A note on signed and minus domination in graphs*

Hailong Liu and Liang Sun

Department of Applied Mathematics
Beijing Institute of Technology
Beijing 100081, China
jakeyliu@263.net

Abstract

In this paper, we give upper bounds on the upper signed domination number of $[l, k]$ graphs, which generalize some results obtained in other papers. Further, good lower bounds are established for the minus k subdomination number $\gamma_{k s}^{-101}$ and signed k-subdomination number $\gamma_{k s}^{-11}$.

1. Introduction

For a graph $G=(V, E)$ and $M \subset V$, we let $d_{M}(v)=\{u \in M: u v \in E(G)\}$. Let $l \leq k$ be two positive integers. If $l \leq d(v) \leq k$ for all $v \in V$, then we call G an $[l, k]$ graph. If $d(v)=k-1$ or k for all $v \in V$, then we call G a nearly k-regular graph. For $A, B \subset V$, and $A \cap B=\emptyset$, let $e(A, B)=|\{x y \in E(G): x \in A, y \in B\}|$.

For any real-valued function $f: V \rightarrow R$ and $S \subseteq V$, let $f(S)=\sum_{u \in S} f(u)$ and $f[v]=f(N[v])$, where $N[v]$ is the closed neighborhood of v. The weight of f is defined as $f(V)$. A dominating function $g: V \rightarrow R$ is a minimal dominating function if every dominating function h satisfies $g(v) \leq h(v)$ for every $v \in V$. A signed dominating function of G is a function $g: V \rightarrow\{-1,1\}$ such that for every $v \in V, f[v] \geq 1$. The upper signed domination number of G is $\Gamma_{s}(G)=\max \{f(V): f$ is a minimal signed dominating function on $G\}$. Many results on signed domination in graphs have been presented by various authors ([3],[5],[7-9]).

Let k be a positive integer such that $1 \leq k \leq|V|$. A minus k-subdominating function is a function $f: V \rightarrow\{-1,0,1\}$ such that the closed neighborhood sum $f(N[v]) \geq 1$ for at least k vertices of G. The minus k-subdomination number, denoted by $\gamma_{k s}^{-101}$, is equal to $\min \{f(V): f$ is a minus k-subdominating function on $G\}$. A signed k-subdominating function is a function $f: V \rightarrow\{-1,1\}$ such that the closed neighborhood sum $f(N[v]) \geq 1$ for at least k vertices of G. The signed k subdomination number, denoted by $\gamma_{k s}^{-11}$, is equal to $\min \{f(V): f$ is a signed k subdominating function on $G\}$. A majority dominating function is defined in [1]

[^0]as a function $f: V \rightarrow\{-1,1\}$ such that $f[v] \geq 1$ for at least half the vertices $v \in V$. The majority domination number, denoted by $\gamma_{m a j}(G)$, is equal to $\min \{f(V): f$ is a majority dominating function on $G\}$. For other terminology we follow [5].

Paper [1] deals exclusively with majority domination in graphs. Hattingh et al. [4] provided the exact value of the minus k-subdomination number of cycles and a lower bound of minus k-subdomination number of trees. Cockayne et al. [2] got the exact value or lower bound of signed k-subdomination domination number of paths and trees.

Theorem 1 [1] If $n \geq 2$ is an integer and $1 \leq k \leq n-1$, then

$$
\gamma_{k s}^{-101}\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil+k-n+1 .
$$

Theorem 2 [4] If $n \geq 3$ is an integer and $1 \leq k \leq n-1$, then
$\gamma_{k s}^{-101}\left(C_{n}\right)= \begin{cases}\left\lceil\frac{(n-2)}{3}\right\rceil & \text { if } k=n-1 \quad \text { and } \quad(k=0 \quad \text { or } \quad k=1(\bmod 3)), \\ 2\left\lfloor\frac{2 k+4}{3}\right\rfloor-n & \text { otherwise. }\end{cases}$
Theorem 3 [4] If T is a tree of order $n \geq 2$ and k is an integer such that $1 \leq k \leq n-1$, then

$$
\gamma_{k s}^{-101}(T) \geq k-n+2
$$

Theorem 4 [2] For $n \geq 2$ and $1 \leq k \leq n$,

$$
\gamma_{k s}^{-11}\left(P_{n}\right)=2\left\lfloor\frac{2 k+4}{3}\right\rfloor-n .
$$

Theorem 5 [2] If T is a tree of order $n \geq 2$ and k is an integer such that $1 \leq k \leq n$, then

$$
\gamma_{k s}^{-11}(T) \geq 2\left\lfloor\frac{2 k+4}{3}\right\rfloor-n
$$

with equality for $T=P_{n}$.

