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Abstract

A critical set is a partial latin square that has a unique completion to a
latin square of the same order, and is minimal in this property. If P is a
critical set in a latin square L, then each element of P must be contained
in a latin trade Q in L such that |P ∩ Q| = 1. In the case where each
element of P is contained in an intercalate (latin trade of size 4) Q such
that |P∩Q| = 1 we say that P is 2-critical. In this paper we show that the
size of a 2-critical set in a latin square L is no greater than n2 −O(n5/4).

1 Background information

In any combinatorial configuration it is possible to identify a subset which uniquely
determines the structure of the configuration and in some cases is minimal with
respect to this property. Examples of such subsets can be found by studying the
literature on critical sets in latin squares (see Donovan and Howse [8]) and defining
sets in block designs (see Street [11]). The recent research in these areas has focused
on building a bank of knowledge which may be used to determine the spectrum of
the prescribed subsets. With this current paper we restrict ourselves to a discussion
of critical sets in latin squares.

We define scs(n) and lcs(n) to be the sizes of the smallest and largest critical
sets in any latin square of order n. The problem of determining these values exactly
for every n remains unsolved. However progress has been made in both cases.

Fu, Fu and Rodger ([9]) showed that if n > 20, scs(n)≥ �(7n−3)/6�. The smallest
critical set so far constructed for any latin square of size n has size �n2/4� ([5], [4]).
A critical set of such size is known to exist in back circulant latin squares, namely
those latin squares based on the addition table for the integers modulo n.
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Donovan, Cooper, Nott and Seberry ([7]) examined lower bounds for critical sets
of latin squares based on certain groups. Bate and van Rees ([1]) showed that the
size of the smallest strong critical set (a critical set with a certain type of completion)
is �n2/4�.

Stinson and van Rees ([10]) determined some lower bounds for lcs(n) for small
values of n. The largest critical sets that have been constructed in latin squares of
order n have size 4m − 3m, where n = 2m. It is interesting to note that these critical
sets are also 2-critical. This has lead to a conjecture made by Bean and Mahmoodian
[3].

Conjecture 1 lcs(n) ≤ n2 − nlog2 3 ≈ n2 − n1.6.

A larger upper bound for lcs(n) is conjectured by Brankovic, Horak, Miller and
Rosa [2].

Conjecture 2 lcs(n) ≤ n2 − n1.5.

Curran and van Rees [5] showed that lcs(n) ≤ n2 − n; this bound was improved
by Bean and Mahmoodian [3]:

Theorem 3 lcs(n) ≤ n2 − 3n + 3.

This is currently the best known upper bound that applies to arbitrary critical sets.
In Theorem 11 we find an improved upper bound for 2-critical sets.

2 Definitions

We start with basic definitions which allow us to state and prove our main results.
Let N = {1, 2, . . . , n}. A partial latin square P of order n is a set of ordered

triples of the form (i, j; k), where i, j, k ∈ N with the following properties:

– if (i, j; k) ∈ P and (i, j; k′) ∈ P then k = k′,

– if (i, j; k) ∈ P and (i, j ′; k) ∈ P then j = j ′ and

– if (i, j; k) ∈ P and (i′, j; k) ∈ P then i = i′.

We may also represent a partial latin square P as an n×n array with entries chosen
from the set N such that if (i, j; k) ∈ P , the entry k occurs in cell (i, j). It is important
for the reader to note that an element of P is a triple (i, j; k) ∈ P , whereas an entry
in P is an element k ∈ N such that (i, j; k) ∈ P , for some i and j. A partial latin
square has the property that each entry occurs at most once in each row and at most
once in each column.

Every partial latin square has six conjugates (five and itself). In this paper we
will make use of the conjugates

{(k, j; i) | (i, j; k) ∈ P}, and
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{(i, k; j) | (i, j; k) ∈ P}.
Because of the existence of these conjugates, statements made about the entries of
a partial latin square may also be made about its rows, and in turn, columns. (See,
for example, Corollary 5.)

If all the cells of the array are filled then the partial latin square is termed a latin
square. That is, a latin square L of order n is an n × n array with entries chosen
from the set N = {1, . . . , n} in such a way that each element of N occurs precisely
once in each row and precisely once in each column of the array.

