A note on signed and minus domination in graphs^{*}

Hailong Liu and Liang Sun

Department of Applied Mathematics Beijing Institute of Technology Beijing 100081, China jakeyliu@263.net

Abstract

In this paper, we give upper bounds on the upper signed domination number of [l, k] graphs, which generalize some results obtained in other papers. Further, good lower bounds are established for the minus ksubdomination number γ_{ks}^{-101} and signed k-subdomination number γ_{ks}^{-11} .

1. Introduction

For a graph G = (V, E) and $M \subset V$, we let $d_M(v) = \{u \in M : uv \in E(G)\}$. Let $l \leq k$ be two positive integers. If $l \leq d(v) \leq k$ for all $v \in V$, then we call G an [l, k] graph. If d(v) = k - 1 or k for all $v \in V$, then we call G a nearly k-regular graph. For $A, B \subset V$, and $A \cap B = \emptyset$, let $e(A, B) = |\{xy \in E(G) : x \in A, y \in B\}|$.

For any real-valued function $f: V \to R$ and $S \subseteq V$, let $f(S) = \sum_{u \in S} f(u)$ and f[v] = f(N[v]), where N[v] is the closed neighborhood of v. The weight of f is defined as f(V). A dominating function $g: V \to R$ is a minimal dominating function if every dominating function h satisfies $g(v) \leq h(v)$ for every $v \in V$. A signed dominating function of G is a function $g: V \to \{-1, 1\}$ such that for every $v \in V$, $f[v] \geq 1$. The upper signed domination number of G is $\Gamma_s(G) = \max\{f(V): f \text{ is a minimal signed dominating function on } G\}$. Many results on signed domination in graphs have been presented by various authors ([3],[5],[7–9]).

Let k be a positive integer such that $1 \leq k \leq |V|$. A minus k-subdominating function is a function $f: V \to \{-1, 0, 1\}$ such that the closed neighborhood sum $f(N[v]) \geq 1$ for at least k vertices of G. The minus k-subdomination number, denoted by γ_{ks}^{-101} , is equal to $\min\{f(V): f$ is a minus k-subdominating function on $G\}$. A signed k-subdominating function is a function $f: V \to \{-1, 1\}$ such that the closed neighborhood sum $f(N[v]) \geq 1$ for at least k vertices of G. The signed ksubdomination number, denoted by γ_{ks}^{-11} , is equal to $\min\{f(V): f \text{ is a signed } k$ subdominating function on $G\}$. A majority dominating function is defined in [1]

Australasian Journal of Combinatorics 26(2002), pp.245-253

^{*} The project was partially supported by NNSFC 19871036.

as a function $f: V \to \{-1,1\}$ such that $f[v] \ge 1$ for at least half the vertices $v \in V$. The majority domination number, denoted by $\gamma_{maj}(G)$, is equal to $\min\{f(V): f \text{ is a majority dominating function on } G\}$. For other terminology we follow [5].

Paper [1] deals exclusively with majority domination in graphs. Hattingh et al. [4] provided the exact value of the minus k-subdomination number of cycles and a lower bound of minus k-subdomination number of trees. Cockayne et al. [2] got the exact value or lower bound of signed k-subdomination domination number of paths and trees.

Theorem 1 [1] If $n \ge 2$ is an integer and $1 \le k \le n-1$, then

$$\gamma_{ks}^{-101}(P_n) = \lceil \frac{n}{3} \rceil + k - n + 1.$$

Theorem 2 [4] If $n \ge 3$ is an integer and $1 \le k \le n-1$, then

$$\gamma_{ks}^{-101}(C_n) = \begin{cases} \left\lceil \frac{(n-2)}{3} \right\rceil & \text{if } k = n-1 \text{ and } (k = 0 \text{ or } k = 1 \pmod{3}), \\ 2 \lfloor \frac{2k+4}{3} \rfloor - n & \text{otherwise.} \end{cases}$$

Theorem 3 [4] If T is a tree of order $n \ge 2$ and k is an integer such that $1 \le k \le n-1$, then

$$\gamma_{ks}^{-101}(T) \ge k - n + 2.$$

Theorem 4 [2] For $n \ge 2$ and $1 \le k \le n$,

$$\gamma_{ks}^{-11}(P_n) = 2\lfloor \frac{2k+4}{3} \rfloor - n.$$

Theorem 5 [2] If T is a tree of order $n \ge 2$ and k is an integer such that $1 \le k \le n$, then

$$\gamma_{ks}^{-11}(T) \ge 2\lfloor \frac{2k+4}{3} \rfloor - n_s$$

with equality for $T = P_n$.

