# Extensions of $\alpha$ -polynomial classes

D. Rautenbach

Lehrstuhl II für Mathematik RWTH Aachen D-52056 Aachen Germany rauten@math2.rwth-aaachen.de

I.E. Zverovich

RUTCOR-Rutgers Center for Operations Research Rutgers, The State University of New Jersey 640 Bartholomew Rd, Piscataway NJ 08854-8003, U.S.A. igor@rutcor.rutgers.edu

I.I. Zverovich

ASA Institute of Technology, New York ASA Institute of Technology 151 Lawrence Street, Brooklyn NY 11201, U.S.A.

#### Abstract

Let  $\alpha(G)$  be the stability number of a graph G. A class of graphs  $\mathcal{P}$  is called  $\alpha$ -polynomial if there exists a polynomial-time algorithm to determine  $\alpha(G)$  for  $G \in \mathcal{P}$ . For every hereditary  $\alpha$ -polynomial class  $\mathcal{P}$  we construct a hereditary extension of  $\mathcal{P}$  which is either an  $\alpha$ -polynomial class or  $\alpha$  can be approximated in polynomial time in the extended class.

## 1 Introduction

Let G = (V(G), E(G)) be a graph. A set  $S \subseteq V(G)$  is called *stable* if no two vertices in S are adjacent. The *stability number*  $\alpha(G)$  of G is the maximum cardinality of a stable set of G. A class  $\mathcal{P}$  of graphs is called  $\alpha$ -polynomial if there exists a polynomial-time algorithm to determine  $\alpha(G)$  for  $G \in \mathcal{P}$ .

For a set  $X \subseteq V(G)$ , the graph G(X) induced by X in G has vertex set X and edge set  $\{uv : u, v \in X \text{ and } uv \in E(G)\}$ . A graph H is an induced subgraph of a

Australasian Journal of Combinatorics 26(2002), pp.265-271

graph G if H is isomorphic to G(X) for some  $X \subseteq V(G)$ . For a set  $\mathcal{F}$  of graphs, a graph G is called  $\mathcal{F}$ -free if no induced subgraph of G is isomorphic to a graphs in  $\mathcal{F}$ . The graphs in  $\mathcal{F}$  are called *forbidden induced subgraphs* for the class of all  $\mathcal{F}$ -free graphs. A class  $\mathcal{P}$  of graphs is called *hereditary* if it is closed under taking induced subgraphs. Note that a class  $\mathcal{P}$  of graphs is hereditary if and only if there is a (possibly infinite) set  $\mathcal{F}$  of graphs such that  $\mathcal{P}$  is the class of  $\mathcal{F}$ -free graphs.

**Definition 1.** Let  $G_0$  and G be two graphs and let  $I_0 \subseteq V(G_0)$  be a maximal stable set of  $G_0$ , i.e.  $V(G_0) = N_{G_0}[I_0] := I_0 \cup N_{G_0}(I_0)$ .

- (i) A  $(G_0, I_0)$ -extension  $G_{(G_0, I_0)}$  of G is a graph that arises from disjoint copies of  $G_0$  and G by adding edges (possibly none) between the vertices in  $V(G_0) \setminus I_0$  and V(G).
- (ii) A  $(G_0, I_0)$ -stable set of G is a stable set  $I \subseteq V(G)$  of G such that there is an isomorphism  $\phi : V(G_0) \to V(\tilde{G}_0)$  where  $\tilde{G}_0$  is an induced subgraph of G and  $\phi(I_0) = I \cap V(\tilde{G}_0)$  (see Figure 1).

We define  $\alpha_{(G_0,I_0)}(G)$  as the maximum cardinality of a  $(G_0,I_0)$ -stable set in G or as 0 if no such set exists.



Figure 1

(iii) Let  $\mathcal{F}$  be a set of graphs and let  $\mathcal{P}$  be the class of  $\mathcal{F}$ -free graphs. The  $(G_0, I_0)$ extension of  $\mathcal{P}$  is the class  $\mathcal{P}_{(G_0,I_0)}$  of  $\mathcal{F}_{(G_0,I_0)}$ -free graphs where  $\mathcal{F}_{(G_0,I_0)} =$   $\{F_{(G_0,I_0)}: F \in \mathcal{F}\}$  is the set of all  $(G_0, I_0)$ -extensions of graphs in  $\mathcal{F}$ .

**Proposition 1.** Let  $G_0$ ,  $I_0$  and  $\mathcal{P}$  be as in Definition 1. Let  $G \in \mathcal{P}_{(G_0,I_0)}$  and let  $\phi: V(G_0) \to V(\tilde{G}_0)$  be an isomorphism where  $\tilde{G}_0$  is an induced subgraph of G. Then  $G \setminus N_G[\phi(I_0)] \in \mathcal{P}$ .

