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Abstract

Let α(G) be the stability number of a graph G. A class of graphs P is
called α-polynomial if there exists a polynomial-time algorithm to deter-
mine α(G) for G ∈ P. For every hereditary α-polynomial class P we
construct a hereditary extension of P which is either an α-polynomial
class or α can be approximated in polynomial time in the extended class.

1 Introduction

Let G = (V (G), E(G)) be a graph. A set S ⊆ V (G) is called stable if no two vertices
in S are adjacent. The stability number α(G) of G is the maximum cardinality
of a stable set of G. A class P of graphs is called α-polynomial if there exists a
polynomial-time algorithm to determine α(G) for G ∈ P.

For a set X ⊆ V (G), the graph G(X) induced by X in G has vertex set X and
edge set {uv : u, v ∈ X and uv ∈ E(G)}. A graph H is an induced subgraph of a
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graph G if H is isomorphic to G(X) for some X ⊆ V (G). For a set F of graphs,
a graph G is called F-free if no induced subgraph of G is isomorphic to a graphs
in F . The graphs in F are called forbidden induced subgraphs for the class of all
F -free graphs. A class P of graphs is called hereditary if it is closed under taking
induced subgraphs. Note that a class P of graphs is hereditary if and only if there
is a (possibly infinite) set F of graphs such that P is the class of F -free graphs.

Definition 1. Let G0 and G be two graphs and let I0 ⊆ V (G0) be a maximal stable
set of G0, i.e. V (G0) = NG0 [I0] := I0 ∪ NG0(I0).

(i) A (G0, I0)-extension G(G0,I0) of G is a graph that arises from disjoint copies of
G0 and G by adding edges (possibly none) between the vertices in V (G0) \ I0

and V (G).

(ii) A (G0, I0)-stable set of G is a stable set I ⊆ V (G) of G such that there is an
isomorphism φ : V (G0) → V (G̃0) where G̃0 is an induced subgraph of G and
φ(I0) = I ∩ V (G̃0) (see Figure 1).

We define α(G0,I0)(G) as the maximum cardinality of a (G0, I0)-stable set in G
or as 0 if no such set exists.
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Figure 1

(iii) Let F be a set of graphs and let P be the class of F-free graphs. The (G0, I0)-
extension of P is the class P(G0,I0) of F(G0,I0)-free graphs where F(G0,I0) =
{F(G0,I0) : F ∈ F} is the set of all (G0, I0)-extensions of graphs in F .

Proposition 1. Let G0, I0 and P be as in Definition 1. Let G ∈ P(G0,I0) and let

φ : V (G0) → V (G̃0) be an isomorphism where G̃0 is an induced subgraph of G. Then
G \ NG[φ(I0)] ∈ P.

Proof. Let G′ = G \ NG[φ(I0)]. If G′ �∈ P, then G′ contains an induced subgraph
F ∈ F where F is as in Definition 1. By the maximality of I0, V (G̃0) ∩ V (F ) = ∅.
Now G(V (G̃0) ∪ V (F )) is a (G0, I0)-extension of F , a contradiction to G ∈ P(G0,I0).

�
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Theorem 1. Let G0, I0 and P be as in Definition 1. If P is an α-polynomial class
of graphs then there is a polynomial time algorithm to determine α(G0,I0) for graphs
in P(G0,I0).

Proof. First, it is possible to find all induced subgraphs of G ∈ P(G0,I0) that are
isomorphic to G0 in polynomial time. If G is G0-free, then α(G0,I0)(G) = 0. If G is
not G0-free, then for each of the polynomially many isomorphisms φ such that φ :
V (G0) → V (G̃0) for some induced subgraph G̃0 of G, the graph Gφ = G \NG[φ(I0)]
belongs to P (Proposition 1). Hence we can determine α(Gφ) in polynomial time.
Obviously, α(G0,I0)(G) = |I0| + max{α(Gφ) : φ as above}. �

Before we proceed to some specific applications for which we consider special
choices of G0 and I0 we want to point out that α(G0,I0) always approximates α within
some additive term for graphs of bounded maximum degree that are not G0-free.