2. Upper bound on Γ_s

Theorem 6 Let $2 \le l \le k+1$. If G is an [l, k+1] graph of order n, then

$$\Gamma_{s}(G) \leq \begin{cases} \frac{k^{2} + 5k - l + 4}{k^{2} + 5k + l + 4}n & \text{if } k \text{ is even and } l \text{ is even,} \\ \frac{k^{2} + 5k - l + 5}{k^{2} + 5k + l + 3}n & \text{if } k \text{ is even and } l \text{ is odd,} \\ \frac{k^{2} + 4k - l + 3}{k^{2} + 4k + l + 3}n & \text{if } k \text{ is odd and } l \text{ is even,} \\ \frac{k^{2} + 4k - l + 4}{k^{2} + 4k + l + 2}n & \text{if } k \text{ is odd and } l \text{ is odd.} \end{cases}$$

Proof Let g be a minimal signed dominating function of weight $g(V(G)) = \Gamma_s(G)$. Let $M = \{x \in V : g(x) = -1\}, P = \{x \in V : g(x) = 1\}$. For $l \leq i \leq k + 1$, denote $H_i = \{v \in V : d(v) = i\}$ and $|M \cap H_i| = u_i$. Clearly, if $v \in P \cap H_i$, then $g[v] = i + 1 - 2d_M(v)$ and $d_M(v) \leq \lfloor \frac{i}{2} \rfloor$. Let $A_{i,j} = \{v \in P \cap H_i : d_M(v) = j\}$ and $|A_{i,j}| = a_{i,j}$. Obviously,

$$n = \sum_{i=l}^{k+1} |M \cap H_i| + \sum_{i=l}^{k+1} |P \cap H_i| = \sum_{i=l}^{k+1} u_i + \sum_{i=l}^{k+1} \sum_{j=0}^{\lfloor i/2 \rfloor} a_{i,j}.$$
 (1)

And

$$e(M,P) \le \sum_{i=l}^{k+1} iu_i.$$
⁽²⁾

Hence,

$$\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor} ja_{i,j} \le \sum_{i=l}^{k+1} iu_i.$$

$$(3)$$

On the other hand, since g is minimal, for every vertex $v \in \bigcup_{i=l}^{k+1} A_{i,0}$, there is a vertex $x \in N[v]$ with g[x] = 1 or 2. Since $N(v) \cap M = \emptyset$, and $g[v_j] = i + 1 - 2j$ for every $v_j \in A_{i,j}$, we have

$$e(\bigcup_{i=l}^{k+1} A_{i,0}, \bigcup_{i=l}^{k+1} A_{i,\lfloor\frac{i}{2}\rfloor}) \ge \sum_{i=l}^{k+1} a_{i,0}.$$
(4)

Every vertex $v \in A_{i,\lfloor \frac{i}{2} \rfloor}$ has at most $\lceil \frac{i}{2} \rceil$ neighbors in $\bigcup_{i=l}^{k+1} A_{i,0}$. We deduce that

$$e(\bigcup_{i=l}^{k+1} A_{i,0}, \bigcup_{i=l}^{k+1} A_{i,\lfloor\frac{i}{2}\rfloor}) \le \sum_{i=l}^{k+1} \lceil \frac{i}{2} \rceil a_{i,\lfloor\frac{i}{2}\rfloor}.$$
(5)

Combining (1)–(5), we find that

$$n = \sum_{i=l}^{k+1} u_i + \sum_{i=l}^{k+1} a_{i,0} + \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor} a_{i,j}$$

$$\leq \sum_{i=l}^{k+1} u_i + \sum_{i=l}^{k+1} \lceil \frac{i}{2} \rceil a_{i,\lfloor \frac{i}{2} \rfloor} + \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor} a_{i,j}$$

$$= \sum_{i=l}^{k+1} u_i + \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} a_{i,j} + \sum_{i=l}^{k+1} (\lceil \frac{i}{2} \rceil + 1) a_{i,\lfloor \frac{i}{2} \rfloor}.$$
(6)

Case 1 k, l is even.