**Proof.** Let  $G' = G \setminus N_G[\phi(I_0)]$ . If  $G' \notin \mathcal{P}$ , then G' contains an induced subgraph  $F \in \mathcal{F}$  where  $\mathcal{F}$  is as in Definition 1. By the maximality of  $I_0, V(\tilde{G}_0) \cap V(F) = \emptyset$ . Now  $G(V(\tilde{G}_0) \cup V(F))$  is a  $(G_0, I_0)$ -extension of F, a contradiction to  $G \in \mathcal{P}_{(G_0, I_0)}$ . **Theorem 1.** Let  $G_0$ ,  $I_0$  and  $\mathcal{P}$  be as in Definition 1. If  $\mathcal{P}$  is an  $\alpha$ -polynomial class of graphs then there is a polynomial time algorithm to determine  $\alpha_{(G_0,I_0)}$  for graphs in  $\mathcal{P}_{(G_0,I_0)}$ .

**Proof.** First, it is possible to find all induced subgraphs of  $G \in \mathcal{P}_{(G_0,I_0)}$  that are isomorphic to  $G_0$  in polynomial time. If G is  $G_0$ -free, then  $\alpha_{(G_0,I_0)}(G) = 0$ . If G is not  $G_0$ -free, then for each of the polynomially many isomorphisms  $\phi$  such that  $\phi$  :  $V(G_0) \to V(\tilde{G}_0)$  for some induced subgraph  $\tilde{G}_0$  of G, the graph  $G_{\phi} = G \setminus N_G[\phi(I_0)]$ belongs to  $\mathcal{P}$  (Proposition 1). Hence we can determine  $\alpha(G_{\phi})$  in polynomial time. Obviously,  $\alpha_{(G_0,I_0)}(G) = |I_0| + \max\{\alpha(G_{\phi}) : \phi \text{ as above}\}$ .

Before we proceed to some specific applications for which we consider special choices of  $G_0$  and  $I_0$  we want to point out that  $\alpha_{(G_0,I_0)}$  always approximates  $\alpha$  within some additive term for graphs of bounded maximum degree that are not  $G_0$ -free.

Therefore, let G be some graph that is not  $G_0$ -free and let  $\phi: V(G_0) \to V(\overline{G}_0)$ be an isomorphism for some induced subgraph  $\widetilde{G}_0$  of G. Let I be a maximum independent set of G, i.e.  $|I| = \alpha(G)$  and let  $I'_0 = \phi(I_0) \setminus I$ . The set  $I' = (I \setminus N_G(I'_0)) \cup I'_0$  is a  $(G_0, I_0)$ -independent set of G and hence

$$\alpha_{(G_0,I_0)} \ge |I'| \ge |I| - |N_G(I'_0)| + |I'_0| \ge \alpha(G) - (\Delta - 1)|I'_0| \ge \alpha(G) - (\Delta - 1)|I_0|$$

where  $\Delta$  denotes the maximum degree of G.

#### 2 Some applications

Let  $K_{1,d}$  denote the star of order d + 1.

**Proposition 2.** For  $d \ge 2$  let  $G_0 = K_{1,d}$  and let  $I_0$  consist of the d vertices of degree 1 in  $K_{1,d}$ . Let G be a graph that is not  $K_{1,d}$ -free. Then  $\alpha_{(K_{1,d},I_0)}(G) \ge \alpha(G) - d(d-2)$ .

**Proof.** We prove the existence of a  $(K_{1,d}, I_0)$ -stable set of G of cardinality at least  $\alpha(G) - d(d-2)$ . Let I be a maximum stable set of G. If  $|N_G(u) \cap I| \ge d$  for some vertex  $u \in V(G) \setminus I$ , then I is a  $(K_{1,d}, I_0)$ -stable set of G and we are done. Hence, we can assume that  $|N_G(u) \cap I| \le d - 1$  for all vertices  $u \in V(G) \setminus I$ .

Let the vertices  $v_0, v_1, \ldots, v_d \in V(G)$  induce a graph in G that is isomorphic to  $K_{1,d}$  such that  $v_0$  is the vertex of degree d. Let  $\{v_1, v_2, \ldots, v_d\} \setminus I = \{v_1, v_2, \ldots, v_l\}$  for some  $1 \leq l \leq d$ . The set  $I' = (I \setminus \bigcup_{i=1}^l N_G(v_i)) \cup \{v_1, v_2, \ldots, v_l\}$  is a  $(K_{1,d}, I_0)$ -stable set of G and  $|I'| \geq |I| - l(d-1) + l = |I| - l(d-2) \geq |I| - d(d-2)$ .  $\Box$ 

**Theorem 2 (Berman [1], Halldórsson [4]).** For  $d \ge 2$  there is a polynomial time algorithm to approximate  $\alpha$  for  $K_{1,d}$ -free graphs within a factor of  $\frac{d}{2}$ , i.e. to determine a stable set I of a given  $K_{1,d}$ -free graph G such that  $|I| \ge \frac{2}{d}\alpha(G)$ .