Therefore, let G be some graph that is not G0-free and let φ : V (G0) → V (G̃0)
be an isomorphism for some induced subgraph G̃0 of G. Let I be a maximum
independent set of G, i.e. |I| = α(G) and let I ′

0 = φ(I0) \ I . The set I ′ = (I \
NG(I ′

0)) ∪ I ′
0 is a (G0, I0)-independent set of G and hence

α(G0,I0) ≥ |I ′| ≥ |I| − |NG(I ′
0)| + |I ′

0| ≥ α(G) − (∆ − 1)|I ′
0| ≥ α(G) − (∆ − 1)|I0|

where ∆ denotes the maximum degree of G.

2 Some applications

Let K1,d denote the star of order d + 1.

Proposition 2. For d ≥ 2 let G0 = K1,d and let I0 consist of the d vertices of degree
1 in K1,d. Let G be a graph that is not K1,d-free. Then α(K1,d,I0)(G) ≥ α(G)−d(d−2).

Proof. We prove the existence of a (K1,d, I0)-stable set of G of cardinality at least
α(G) − d(d − 2). Let I be a maximum stable set of G. If |NG(u) ∩ I| ≥ d for some
vertex u ∈ V (G) \ I , then I is a (K1,d, I0)-stable set of G and we are done. Hence,
we can assume that |NG(u) ∩ I| ≤ d − 1 for all vertices u ∈ V (G) \ I .

Let the vertices v0, v1, . . . , vd ∈ V (G) induce a graph in G that is isomorphic to
K1,d such that v0 is the vertex of degree d. Let {v1, v2, . . . , vd}\I = {v1, v2, . . . , vl} for

some 1 ≤ l ≤ d. The set I ′ =
(
I \ ⋃l

i=1 NG(vi)
)
∪{v1, v2, . . . , vl} is a (K1,d, I0)-stable

set of G and |I ′| ≥ |I| − l(d − 1) + l = |I| − l(d − 2) ≥ |I| − d(d − 2). �

Theorem 2 (Berman [1], Halldórsson [4]). For d ≥ 2 there is a polynomial
time algorithm to approximate α for K1,d-free graphs within a factor of d

2
, i.e. to

determine a stable set I of a given K1,d-free graph G such that |I| ≥ 2
d
α(G).

Note that the case d = 2 of the above theorem is trivial.
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Corollary 1. For d ≥ 2 let G0 = K1,d and let I0 consist of the d vertices of degree 1
in K1,d. If P is an α-polynomial hereditary class of graphs then there is a polynomial
time algorithm to approximate α for graphs in P(K1,d,I0) within a factor of d

2
.

Proof. Let G ∈ P(K1,d,I0). First, we check in polynomial time whether α(G) < d2 and
determine α(G) in this case. Hence we can assume that α(G) ≥ d2, or equivalently
α(G)−d(d−2) ≥ 2

d
α(G). If G is K1,d-free, then Theorem 2 yields the desired result.

If G is not K1,d-free, then α(K1,d,I0)(G) ≥ α(G) − d(d − 2) ≥ 2
d
α(G), by Proposition

2. Now, Theorem 1 yields the desired result. �

Note that 2
d

= 1 for d = 2, i.e. α can be determined exactly for graphs in P(K1,2,I0).
Below Pn denotes the path of order n.

Example 1. The class P of all {G1, G2, . . . , G6}-free graphs (see Figure 2) is α-
polynomial, since P is the (K1,2, I0)-extension of the α-polynomial class of all P3-free
graphs.
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Figure 2

Example 2. The class P of all {F1, F2, . . . , F10}-free graphs (see Figure 3) is α-
polynomial, since P is the (K1,2, I0)-extension of the α-polynomial class of all cographs
(P4-free graphs; see [2]).
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Figure 3

For the case d = 3, i.e. claw-free graphs, we can actually prove something
stronger.

Proposition 3. Let G0 = K1,3 and let I0 consist of the three vertices of degree 1 in
K1,3. Let G be a graph that is not K1,3-free. Then α(P3,I0)(G) ≥ α(G) − 1.

Proof. We prove the existence of a (K1,3, I0)-stable set of G of cardinality at least
α(G) − 1.