For a given partial latin square P the set of cells SP = {(i, j) | (i, j; k) ∈
P, for some k ∈ N} is said to determine the shape of P and |SP | is said to be
the size of the partial latin square. That is, the size of P is the number of non-empty
cells in the array. For each r, 1 ≤ r ≤ n, let Rr

P denote the set of entries occurring
in row r of P . Formally, Rr

P = {k | (r, j; k) ∈ P}. Similarly, for each c, 1 ≤ c ≤ n,
we define Cc

P = {k | (i, c; k) ∈ P}.
A partial latin square Q of order n is said to be a latin trade (or latin interchange)

if Q �= ∅ and there exists a partial latin square Q′ (called a disjoint mate of Q) of
order n, such that

SQ = SQ′,

if (i, j; k) ∈ Q and (i, j; k′) ∈ Q′, then k �= k′,

for each r, 1 ≤ r ≤ n, Rr
Q = Rr

Q′, and

for each c, 1 ≤ c ≤ n, Cc
Q = Cc

Q′.

A critical set in a latin square L (of order n) is a partial latin square C in L, such
that

(1) L is the only latin square of order n which has element k in cell (i, j) for each
(i, j; k) ∈ C; and

(2) no proper subset of C satisfies (1).

A uniquely completable set (UC) in a latin square L of order n is a partial latin
square in L which satisfies condition (1) above. So a uniquely completable set P in
a latin square L is a critical set if for each (i, j; k) ∈ P , there exists a latin trade Q
in L such that Q∩ P = {(i, j; k)}. (This ensures that P \ {(i, j; k)} has at least two
completions: L and (L \ Q) ∪ Q′.)

An intercalate is a latin trade of size 4. This is the smallest possible size for a
latin trade, and each intercalate is isotopic to a latin square of order 2. Suppose that
P is a critical set in a latin square L, with the property that for each (i, j; k) ∈ P ,
there exists an intercalate Q in L such that Q ∩ P = {(i, j; k)}. In this case we
say that P is 2-critical. (See [10] for a definition of n1, . . . , nl-critical, for integers
n1, . . . nl ≥ 2.)

If P is a critical set in a latin square L, the partial latin square given by L \ P is
called the compliment of P and is denoted by P C .
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3 Main Results

Lemma 4 Let P be a 2-critical set in a latin square L of order n. Let the number
of elements with entry i in P C be ei. Then,

|P | ≤
n∑

i=1

(
ei

2

)
.

Proof. Let S be the set

{Q | Q is an intercalate in L and |Q ∩ P | = 1}.

By the definition of a 2-critical set, |P | ≤ |S|. Let (i, j; k) ∈ P . Then there exists an
intercalate Q = {(i, j; k), (i, j ′; k′), (i′, j; k′), (i′, j ′; k)} ∈ S for some integers i′ �= i,
j ′ �= j and k′ �= k. No other intercalate in S can use both elements (i, j ′; k′) and
(i′, j; k′) from P C . Thus each intercalate in S uses a unique pair of elements of P C

that contain the same entry. The total number of such pairs is
∑n

i=1

(
ei

2

)
. The result

follows. �
The following two corollaries are the conjugate arguments of the previous lemma.

They may be proven similarly.

Corollary 5 Let P be a 2-critical set in a latin square L of order n. Let ri = |Ri
P C |,

the number of elements in row i in P C. Then,

|P | ≤
n∑

i=1

(
ri

2

)
.

Corollary 6 Let P be a 2-critical set in a latin square L of order n. Let ci = |Ci
P C |,

the number of elements in column i in P C. Then,

|P | ≤
n∑

i=1

(
ci

2

)
.

The next lemma applies to all critical sets, not just 2-critical sets.

Lemma 7 Let P be a critical set in a latin square L of order n. Let the number of
elements with entry i in P C be ei. Then,

|P | ≤ 2
n∑

i=1

(
ei

2

)
.
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Proof. Let (i, j; k) ∈ P . Then there exists a latin trade Q ∈ L with (i, j; k) ∈ Q.
Let Q′ be the disjoint mate of Q, and let k′ �= k be the entry that occurs in cell (i, j)
of Q′. Then there must exist elements (i, j ′; k′) and (i′, j; k′) in Q with i′ �= i and
j ′ �= j. We define a pair of elements derived in this fashion to be special relative to
the element (i, j; k) ∈ P . Let (α, β; γ) and (α′, β′; γ) be a pair of elements in P C .
This pair may be special relative to at most two elements of P : those occurring in
cells (α, β′) and (α′, β). The result follows. �

Once again, we have two conjugate corollaries.