Note that the case d = 2 of the above theorem is trivial.

**Corollary 1.** For  $d \ge 2$  let  $G_0 = K_{1,d}$  and let  $I_0$  consist of the d vertices of degree 1 in  $K_{1,d}$ . If  $\mathcal{P}$  is an  $\alpha$ -polynomial hereditary class of graphs then there is a polynomial time algorithm to approximate  $\alpha$  for graphs in  $\mathcal{P}_{(K_1,d,I_0)}$  within a factor of  $\frac{d}{2}$ .

**Proof.** Let  $G \in \mathcal{P}_{(K_{1,d},I_0)}$ . First, we check in polynomial time whether  $\alpha(G) < d^2$  and determine  $\alpha(G)$  in this case. Hence we can assume that  $\alpha(G) \ge d^2$ , or equivalently  $\alpha(G) - d(d-2) \ge \frac{2}{d}\alpha(G)$ . If G is  $K_{1,d}$ -free, then Theorem 2 yields the desired result. If G is not  $K_{1,d}$ -free, then  $\alpha_{(K_{1,d},I_0)}(G) \ge \alpha(G) - d(d-2) \ge \frac{2}{d}\alpha(G)$ , by Proposition 2. Now, Theorem 1 yields the desired result.

Note that  $\frac{2}{d} = 1$  for d = 2, i.e.  $\alpha$  can be determined exactly for graphs in  $\mathcal{P}_{(K_{1,2},I_0)}$ . Below  $P_n$  denotes the path of order n.

**Example 1.** The class  $\mathcal{P}$  of all  $\{G_1, G_2, \ldots, G_6\}$ -free graphs (see Figure 2) is  $\alpha$ -polynomial, since  $\mathcal{P}$  is the  $(K_{1,2}, I_0)$ -extension of the  $\alpha$ -polynomial class of all  $P_3$ -free graphs.



**Example 2.** The class  $\mathcal{P}$  of all  $\{F_1, F_2, \ldots, F_{10}\}$ -free graphs (see Figure 3) is  $\alpha$ -polynomial, since  $\mathcal{P}$  is the  $(K_{1,2}, I_0)$ -extension of the  $\alpha$ -polynomial class of all cographs  $(P_4$ -free graphs; see [2]).



Figure 3

For the case d = 3, i.e. *claw-free* graphs, we can actually prove something stronger.

**Proposition 3.** Let  $G_0 = K_{1,3}$  and let  $I_0$  consist of the three vertices of degree 1 in  $K_{1,3}$ . Let G be a graph that is not  $K_{1,3}$ -free. Then  $\alpha_{(P_3,I_0)}(G) \ge \alpha(G) - 1$ .

**Proof.** We prove the existence of a  $(K_{1,3}, I_0)$ -stable set of G of cardinality at least  $\alpha(G) - 1$ .

Let I be a maximum stable set of G. If some vertex in  $V(G) \setminus I$  has three neighbors in I, then we are done. Hence  $|N_G(u) \cap I| \leq 2$  for every  $u \in V(G) \setminus I$ . Since G is not claw-free, let  $a, b, c, d \in V(G)$  induce a claw such that d is the vertex of degree three. Obviously,  $a, b, c \in I$  does not hold.

If  $a, b \in I$  and  $c, d \notin I$  then  $I' = (I \setminus N_G(c)) \cup \{c\}$  has the desired properties. Hence each claw in G has at most one vertex in I.

Now we assume that  $a \in I$  and  $b, c, d \notin I$ . If  $|(N_G(b) \cup N_G(c)) \cap I| \leq 3$ , then  $I' = (I \setminus (N_G(b) \cup N_G(c))) \cup \{b, c\}$  has the desired properties. Hence  $|N_G(b) \cap I| = 2$ ,  $|N_G(c) \cap I| = 2$  and  $N_G(b) \cap N_G(c) \cap I = \emptyset$ . Since either  $N_G(d) \cap N_G(b) \cap I = \emptyset$  or  $N_G(d) \cap N_G(c) \cap I = \emptyset$ , the set  $I' = (I \setminus N_G(d)) \cup \{d\}$  has the desired properties.