Let I be a maximum stable set of G. If some vertex in V (G) \ I has three
neighbors in I , then we are done. Hence |NG(u) ∩ I| ≤ 2 for every u ∈ V (G) \ I .
Since G is not claw-free, let a, b, c, d ∈ V (G) induce a claw such that d is the vertex
of degree three. Obviously, a, b, c ∈ I does not hold.

If a, b ∈ I and c, d �∈ I then I ′ = (I \ NG(c)) ∪ {c} has the desired properties.
Hence each claw in G has at most one vertex in I .

Now we assume that a ∈ I and b, c, d �∈ I . If |(NG(b) ∪ NG(c)) ∩ I| ≤ 3, then
I ′ = (I \ (NG(b)∪NG(c)))∪{b, c} has the desired properties. Hence |NG(b)∩ I| = 2,
|NG(c) ∩ I| = 2 and NG(b) ∩ NG(c) ∩ I = ∅. Since either NG(d) ∩ NG(b) ∩ I = ∅ or
NG(d) ∩ NG(c) ∩ I = ∅, the set I ′ = (I \ NG(d)) ∪ {d} has the desired properties.

Hence we may assume that a, b, c �∈ I . If |(NG(a) ∪ NG(b) ∪ NG(c)) ∩ I| ≤ 4
then I ′ = (I \ (NG(a)∪NG(b)∪NG(c)))∪ {a, b, c} has the desired properties. Hence
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|(NG(a)∪NG(b)∪NG(c))∩I| ≥ 5 which implies that {a, b, c} �⊆ NG(e) for each e ∈ I .
Thus d �∈ I .

If a, b �∈ NG(e) for some e ∈ NG(d)∩ I then it is easy to see that |NG(a)∩ I| = 2,
|NG(b) ∩ I| = 2 and NG(a) ∩ NG(b) ∩ I = ∅. Since each claw has at most one vertex
in I , we have NG(d) ∩ NG(a) ∩ I �= ∅ and NG(d) ∩ NG(b) ∩ I �= ∅ which implies the
contradiction |NG(d) ∩ I| ≥ 3. Hence |NG(e) ∩ {a, b, c}| = 2 for each e ∈ NG(d) ∩ I .
Since NG(d) ∩ I �= ∅, we can assume that NG(e) ∩ {a, b, c} = {a, b} for some e ∈
NG(d) ∩ I . This implies that |NG(c) ∩ I| = 2 and NG(c) ∩ (NG(a) ∪ NG(b)) ∩ I = ∅.

If NG(c)∩NG(d)∩ I = ∅, then I ′ = (I \NG(d))∪ {d} has the desired properties.
Hence there is some f ∈ NG(c)∩NG(d)∩ I . Since NG(f)∩{a, b} �= ∅, we obtain the
contradiction |(NG(a) ∪ NG(b) ∪ NG(c)) ∩ I| ≤ 4. �

Theorem 3 (Minty [3], Sbihi [5]). The class of all K1,3-free graphs is α-poly-
nomial.

Corollary 2. Let G0 = K1,3 and let I0 consist of the three vertices of degree 1 in P3.
Let P be an α-polynomial hereditary class of graphs.

Then there is a polynomial time algorithm to approximate α for graphs in P(K1,3,I0)

within 1, i.e. for every graph G ∈ P(K1,3,I0) we can determine in polynomial time
some α′ such that α(G) − 1 ≤ α′ ≤ α(G).

Proof. Let G ∈ P(K1,3,I0). If G is K1,3-free, then Theorem 3 yields the desired result.
If G is not K1,3-free, then α(K1,3,I0)(G) ≥ α(G)− 1, by Proposition 3. Now the result
follows from Theorem 1. �

As an example, we consider the (K1,3, I0) extension of K1,3-free graphs. Let C be
the set of graphs shown in Figure 4 (dotted lines represent potential edges). In fact,
C consists of 8 pairwise non-isomorphic graphs.
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Figure 4. The configuration C

Clearly, the class of all C-free graphs is exactly P(K1,3,I0), where P denotes the
class of all K1,3-free graphs and I0 is as before. By Corollary 2, there is a polynomial
time algorithm to approximate α for C-free graphs within 1 and we pose the following
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Open Problem 1. Is there a polynomial time algorithm to determine α for C-free
graphs?

Finally, we want to point out that our extension operations can obviously be
iterated.
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