number $\alpha(G)$ of G is the maximum cardinality of a stable set of G. A class \mathcal{P} of graphs is called α-polynomial if there exists a polynomial-time algorithm to determine $\alpha(G)$ for $G \in \mathcal{P}$.

For a set $X \subseteq V(G)$, the graph $G(X)$ induced by X in G has vertex set X and edge set $\{u v: u, v \in X$ and $u v \in E(G)\}$. A graph H is an induced subgraph of a
graph G if H is isomorphic to $G(X)$ for some $X \subseteq V(G)$. For a set \mathcal{F} of graphs, a graph G is called \mathcal{F}-free if no induced subgraph of G is isomorphic to a graphs in \mathcal{F}. The graphs in \mathcal{F} are called forbidden induced subgraphs for the class of all \mathcal{F}-free graphs. A class \mathcal{P} of graphs is called hereditary if it is closed under taking induced subgraphs. Note that a class \mathcal{P} of graphs is hereditary if and only if there is a (possibly infinite) set \mathcal{F} of graphs such that \mathcal{P} is the class of \mathcal{F}-free graphs.

Definition 1. Let G_{0} and G be two graphs and let $I_{0} \subseteq V\left(G_{0}\right)$ be a maximal stable set of G_{0}, i.e. $V\left(G_{0}\right)=N_{G_{0}}\left[I_{0}\right]:=I_{0} \cup N_{G_{0}}\left(I_{0}\right)$.
(i) $A\left(G_{0}, I_{0}\right)$-extension $G_{\left(G_{0}, I_{0}\right)}$ of G is a graph that arises from disjoint copies of G_{0} and G by adding edges (possibly none) between the vertices in $V\left(G_{0}\right) \backslash I_{0}$ and $V(G)$.
(ii) $A\left(G_{0}, I_{0}\right)$-stable set of G is a stable set $I \subseteq V(G)$ of G such that there is an isomorphism $\phi: V\left(G_{0}\right) \rightarrow V\left(\tilde{G}_{0}\right)$ where \tilde{G}_{0} is an induced subgraph of G and $\phi\left(I_{0}\right)=I \cap V\left(\tilde{G}_{0}\right)$ (see Figure 1).
We define $\alpha_{\left(G_{0}, I_{0}\right)}(G)$ as the maximum cardinality of a $\left(G_{0}, I_{0}\right)$-stable set in G or as 0 if no such set exists.

Figure 1
(iii) Let \mathcal{F} be a set of graphs and let \mathcal{P} be the class of \mathcal{F}-free graphs. The $\left(G_{0}, I_{0}\right)$ extension of \mathcal{P} is the class $\mathcal{P}_{\left(G_{0}, I_{0}\right)}$ of $\mathcal{F}_{\left(G_{0}, I_{0}\right)}$-free graphs where $\mathcal{F}_{\left(G_{0}, I_{0}\right)}=$ $\left\{F_{\left(G_{0}, I_{0}\right)}: F \in \mathcal{F}\right\}$ is the set of all $\left(G_{0}, I_{0}\right)$-extensions of graphs in \mathcal{F}.

Proposition 1. Let G_{0}, I_{0} and \mathcal{P} be as in Definition 1. Let $G \in \mathcal{P}_{\left(G_{0}, I_{0}\right)}$ and let $\phi: V\left(G_{0}\right) \rightarrow V\left(\tilde{G}_{0}\right)$ be an isomorphism where \tilde{G}_{0} is an induced subgraph of G. Then $G \backslash N_{G}\left[\phi\left(I_{0}\right)\right] \in \mathcal{P}$.

Proof. Let $G^{\prime}=G \backslash N_{G}\left[\phi\left(I_{0}\right)\right]$. If $G^{\prime} \notin \mathcal{P}$, then G^{\prime} contains an induced subgraph $F \in \mathcal{F}$ where \mathcal{F} is as in Definition 1. By the maximality of $I_{0}, V\left(\tilde{G}_{0}\right) \cap V(F)=\emptyset$. Now $G\left(V\left(\tilde{G}_{0}\right) \cup V(F)\right)$ is a $\left(G_{0}, I_{0}\right)$-extension of F, a contradiction to $G \in \mathcal{P}_{\left(G_{0}, I_{0}\right)}$.

Theorem 1. Let G_{0}, I_{0} and \mathcal{P} be as in Definition 1. If \mathcal{P} is an α-polynomial class of graphs then there is a polynomial time algorithm to determine $\alpha_{\left(G_{0}, I_{0}\right)}$ for graphs in $\mathcal{P}_{\left(G_{0}, I_{0}\right)}$.