2. Upper bound on Γ_{s}

Theorem 6 Let $2 \leq l \leq k+1$. If G is an $[l, k+1]$ graph of order n, then

$$
\Gamma_{s}(G) \leq \begin{cases}\frac{k^{2}+5 k-l+4}{k^{2}+5 k+l+4} n & \text { if } k \text { is even and } l \text { is even, } \\ \frac{k^{2}+5 k-l+5}{k^{2}+5 k+l+3} n & \text { if } k \text { is even and } l \text { is odd, } \\ \frac{k^{2}+4 k-l+3}{k^{2}+4 k+l+3} n & \text { if } k \text { is odd and } l \text { is even, } \\ \frac{k^{2}+4 k-l+4}{k^{2}+4 k+l+2} n & \text { if } k \text { is odd and } l \text { is odd. }\end{cases}
$$

Proof Let g be a minimal signed dominating function of weight $g(V(G))=$ $\Gamma_{s}(G)$. Let $M=\{x \in V: g(x)=-1\}, P=\{x \in V: g(x)=1\}$. For $l \leq i \leq k+1$, denote $H_{i}=\{v \in V: d(v)=i\}$ and $\left|M \cap H_{i}\right|=u_{i}$. Clearly, if $v \in P \cap H_{i}$, then $g[v]=i+1-2 d_{M}(v)$ and $d_{M}(v) \leq\left\lfloor\frac{i}{2}\right\rfloor$. Let $A_{i, j}=\left\{v \in P \cap H_{i}: d_{M}(v)=j\right\}$ and $\left|A_{i, j}\right|=a_{i, j}$. Obviously,

$$
\begin{equation*}
n=\sum_{i=l}^{k+1}\left|M \cap H_{i}\right|+\sum_{i=l}^{k+1}\left|P \cap H_{i}\right|=\sum_{i=l}^{k+1} u_{i}+\sum_{i=l}^{k+1} \sum_{j=0}^{\lfloor i / 2\rfloor} a_{i, j} . \tag{1}
\end{equation*}
$$

And

$$
\begin{equation*}
e(M, P) \leq \sum_{i=l}^{k+1} i u_{i} \tag{2}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} j a_{i, j} \leq \sum_{i=l}^{k+1} i u_{i} \tag{3}
\end{equation*}
$$

On the other hand, since g is minimal, for every vertex $v \in \bigcup_{i=l}^{k+1} A_{i, 0}$, there is a vertex $x \in N[v]$ with $g[x]=1$ or 2 . Since $N(v) \cap M=\emptyset$, and $g\left[v_{j}\right]=i+1-2 j$ for every $v_{j} \in A_{i, j}$, we have

$$
\begin{equation*}
e\left(\bigcup_{i=l}^{k+1} A_{i, 0}, \bigcup_{i=l}^{k+1} A_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \geq \sum_{i=l}^{k+1} a_{i, 0} . \tag{4}
\end{equation*}
$$

Every vertex $v \in A_{i,\left\lfloor\frac{i}{2}\right\rfloor}$ has at most $\left\lceil\frac{i}{2}\right\rceil$ neighbors in $\bigcup_{i=l}^{k+1} A_{i, 0}$. We deduce that

$$
\begin{equation*}
e\left(\bigcup_{i=l}^{k+1} A_{i, 0}, \bigcup_{i=l}^{k+1} A_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \leq \sum_{i=l}^{k+1}\left\lceil\frac{i}{2}\right\rceil a_{i,\left\lfloor\frac{i}{2}\right\rfloor} . \tag{5}
\end{equation*}
$$

Combining (1)-(5), we find that

$$
\begin{align*}
n & =\sum_{i=l}^{k+1} u_{i}+\sum_{i=l}^{k+1} a_{i, 0}+\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} a_{i, j} \\
& \leq \sum_{i=l}^{k+1} u_{i}+\sum_{i=l}^{k+1}\left\lceil\frac{i}{2}\right\rceil a_{i,\left\lfloor\frac{i}{2}\right\rfloor}+\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} a_{i, j} \\
& =\sum_{i=l}^{k+1} u_{i}+\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} a_{i, j}+\sum_{i=l}^{k+1}\left(\left\lceil\frac{i}{2}\right\rceil+1\right) a_{i,\left\lfloor\frac{i}{2}\right\rfloor} . \tag{6}
\end{align*}
$$

Case $\mathbf{1} k, l$ is even.