For $l \leq i \leq k+1$, it is easy to show that

$$\lceil \frac{i}{2} \rceil + 1 \le \frac{k+4}{l} \lfloor \frac{i}{2} \rfloor.$$

Thus by (6), we have

$$\begin{split} n &\leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor}) \\ &\leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} j a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor}) \\ &= \sum_{i=1}^{k+1} u_i + \frac{k+4}{l} \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor} j a_{i,j} \\ &\leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l} \sum_{i=l}^{k+1} i u_i \quad (by \quad (3)) \\ &\leq \frac{k^2 + 5k + l + 4}{l} \sum_{i=l}^{k+1} u_i, \end{split}$$

which gives

$$\sum_{i=l}^{k+1} u_i \ge \frac{l}{k^2 + 5k + l + 4} n,$$

and

$$\Gamma_s(G) = n - 2\sum_{i=l}^{k+1} u_i \\ \leq \frac{k^2 + 5k - l + 4}{k^2 + 5k + l + 4} n.$$

For $l \leq i \leq k+1$, it is easy to show that

$$\lceil \frac{i}{2} \rceil + 1 \le \frac{k+4}{l-1} \lfloor \frac{i}{2} \rfloor.$$

Thus by (6), we have

$$n \leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l-1} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor})$$

$$\leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l-1} \left(\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} j a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor} \right)$$

$$= \sum_{i=1}^{k+1} u_i + \frac{k+4}{l-1} \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor} j a_{i,j}$$

$$\leq \sum_{i=l}^{k+1} u_i + \frac{k+4}{l-1} \sum_{i=l}^{k+1} i u_i \qquad (by \quad (3))$$

$$\leq \frac{k^2 + 5k + l + 3}{l-1} \sum_{i=l}^{k+1} u_i,$$

which gives

$$\sum_{i=l}^{k+1} u_i \ge \frac{l-1}{k^2 + 5k + l + 3} n,$$

and

$$\Gamma_s(G) = n - 2 \sum_{i=l}^{k+1} u_i \\ \leq \frac{k^2 + 5k - l + 5}{k^2 + 5k + l + 3} n.$$

Case 3 k is odd and l is even.

For $l \leq i \leq k+1$, it is easy to show that

$$\lceil \frac{i}{2} \rceil + 1 \le \frac{k+3}{l} \lfloor \frac{i}{2} \rfloor.$$

Thus by (6), we have

$$\begin{split} n &\leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor}) \\ &\leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{i}{2} \rfloor - 1} j a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{i}{2} \rfloor}) \\ &= \sum_{i=1}^{k+1} u_i + \frac{k+3}{l} \sum_{i=l}^{k+1} \sum_{j=1}^{l+1} j a_{i,j} \\ &\leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l} \sum_{i=l}^{k+1} i u_i \quad (by \quad (3)) \\ &\leq \frac{k^2 + 4k + l + 3}{l} \sum_{i=l}^{k+1} u_i, \end{split}$$

which gives

$$\sum_{i=l}^{k+1} u_i \ge \frac{l}{k^2 + 4k + l + 3} n,$$

and

$$\Gamma_s(G) = n - 2\sum_{i=l}^{k+1} u_i \\ \leq \frac{k^2 + 4k - l + 3}{k^2 + 4k + l + 3} n.$$

Case 4 k is odd and l is odd.

For $l \leq i \leq k+1$, it is easy to show that

$$\lceil \frac{i}{2} \rceil + 1 \le \frac{k+3}{l-1} \lfloor \frac{i}{2} \rfloor.$$