Hence we may assume that  $a, b, c \notin I$ . If  $|(N_G(a) \cup N_G(b) \cup N_G(c)) \cap I| \leq 4$ then  $I' = (I \setminus (N_G(a) \cup N_G(b) \cup N_G(c))) \cup \{a, b, c\}$  has the desired properties. Hence  $|(N_G(a) \cup N_G(b) \cup N_G(c)) \cap I| \ge 5$  which implies that  $\{a, b, c\} \not\subseteq N_G(e)$  for each  $e \in I$ . Thus  $d \notin I$ .

If  $a, b \notin N_G(e)$  for some  $e \in N_G(d) \cap I$  then it is easy to see that  $|N_G(a) \cap I| = 2$ ,  $|N_G(b) \cap I| = 2$  and  $N_G(a) \cap N_G(b) \cap I = \emptyset$ . Since each claw has at most one vertex in I, we have  $N_G(d) \cap N_G(a) \cap I \neq \emptyset$  and  $N_G(d) \cap N_G(b) \cap I \neq \emptyset$  which implies the contradiction  $|N_G(d) \cap I| \ge 3$ . Hence  $|N_G(e) \cap \{a, b, c\}| = 2$  for each  $e \in N_G(d) \cap I$ . Since  $N_G(d) \cap I \neq \emptyset$ , we can assume that  $N_G(e) \cap \{a, b, c\} = \{a, b\}$  for some  $e \in$  $N_G(d) \cap I$ . This implies that  $|N_G(c) \cap I| = 2$  and  $N_G(c) \cap (N_G(a) \cup N_G(b)) \cap I = \emptyset$ .

If  $N_G(c) \cap N_G(d) \cap I = \emptyset$ , then  $I' = (I \setminus N_G(d)) \cup \{d\}$  has the desired properties. Hence there is some  $f \in N_G(c) \cap N_G(d) \cap I$ . Since  $N_G(f) \cap \{a, b\} \neq \emptyset$ , we obtain the contradiction  $|(N_G(a) \cup N_G(b) \cup N_G(c)) \cap I| \le 4$ .

**Theorem 3 (Minty [3], Sbihi [5]).** The class of all  $K_{1,3}$ -free graphs is  $\alpha$ -polynomial.

**Corollary 2.** Let  $G_0 = K_{1,3}$  and let  $I_0$  consist of the three vertices of degree 1 in  $P_3$ . Let  $\mathcal{P}$  be an  $\alpha$ -polynomial hereditary class of graphs.

Then there is a polynomial time algorithm to approximate  $\alpha$  for graphs in  $\mathcal{P}_{(K_{1,3},I_0)}$ within 1, i.e. for every graph  $G \in \mathcal{P}_{(K_{1,3},I_0)}$  we can determine in polynomial time some  $\alpha'$  such that  $\alpha(G) - 1 \leq \alpha' \leq \alpha(G)$ .

**Proof.** Let  $G \in \mathcal{P}_{(K_{1,3},I_0)}$ . If G is  $K_{1,3}$ -free, then Theorem 3 yields the desired result. If G is not  $K_{1,3}$ -free, then  $\alpha_{(K_{1,3},I_0)}(G) \ge \alpha(G) - 1$ , by Proposition 3. Now the result follows from Theorem 1.

As an example, we consider the  $(K_{1,3}, I_0)$  extension of  $K_{1,3}$ -free graphs. Let  $\mathcal{C}$  be the set of graphs shown in Figure 4 (dotted lines represent potential edges). In fact,  $\mathcal{C}$  consists of 8 pairwise non-isomorphic graphs.



Figure 4. The configuration C

Clearly, the class of all C-free graphs is exactly  $\mathcal{P}_{(K_{1,3},I_0)}$ , where  $\mathcal{P}$  denotes the class of all  $K_{1,3}$ -free graphs and  $I_0$  is as before. By Corollary 2, there is a polynomial time algorithm to approximate  $\alpha$  for C-free graphs within 1 and we pose the following

**Open Problem 1.** Is there a polynomial time algorithm to determine  $\alpha$  for C-free graphs?

Finally, we want to point out that our extension operations can obviously be iterated.

### References

- P. Berman, A d/2 approximation for maximum weight independent set in d-claw free graphs, Lecture Notes Comput. Sci. 1851 (2000), 214–219.
- [2] D. G. Corneil, H. Lerchs and L. K. Stewart, Complement reducible graphs, Discrete Appl. Math. 3 (1981), 163–174.
- [3] G. J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory, Ser. B 28 (1980), 284–304.
- M. M. Halldórsson, Approximating discrete collections via local improvements, in: Proceedings of the 6th annual ACM-SIAM symposium on discrete algorithms (1995), 160–169.
- [5] N. Sbihi, Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile, Discrete Math. 29 (1980), 53–76 (in French).

(Received 1/9/2001)