For $l \leq i \leq k+1$, it is easy to show that

$$
\left\lceil\frac{i}{2}\right\rceil+1 \leq \frac{k+4}{l}\left\lfloor\frac{i}{2}\right\rfloor .
$$

Thus by (6), we have

$$
\begin{align*}
n & \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} j a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& =\sum_{i=1}^{k+1} u_{i}+\frac{k+4}{l} \sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} j a_{i, j} \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l} \sum_{i=l}^{k+1} i u_{i} \quad(b y \tag{3}\\
& \leq \frac{k^{2}+5 k+l+4}{l} \sum_{i=l}^{k+1} u_{i}
\end{align*}
$$

which gives

$$
\sum_{i=l}^{k+1} u_{i} \geq \frac{l}{k^{2}+5 k+l+4} n
$$

and

$$
\begin{aligned}
\Gamma_{s}(G) & =n-2 \sum_{i=l}^{k+1} u_{i} \\
& \leq \frac{k^{2}+5 k-l+4}{k^{2}+5 k+l+4} n .
\end{aligned}
$$

Case $2 k$ is even and l is odd.

For $l \leq i \leq k+1$, it is easy to show that

$$
\left\lceil\frac{i}{2}\right\rceil+1 \leq \frac{k+4}{l-1}\left\lfloor\frac{i}{2}\right\rfloor .
$$

Thus by (6), we have

$$
n \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l-1}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right)
$$

$$
\begin{align*}
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l-1}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} j a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& =\sum_{i=1}^{k+1} u_{i}+\frac{k+4}{l-1} \sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} j a_{i, j} \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+4}{l-1} \sum_{i=l}^{k+1} i u_{i} \quad(b y \quad(3)) \tag{3}\\
& \leq \frac{k^{2}+5 k+l+3}{l-1} \sum_{i=l}^{k+1} u_{i}
\end{align*}
$$

which gives

$$
\sum_{i=l}^{k+1} u_{i} \geq \frac{l-1}{k^{2}+5 k+l+3} n
$$

and

$$
\begin{aligned}
\Gamma_{s}(G) & =n-2 \sum_{i=l}^{k+1} u_{i} \\
& \leq \frac{k^{2}+5 k-l+5}{k^{2}+5 k+l+3} n
\end{aligned}
$$

Case $3 k$ is odd and l is even.

For $l \leq i \leq k+1$, it is easy to show that

$$
\left\lceil\frac{i}{2}\right\rceil+1 \leq \frac{k+3}{l}\left\lfloor\frac{i}{2}\right\rfloor .
$$

Thus by (6), we have

$$
\begin{align*}
n & \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} j a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& =\sum_{i=1}^{k+1} u_{i}+\frac{k+3}{l} \sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} j a_{i, j} \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l} \sum_{i=l}^{k+1} i u_{i} \quad(b y \quad(3)) \tag{3}\\
& \leq \frac{k^{2}+4 k+l+3}{l} \sum_{i=l}^{k+1} u_{i},
\end{align*}
$$

which gives

$$
\sum_{i=l}^{k+1} u_{i} \geq \frac{l}{k^{2}+4 k+l+3} n
$$

and

$$
\begin{aligned}
\Gamma_{s}(G) & =n-2 \sum_{i=l}^{k+1} u_{i} \\
& \leq \frac{k^{2}+4 k-l+3}{k^{2}+4 k+l+3} n .
\end{aligned}
$$

Case $4 k$ is odd and l is odd.