Proof. First, it is possible to find all induced subgraphs of $G \in \mathcal{P}_{\left(G_{0}, I_{0}\right)}$ that are isomorphic to G_{0} in polynomial time. If G is G_{0}-free, then $\alpha_{\left(G_{0}, I_{0}\right)}(G)=0$. If G is not G_{0}-free, then for each of the polynomially many isomorphisms ϕ such that ϕ : $V\left(G_{0}\right) \rightarrow V\left(\tilde{G}_{0}\right)$ for some induced subgraph \tilde{G}_{0} of G, the graph $G_{\phi}=G \backslash N_{G}\left[\phi\left(I_{0}\right)\right]$ belongs to \mathcal{P} (Proposition 1). Hence we can determine $\alpha\left(G_{\phi}\right)$ in polynomial time. Obviously, $\alpha_{\left(G_{0}, I_{0}\right)}(G)=\left|I_{0}\right|+\max \left\{\alpha\left(G_{\phi}\right): \phi\right.$ as above $\}$.

Before we proceed to some specific applications for which we consider special choices of G_{0} and I_{0} we want to point out that $\alpha_{\left(G_{0}, I_{0}\right)}$ always approximates α within some additive term for graphs of bounded maximum degree that are not G_{0}-free.

Therefore, let G be some graph that is not G_{0}-free and let $\phi: V\left(G_{0}\right) \rightarrow V\left(\tilde{G}_{0}\right)$ be an isomorphism for some induced subgraph \tilde{G}_{0} of G. Let I be a maximum independent set of G, i.e. $|I|=\alpha(G)$ and let $I_{0}^{\prime}=\phi\left(I_{0}\right) \backslash I$. The set $I^{\prime}=(I \backslash$ $\left.N_{G}\left(I_{0}^{\prime}\right)\right) \cup I_{0}^{\prime}$ is a $\left(G_{0}, I_{0}\right)$-independent set of G and hence

$$
\alpha_{\left(G_{0}, I_{0}\right)} \geq\left|I^{\prime}\right| \geq|I|-\left|N_{G}\left(I_{0}^{\prime}\right)\right|+\left|I_{0}^{\prime}\right| \geq \alpha(G)-(\Delta-1)\left|I_{0}^{\prime}\right| \geq \alpha(G)-(\Delta-1)\left|I_{0}\right|
$$

where Δ denotes the maximum degree of G.

2 Some applications

Let $K_{1, d}$ denote the star of order $d+1$.
Proposition 2. For $d \geq 2$ let $G_{0}=K_{1, d}$ and let I_{0} consist of the d vertices of degree 1 in $K_{1, d}$. Let G be a graph that is not $K_{1, d}$-free. Then $\alpha_{\left(K_{1, d,}, I_{0}\right)}(G) \geq \alpha(G)-d(d-2)$.

Proof. We prove the existence of a $\left(K_{1, d}, I_{0}\right)$-stable set of G of cardinality at least $\alpha(G)-d(d-2)$. Let I be a maximum stable set of G. If $\left|N_{G}(u) \cap I\right| \geq d$ for some vertex $u \in V(G) \backslash I$, then I is a $\left(K_{1, d}, I_{0}\right)$-stable set of G and we are done. Hence, we can assume that $\left|N_{G}(u) \cap I\right| \leq d-1$ for all vertices $u \in V(G) \backslash I$.

Let the vertices $v_{0}, v_{1}, \ldots, v_{d} \in V(G)$ induce a graph in G that is isomorphic to $K_{1, d}$ such that v_{0} is the vertex of degree d. Let $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\} \backslash I=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ for some $1 \leq l \leq d$. The set $I^{\prime}=\left(I \backslash \bigcup_{i=1}^{l} N_{G}\left(v_{i}\right)\right) \cup\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ is a $\left(K_{1, d}, I_{0}\right)$-stable set of G and $\left|I^{\prime}\right| \geq|I|-l(d-1)+l=|I|-l(d-2) \geq|I|-d(d-2)$.

Theorem 2 (Berman [1], Halldórsson [4]). For $d \geq 2$ there is a polynomial time algorithm to approximate α for $K_{1, d^{-}}$free graphs within a factor of $\frac{d}{2}$, i.e. to determine a stable set I of a given $K_{1, d}$-free graph G such that $|I| \geq \frac{2}{d} \alpha(G)$.

Note that the case $d=2$ of the above theorem is trivial.