Corollary 8 Let P be a critical set in a latin square L of order n. Let ri = |Ri
P C |,

the number of elements in row i in P C. Then,

|P | ≤ 2
n∑

i=1

(
ri

2

)
.

Corollary 9 Let P be a critical set in a latin square L of order n. Let ci = |Ci
P C |,

the number of elements in column i in P C. Then,

|P | ≤ 2
n∑

i=1

(
ci

2

)
.

Corollary 10 Let P be a critical set in a latin square L of order n. Let the number
of elements with entry i in P C be ei. Then there exists i such that ei ≥ √

n.

Proof. From the previous lemma,

|P | ≤ 2
n∑

i=1

(
ei

2

)
or

n2 − |P C | ≤
n∑

i=1

e2
i −

n∑
i=1

ei =
n∑

i=1

e2
i − |P C | and so

n∑
i=1

e2
i ≥ n2.

Suppose that each ei <
√

n. Then
∑n

i=1 e2
i < n2, a contradiction. �

Theorem 11 Let P be a 2-critical set in a latin square L of order n. Then

|P | ≤ n2 − O(n5/4).

Proof. Let the number of elements with entry i in P C be ei. Assume that there
exists i such that ei <

√
n. (If not, |P C | ≥ n3/2 and our theorem is true.) Without

loss of generality, assume that e1 <
√

n, and that the cells in L containing the entry 1
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are the diagonal cells (i, i), 1 ≤ i ≤ n. (If not, rows and columns may be permuted.)
Let ai be the number of elements in row i of P C plus the number of elements in
column i of P C , excluding the element (i, i; 1). Without loss of generality, assume
that a1 ≥ a2 ≥ · · · ≥ an. (If not, once again, we may permute rows and columns to
make this so.)

Let S be the set

{Q | Q is an intercalate in L, |Q ∩ P | = 1 and if Q ∩ P = {(i, j; k)}, k �= 1}.
For each (i, j; k) ∈ P , either there exists an intercalate Q ∈ S such that Q ∩ P =
{(i, j; k)}, or k = 1. Therefore |P | ≤ |S|+ n. We will obtain an upper bound on the
size of S, and thus an upper bound for the size of P .

First consider the case when Q ∈ S and Q contains elements with the entry 1. The
intercalate Q must be of the following form: Q = {(i, j; k), (i, i; 1), (j, j; 1), (j, i; k)},
where (i, j; k) ∈ P , and {(i, i; 1), (j, j; 1), (j, i; k)} ⊆ P C . The elements (i, i; 1) and
(j, j; 1) can occur as a pair in at most one such intercalate Q. Therefore the number
of intercalates Q ∈ S containing elements with entry 1 is bounded by

(
e1

2

)
, which is

no more than n/2.
Let T be the following subset of S:

T = {Q | Q ∈ S and Q contains no elements with entry 1}.
From the previous observation, |P | ≤ |S| + n ≤ |T | + 3n/2. Next we partition the
set T of intercalates into disjoint subsets T1, T2, . . . , Tn. Consider an intercalate Q.
It has a row j and a column k (j �= k) that do not contain an element of the critical
set. Let i be the minimum of j and k. Then Q is considered to be an element of Ti.

Now, each intercalate in Ti uses a unique pair of elements from either row or
column i of P C , so |Ti| ≤

(
ai

2

)
.

Another bound for |Ti| can be obtained using a function fi : Ti → P C , defined as
follows. Let Q be an intercalate in Ti. Then Q contains two elements in either row i
or column i, one element in P and a third element of P C , say (α, β; γ), where α �= i
and β �= i. We define fi(Q) = (α, β; γ).

Given i and an element (i′, j ′; k′) ∈ P C we wish to give an upper bound to the
size of the set

f−1
i ((i′, j ′; k′)) = {Q | Q ∈ Ti and fi(Q) = (i′, j ′; k′)}.