For $l \leq i \leq k+1$, it is easy to show that

$$
\left\lceil\frac{i}{2}\right\rceil+1 \leq \frac{k+3}{l-1}\left\lfloor\frac{i}{2}\right\rfloor .
$$

Thus by (6), we have

$$
\begin{align*}
n & \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l-1}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l-1}\left(\sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor-1} j a_{i, j}+\sum_{i=l}^{k+1}\left\lfloor\frac{i}{2}\right\rfloor a_{i,\left\lfloor\frac{i}{2}\right\rfloor}\right) \\
& =\sum_{i=1}^{k+1} u_{i}+\frac{k+3}{l-1} \sum_{i=l}^{k+1} \sum_{j=1}^{\left\lfloor\frac{i}{2}\right\rfloor} j a_{i, j} \\
& \leq \sum_{i=l}^{k+1} u_{i}+\frac{k+3}{l-1} \sum_{i=l}^{k+1} i u_{i} \quad(b y \quad(3)) \tag{3}\\
& \leq \frac{k^{2}+4 k+l+2}{l-1} \sum_{i=l}^{k+1} u_{i}
\end{align*}
$$

which gives

$$
\sum_{i=l}^{k+1} u_{i} \geq \frac{l-1}{k^{2}+4 k+l+2} n
$$

and

$$
\begin{aligned}
\Gamma_{s}(G) & =n-2 \sum_{i=l}^{k+1} u_{i} \\
& \leq \frac{k^{2}+4 k-l+4}{k^{2}+4 k+l+2} n .
\end{aligned}
$$

This completes the proof of Theorem 1.

Corollary 1 [7] If G is a nearly $(k+1)$-regular graph of order n, then

$$
\Gamma_{s}(G) \leq \begin{cases}\frac{(k+2)^{2}}{k^{2}+6 k+4} n & \text { if } k \text { is even } \\ \frac{k^{2}+3 k+4}{k^{2}+5 k+2} & \text { if } k \text { is odd } .\end{cases}
$$

Corollary 2 If G is a graph with $\delta(G) \geq 2$, then

$$
\Gamma_{s}(G) \leq \begin{cases}\frac{\Delta^{2}+3 \Delta-\delta}{\Delta^{2}+3 \Delta+\delta} n & \text { if } \delta \text { is even and } \Delta \text { is odd, } \\ \frac{\Delta^{2}+3 \Delta-\delta+1}{\Delta^{2}+3 \Delta+\delta-1} n & \text { if } \delta \text { is odd and } \Delta \text { is odd, } \\ \frac{\Delta^{2}+2 \Delta-\delta}{\Delta^{2}+2 \Delta+\delta} n & \text { if } \delta \text { is even and } \Delta \text { is even, } \\ \frac{\Delta^{2}+2 \Delta-\delta+1}{\Delta^{2}+2 \Delta+\delta-1} n & \text { if } \delta \text { is odd and } \Delta \text { is even. }\end{cases}
$$

Corollary 3 [3] If G is a k-regular graph, $k \geq 1$, of order n, then

$$
\Gamma_{s}(G) \leq \begin{cases}\frac{k+1}{k+3} n & \text { if } k \text { is even } \\ \frac{(k+1)^{2}}{k^{2}+4 k-1} n & \text { if } k \text { is odd }\end{cases}
$$

3. Lower bounds on $\gamma_{k s}^{-101}$ and $\gamma_{k s}^{-11}$

Theorem 7 If G is a graph of order n and size ϵ, then

$$
\gamma_{k s}^{-101}(G) \geq \frac{(\delta-\Delta-1) n+(\Delta+2) k-2 \epsilon}{\delta+1}
$$

Proof Let g be a minus k-subdominating function on G such that $g(V)=$ $\gamma_{k s}^{-101}(G)$ and

$$
\begin{aligned}
P & =\{v \in V \mid g(v)=1\} \\
M & =\{v \in V \mid g(v)=-1\} \\
Q & =\{v \in V \mid g(v)=0\}
\end{aligned}
$$

Further, we let

$$
\begin{aligned}
P_{1} & =\{v \in P \mid g[v] \geq 1\} \\
P_{2} & =\{v \in P \mid g[v]<1\} \\
M_{1} & =\{v \in M \mid g[v] \geq 1\} \\
M_{2} & =\{v \in M \mid g[v]<1\} \\
Q_{1} & =\{v \in Q \mid g[v] \geq 1\} \\
Q_{2} & =\{v \in Q \mid g[v]<1\} \\
V_{1} & =P_{1} \cup M_{1} \cup Q_{1} \\
V_{2} & =P_{2} \cup M_{2} \cup Q_{2} .
\end{aligned}
$$