Corollary 1. For $d \geq 2$ let $G_{0}=K_{1, d}$ and let I_{0} consist of the d vertices of degree 1 in $K_{1, d}$. If \mathcal{P} is an α-polynomial hereditary class of graphs then there is a polynomial time algorithm to approximate α for graphs in $\mathcal{P}_{\left(K_{1, d}, I_{0}\right)}$ within a factor of $\frac{d}{2}$.

Proof. Let $G \in \mathcal{P}_{\left(K_{1, d}, I_{0}\right)}$. First, we check in polynomial time whether $\alpha(G)<d^{2}$ and determine $\alpha(G)$ in this case. Hence we can assume that $\alpha(G) \geq d^{2}$, or equivalently $\alpha(G)-d(d-2) \geq \frac{2}{d} \alpha(G)$. If G is $K_{1, d}$-free, then Theorem 2 yields the desired result. If G is not $K_{1, d}$-free, then $\alpha_{\left(K_{1, d}, I_{0}\right)}(G) \geq \alpha(G)-d(d-2) \geq \frac{2}{d} \alpha(G)$, by Proposition 2. Now, Theorem 1 yields the desired result.

Note that $\frac{2}{d}=1$ for $d=2$, i.e. α can be determined exactly for graphs in $\mathcal{P}_{\left(K_{1,2}, I_{0}\right)}$. Below P_{n} denotes the path of order n.

Example 1. The class \mathcal{P} of all $\left\{G_{1}, G_{2}, \ldots, G_{6}\right\}$-free graphs (see Figure 2) is α polynomial, since \mathcal{P} is the $\left(K_{1,2}, I_{0}\right)$-extension of the α-polynomial class of all P_{3}-free graphs.

Figure 2

Example 2. The class \mathcal{P} of all $\left\{F_{1}, F_{2}, \ldots, F_{10}\right\}$-free graphs (see Figure 3) is α polynomial, since \mathcal{P} is the ($K_{1,2}, I_{0}$)-extension of the α-polynomial class of all cographs (P_{4}-free graphs; see [2]).

Figure 3

For the case $d=3$, i.e. claw-free graphs, we can actually prove something stronger.

Proposition 3. Let $G_{0}=K_{1,3}$ and let I_{0} consist of the three vertices of degree 1 in $K_{1,3}$. Let G be a graph that is not $K_{1,3}$-free. Then $\alpha_{\left(P_{3}, I_{0}\right)}(G) \geq \alpha(G)-1$.

Proof. We prove the existence of a $\left(K_{1,3}, I_{0}\right)$-stable set of G of cardinality at least $\alpha(G)-1$.

Let I be a maximum stable set of G. If some vertex in $V(G) \backslash I$ has three neighbors in I, then we are done. Hence $\left|N_{G}(u) \cap I\right| \leq 2$ for every $u \in V(G) \backslash I$. Since G is not claw-free, let $a, b, c, d \in V(G)$ induce a claw such that d is the vertex of degree three. Obviously, $a, b, c \in I$ does not hold.

If $a, b \in I$ and $c, d \notin I$ then $I^{\prime}=\left(I \backslash N_{G}(c)\right) \cup\{c\}$ has the desired properties. Hence each claw in G has at most one vertex in I.

Now we assume that $a \in I$ and $b, c, d \notin I$. If $\left|\left(N_{G}(b) \cup N_{G}(c)\right) \cap I\right| \leq 3$, then $I^{\prime}=\left(I \backslash\left(N_{G}(b) \cup N_{G}(c)\right)\right) \cup\{b, c\}$ has the desired properties. Hence $\left|N_{G}(b) \cap I\right|=2$, $\left|N_{G}(c) \cap I\right|=2$ and $N_{G}(b) \cap N_{G}(c) \cap I=\emptyset$. Since either $N_{G}(d) \cap N_{G}(b) \cap I=\emptyset$ or $N_{G}(d) \cap N_{G}(c) \cap I=\emptyset$, the set $I^{\prime}=\left(I \backslash N_{G}(d)\right) \cup\{d\}$ has the desired properties.

Hence we may assume that $a, b, c \notin I$. If $\left|\left(N_{G}(a) \cup N_{G}(b) \cup N_{G}(c)\right) \cap I\right| \leq 4$ then $I^{\prime}=\left(I \backslash\left(N_{G}(a) \cup N_{G}(b) \cup N_{G}(c)\right)\right) \cup\{a, b, c\}$ has the desired properties. Hence
$\left|\left(N_{G}(a) \cup N_{G}(b) \cup N_{G}(c)\right) \cap I\right| \geq 5$ which implies that $\{a, b, c\} \nsubseteq N_{G}(e)$ for each $e \in I$. Thus $d \notin I$.