The size of this set depends on whether i′ > i or i′ < i, and on whether j ′ > i or
j ′ < i.

Case 1: i′ > i and j ′ > i. Here (i′, j ′; k′) may be contained in at most two
intercalates Q such that fi(Q) = (i′j ′; k′), one intersecting row i and the other
column i. Thus |f−1

i ((i′, j ′; k′))| ≤ 2. This is illustrated in Figure 1. The entries in
bold indicate elements of P .

Case 2: i′ > i and j ′ < i. Here |f−1
i ((i′, j ′; k′))| ≤ 1. The element (i′, j ′; k′) may

be used by at most one intercalate that intersects row i. If there is an intercalate
intersecting (i′, j ′; k′) and column i, this is an element of Tj′ .
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Figure 1: i′ > i and j ′ > j

Case 3: i′ < i and j ′ > i. This is similar to Case 2 and we get at most one
intercalate.

Case 4: i′ < i and j ′ < i. Here |f−1
i ((i′, j ′; k′))| = 0. Any intercalates that

intersect row or column i and (i′, j ′; k′) are elements of Ti′ and Tj′ respectively.
So depending on the location of each element of P C , it may give rise to either 0,

1 or 2 intercalates in Ti. Thus |Ti| is no more than

2|{(i′, j ′; k′) | (i′, j ′; k′) ∈ P C , i′ > i, j ′ > i}|+
|{(i′, j ′; k′) | (i′, j ′; k′) ∈ P C , i′ > i, j ′ < i}|+
|{(i′, j ′; k′) | (i′, j ′; k′) ∈ P C , i′ < i, j ′ > i}|.

But this value is no greater than
∑n

j=i+1 aj. Noting the fact that
∑n

j=1 aj < 2|P C |,
we have that |Ti| < 2|P C | − ∑i

j=1 aj.

Now, choose m to be the greatest integer between 1 and n so that am ≥ √
n. (The

justification for our choice of
√

n is that it gives a significantly low upper bound for
|P | at the end of our proof.) We obtain an upper bound for |T | =

∑n
i=1 |Ti|, using

the bound 2|P C | − ∑i
j=1 aj for |Ti| when 1 ≤ i ≤ m, and using the bound

(
ai

2

)
for

|Ti| when m + 1 ≤ i ≤ n. As previously observed, there are less than n elements of
P with entry 1, and at most n/2 intercalates in S containing 1 as an entry. So we
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have:

|P | < 3n/2 +
m∑

i=1

(2|P C | −
i∑

j=1

ai) +
n∑

i=m+1

(
ai

2

)
.

Next use the fact that |P | + |P C | = n2.

n2 − |P C | < 3n/2 + 2m|P C | −
m∑

i=1

i∑
j=1

ai +
n∑

i=m+1

(
ai

2

)
, or

(2m + 1)|P C | > n2 − 3n/2 +
m∑

i=1

i∑
j=1

ai −
n∑

i=m+1

(
ai

2

)
.

If i ≤ m then ai ≥ √
n and if i ≥ m + 1, −ai > −√

n. Therefore

(2m + 1)|P C | > n2 − 3n/2 + m
√

n(m + 1)/2 − (n − m)n/2.

We add |P C | to the left hand side, and rearrange the right hand side to obtain:

(2m + 2)|P C | > n2/2 + m
√

n(m + 1)/2 + (m − 3)n/2.

If m = 1, we have

|P C | > (n2 − 2n + 2
√

n)/8,

and if m = 2, we have

|P C | > (n2 − n + 6
√

n)/12.

Certainly in both cases |P C | > O(n5/4). Otherwise m ≥ 3 and we can let the term
(m − 3)n/2 disappear from our inequality:

(2m + 2)|P C | > n2/2 + m
√

n(m + 1)/2, or equivalently

|P C | > n2/(4(m + 1)) + m
√

n/4.

By differentiating the right hand side with respect to m, and letting this expression
equal zero, we have m + 1 = n3/4. The second derivative is always positive, so
m = n3/4 − 1 yields a minimum value for the right hand side. It follows that |P C | >
n5/4/2−n1/2/4 ≥ n5/4/4. And so |P C | > O(n5/4), or equivalently |P | < n2−O(n5/4).

�
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