Thus by (6), we have

$$n \leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l-1} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{1}{2} \rfloor - 1} a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{1}{2} \rfloor})$$

$$\leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l-1} (\sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{1}{2} \rfloor - 1} j a_{i,j} + \sum_{i=l}^{k+1} \lfloor \frac{i}{2} \rfloor a_{i,\lfloor \frac{1}{2} \rfloor})$$

$$= \sum_{i=1}^{k+1} u_i + \frac{k+3}{l-1} \sum_{i=l}^{k+1} \sum_{j=1}^{\lfloor \frac{1}{2} \rfloor} j a_{i,j}$$

$$\leq \sum_{i=l}^{k+1} u_i + \frac{k+3}{l-1} \sum_{i=l}^{k+1} i u_i \quad (by \quad (3))$$

$$\leq \frac{k^2 + 4k + l + 2}{l-1} \sum_{i=l}^{k+1} u_i,$$

which gives

$$\sum_{i=l}^{k+1} u_i \ge \frac{l-1}{k^2 + 4k + l + 2}n,$$

and

$$\Gamma_s(G) = n - 2 \sum_{i=l}^{k+1} u_i \\ \leq \frac{k^2 + 4k - l + 4}{k^2 + 4k + l + 2} n.$$

This completes the proof of Theorem 1.

Corollary 1 [7] If G is a nearly (k + 1)-regular graph of order n, then

$$\Gamma_s(G) \le \begin{cases} \frac{(k+2)^2}{k^2 + 6k + 4} n & \text{if } k \text{ is even,} \\ \frac{k^2 + 3k + 4}{k^2 + 5k + 2} & \text{if } k \text{ is odd.} \end{cases}$$

Corollary 2 If G is a graph with $\delta(G) \geq 2$, then

$$\Gamma_s(G) \leq \begin{cases} \frac{\Delta^2 + 3\Delta - \delta}{\Delta^2 + 3\Delta + \delta} n & \text{if } \delta \text{ is even and } \Delta \text{ is odd,} \\ \frac{\Delta^2 + 3\Delta - \delta + 1}{\Delta^2 + 3\Delta + \delta - 1} n & \text{if } \delta \text{ is odd and } \Delta \text{ is odd,} \\ \frac{\Delta^2 + 2\Delta - \delta}{\Delta^2 + 2\Delta + \delta} n & \text{if } \delta \text{ is even and } \Delta \text{ is even,} \\ \frac{\Delta^2 + 2\Delta - \delta + 1}{\Delta^2 + 2\Delta + \delta - 1} n & \text{if } \delta \text{ is odd and } \Delta \text{ is even.} \end{cases}$$

Corollary 3 [3] If G is a k-regular graph, $k \ge 1$, of order n, then

$$\Gamma_{s}(G) \leq \begin{cases} \frac{k+1}{k+3}n & \text{if } k \text{ is even,} \\ \frac{(k+1)^{2}}{k^{2}+4k-1}n & \text{if } k \text{ is odd.} \end{cases}$$

3. Lower bounds on γ_{ks}^{-101} and γ_{ks}^{-11}

Theorem 7 If G is a graph of order n and size ϵ , then

$$\gamma_{ks}^{-101}(G) \ge \frac{(\delta - \Delta - 1)n + (\Delta + 2)k - 2\epsilon}{\delta + 1}.$$

Proof Let g be a minus k-subdominating function on G such that $g(V) = \gamma_{ks}^{-101}(G)$ and

$$\begin{array}{rcl} P & = & \{v \in V \mid g(v) = 1\}, \\ M & = & \{v \in V \mid g(v) = -1\}, \\ Q & = & \{v \in V \mid g(v) = 0\}. \end{array}$$

Further, we let

$$\begin{array}{rcl} P_1 &=& \{v \in P | g[v] \geq 1\} \\ P_2 &=& \{v \in P | g[v] < 1\} \\ M_1 &=& \{v \in M | g[v] \geq 1\} \\ M_2 &=& \{v \in M | g[v] < 1\} \\ Q_1 &=& \{v \in Q | g[v] \geq 1\} \\ Q_2 &=& \{v \in Q | g[v] < 1\} \\ Q_1 &=& P_1 \cup M_1 \cup Q_1 \\ V_1 &=& P_2 \cup M_2 \cup Q_2. \end{array}$$

Let t(v) denote the number of vertices of weight 0 in N(v). And let $p_i = |P_i|$, $m_i = |M_i|$ and $q_i = |Q_i|$ for i = 1, 2. Put p = |P| and m = |M|. Then we have

$$|N(v) \cap M| \le \begin{cases} \frac{d(v) - t(v)}{2} & \text{if } v \in P_1, \\ \frac{d(v) - t(v)}{2} - 1 & \text{if } v \in M_1, \\ \frac{d(v) - t(v) - 1}{2} & \text{if } v \in Q_1, \\ d(v) - t(v) & \text{otherwise.} \end{cases}$$