If $a, b \notin N_{G}(e)$ for some $e \in N_{G}(d) \cap I$ then it is easy to see that $\left|N_{G}(a) \cap I\right|=2$, $\left|N_{G}(b) \cap I\right|=2$ and $N_{G}(a) \cap N_{G}(b) \cap I=\emptyset$. Since each claw has at most one vertex in I, we have $N_{G}(d) \cap N_{G}(a) \cap I \neq \emptyset$ and $N_{G}(d) \cap N_{G}(b) \cap I \neq \emptyset$ which implies the contradiction $\left|N_{G}(d) \cap I\right| \geq 3$. Hence $\left|N_{G}(e) \cap\{a, b, c\}\right|=2$ for each $e \in N_{G}(d) \cap I$. Since $N_{G}(d) \cap I \neq \emptyset$, we can assume that $N_{G}(e) \cap\{a, b, c\}=\{a, b\}$ for some $e \in$ $N_{G}(d) \cap I$. This implies that $\left|N_{G}(c) \cap I\right|=2$ and $N_{G}(c) \cap\left(N_{G}(a) \cup N_{G}(b)\right) \cap I=\emptyset$.

If $N_{G}(c) \cap N_{G}(d) \cap I=\emptyset$, then $I^{\prime}=\left(I \backslash N_{G}(d)\right) \cup\{d\}$ has the desired properties. Hence there is some $f \in N_{G}(c) \cap N_{G}(d) \cap I$. Since $N_{G}(f) \cap\{a, b\} \neq \emptyset$, we obtain the contradiction $\left|\left(N_{G}(a) \cup N_{G}(b) \cup N_{G}(c)\right) \cap I\right| \leq 4$.

Theorem 3 (Minty [3], Sbihi [5]). The class of all $K_{1,3}$-free graphs is α-polynomial.

Corollary 2. Let $G_{0}=K_{1,3}$ and let I_{0} consist of the three vertices of degree 1 in P_{3}. Let \mathcal{P} be an α-polynomial hereditary class of graphs.

Then there is a polynomial time algorithm to approximate α for graphs in $\mathcal{P}_{\left(K_{1,3}, I_{0}\right)}$ within 1, i.e. for every graph $G \in \mathcal{P}_{\left(K_{1,3}, I_{0}\right)}$ we can determine in polynomial time some α^{\prime} such that $\alpha(G)-1 \leq \alpha^{\prime} \leq \alpha(G)$.

Proof. Let $G \in \mathcal{P}_{\left(K_{1,3}, I_{0}\right)}$. If G is $K_{1,3}$-free, then Theorem 3 yields the desired result. If G is not $K_{1,3}$-free, then $\alpha_{\left(K_{1,3}, I_{0}\right)}(G) \geq \alpha(G)-1$, by Proposition 3. Now the result follows from Theorem 1.

As an example, we consider the $\left(K_{1,3}, I_{0}\right)$ extension of $K_{1,3}$-free graphs. Let \mathcal{C} be the set of graphs shown in Figure 4 (dotted lines represent potential edges). In fact, \mathcal{C} consists of 8 pairwise non-isomorphic graphs.

Figure 4. The configuration \mathcal{C}

Clearly, the class of all \mathcal{C}-free graphs is exactly $\mathcal{P}_{\left(K_{1,3}, I_{0}\right)}$, where \mathcal{P} denotes the class of all $K_{1,3}$-free graphs and I_{0} is as before. By Corollary 2 , there is a polynomial time algorithm to approximate α for \mathcal{C}-free graphs within 1 and we pose the following

Open Problem 1. Is there a polynomial time algorithm to determine α for \mathcal{C}-free graphs?

Finally, we want to point out that our extension operations can obviously be iterated.

References

[1] P. Berman, A $d / 2$ approximation for maximum weight independent set in d-claw free graphs, Lecture Notes Comput. Sci. 1851 (2000), 214-219.
[2] D. G. Corneil, H. Lerchs and L. K. Stewart, Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163-174.
[3] G. J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory, Ser. B 28 (1980), 284-304.
[4] M. M. Halldórsson, Approximating discrete collections via local improvements, in: Proceedings of the 6th annual ACM-SIAM symposium on discrete algorithms (1995), 160-169.
[5] N. Sbihi, Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile, Discrete Math. 29 (1980), 53-76 (in French).
(Received 1/9/2001)