Therefore, we have

$$\begin{split} \sum_{v \in M} d(v) &\leq \sum_{v \in P_1} \frac{d(v) - t(v)}{2} + \sum_{v \in M_1} \left(\frac{d(v) - t(v)}{2} - 1 \right) + \sum_{v \in Q_1} \frac{d(v) - t(v) - 1}{2} \\ &+ \sum_{v \in P_2} \left(d(v) - t(v) \right) + \sum_{v \in M_2} \left(d(v) - t(v) \right) + \sum_{v \in Q_2} \left(d(v) - t(v) \right) \\ &= \frac{1}{2} \sum_{v \in V} d(v) - \frac{1}{2} \sum_{v \in V} t(v) + \frac{1}{2} \sum_{v \in V_2} \left(d(v) - t(v) \right) - m_1 - \frac{1}{2} q_1 \\ &\leq \frac{1}{2} \sum_{v \in V} d(v) - \frac{1}{2} \sum_{v \in V} t(v) + \frac{1}{2} \sum_{v \in V_2} d(v) - m_1 - \frac{1}{2} q_1. \end{split}$$

Noting that $\sum_{v \in V} t(v) = \sum_{v \in Q} d(v) \ge \delta q$ and $\sum_{v \in M} d(v) \ge \delta m$, we have

$$\delta m \leq \epsilon - \frac{1}{2}\delta q + \frac{1}{2}\Delta(p_2 + m_2 + q_2) - m_1 - \frac{1}{2}q_1
= \epsilon - m - \frac{1}{2}\delta q - \frac{1}{2}q + \frac{1}{2}\Delta(p_2 + m_2 + q_2) + \frac{1}{2}q_2 + m_2
\leq \epsilon - m - \frac{1}{2}\delta q - \frac{1}{2}q + \frac{\Delta + 2}{2}(p_2 + m_2 + q_2).$$
(7)

Since g is a minus k-subdominating function, we have

$$p_2 + m_2 + q_2 \le n - k. \tag{8}$$

Combining (7) and (8) we have

$$2m + q \le \frac{2\epsilon + (\Delta + 2)(n - k)}{\delta + 1}.$$

Therefore

$$\gamma_{ks}^{-101}(G) = n - (2m+q) \ge \frac{(\delta - \Delta - 1)n + (\Delta + 2)k - 2\epsilon}{\delta + 1}.$$

Then, since $\gamma_{ks}^{-101} \leq \gamma_{ks}^{-11}(G)$ for all graphs G, as an immediate corollary of Theorem 7, we have:

Corollary 4 If G is a graph of order n and size ϵ , then

$$\gamma_{ks}^{-11}(G) \ge \frac{(\delta - \Delta - 1)n + (\Delta + 2)k - 2\epsilon}{\delta + 1}.$$

In the special case when $k \ge n/2$, we have

Corollary 5 [6] If G is a graph of order n and size ϵ , then

$$\gamma_{maj}(G) \ge \frac{n(2\delta - \Delta) - 4\epsilon}{2(\delta + 1)}.$$

References

- I. Broere, J.H. Hattingh, M.A. Henning and A.A. McRae, Majority domination in graphs, *Discrete Math.* 138 (1995), 125–135.
- [2] E.J. Cockayne, and C.M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin. 43 (1996), 235–245.
- [3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1995), 287–293.
- [4] J.H. Hattingh, Elna Ungerer, Minus k-subdomination in graphs II, Discrete Math. 171 (1997), 141–151.
- [5] M.A. Henning, P.J. Slater, Inequality relating domination parameters in cubic graphs, *Discrete Math.* 158 (1996), 87–98.
- [6] L. Kang and E. Shan, Lower bounds on dominating functions in graphs, Ars Combin. 56 (2000), 121–128.
- [7] C. Wang and J. Mao, Some more remarks on domination in cubic graphs, *Discrete Math.* 237 (2001), 193–197.
- [8] B. Zelinka, Some remarks on domination in cubic graphs, *Discrete Math.* 158 (1996), 249–255.
- [9] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, *Discrete Math.* **195** (1999), 295–298.

(Received 21/8/2001)