Let $t(v)$ denote the number of vertices of weight 0 in $N(v)$. And let $p_{i}=\left|P_{i}\right|$, $m_{i}=\left|M_{i}\right|$ and $q_{i}=\left|Q_{i}\right|$ for $i=1,2$. Put $p=|P|$ and $m=|M|$. Then we have

$$
|N(v) \cap M| \leq \begin{cases}\frac{d(v)-t(v)}{2} & \text { if } v \in P_{1} \\ \frac{d(v)-t(v)}{2}-1 & \text { if } v \in M_{1} \\ \frac{d(v)-t(v)-1}{2} & \text { if } v \in Q_{1}, \\ d(v)-t(v) & \text { otherwise. }\end{cases}
$$

Therefore, we have

$$
\begin{aligned}
\sum_{v \in M} d(v) \leq & \sum_{v \in P_{1}} \frac{d(v)-t(v)}{2}+\sum_{v \in M_{1}}\left(\frac{d(v)-t(v)}{2}-1\right)+\sum_{v \in Q_{1}} \frac{d(v)-t(v)-1}{2} \\
& +\sum_{v \in P_{2}}(d(v)-t(v))+\sum_{v \in M_{2}}(d(v)-t(v))+\sum_{v \in Q_{2}}(d(v)-t(v)) \\
= & \frac{1}{2} \sum_{v \in V} d(v)-\frac{1}{2} \sum_{v \in V} t(v)+\frac{1}{2} \sum_{v \in V_{2}}(d(v)-t(v))-m_{1}-\frac{1}{2} q_{1} \\
\leq & \frac{1}{2} \sum_{v \in V} d(v)-\frac{1}{2} \sum_{v \in V} t(v)+\frac{1}{2} \sum_{v \in V_{2}} d(v)-m_{1}-\frac{1}{2} q_{1} .
\end{aligned}
$$

Noting that $\sum_{v \in V} t(v)=\sum_{v \in Q} d(v) \geq \delta q$ and $\sum_{v \in M} d(v) \geq \delta m$, we have

$$
\begin{align*}
\delta m & \leq \epsilon-\frac{1}{2} \delta q+\frac{1}{2} \Delta\left(p_{2}+m_{2}+q_{2}\right)-m_{1}-\frac{1}{2} q_{1} \\
& =\epsilon-m-\frac{1}{2} \delta q-\frac{1}{2} q+\frac{1}{2} \Delta\left(p_{2}+m_{2}+q_{2}\right)+\frac{1}{2} q_{2}+m_{2} \\
& \leq \epsilon-m-\frac{1}{2} \delta q-\frac{1}{2} q+\frac{\Delta+2}{2}\left(p_{2}+m_{2}+q_{2}\right) . \tag{7}
\end{align*}
$$

Since g is a minus k-subdominating function, we have

$$
\begin{equation*}
p_{2}+m_{2}+q_{2} \leq n-k . \tag{8}
\end{equation*}
$$

Combining (7) and (8) we have

$$
2 m+q \leq \frac{2 \epsilon+(\Delta+2)(n-k)}{\delta+1}
$$

Therefore

$$
\gamma_{k s}^{-101}(G)=n-(2 m+q) \geq \frac{(\delta-\Delta-1) n+(\Delta+2) k-2 \epsilon}{\delta+1} .
$$

Then, since $\gamma_{k s}^{-101} \leq \gamma_{k s}^{-11}(G)$ for all graphs G, as an immediate corollary of Theorem 7, we have:

Corollary 4 If G is a graph of order n and size ϵ, then

$$
\gamma_{k s}^{-11}(G) \geq \frac{(\delta-\Delta-1) n+(\Delta+2) k-2 \epsilon}{\delta+1}
$$

In the special case when $k \geq n / 2$, we have
Corollary 5 [6] If G is a graph of order n and size ϵ, then

$$
\gamma_{m a j}(G) \geq \frac{n(2 \delta-\Delta)-4 \epsilon}{2(\delta+1)}
$$

References

[1] I. Broere, J.H. Hattingh, M.A. Henning and A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995), 125-135.
[2] E.J. Cockayne, and C.M. Mynhardt, On a generalization of signed dominating functions of graphs, Ars Combin. 43 (1996), 235-245.
[3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1995), 287-293.
[4] J.H. Hattingh, Elna Ungerer, Minus k-subdomination in graphs II, Discrete Math. 171 (1997), 141-151.
[5] M.A. Henning, P.J. Slater, Inequality relating domination parameters in cubic graphs, Discrete Math. 158 (1996), 87-98.
[6] L. Kang and E. Shan, Lower bounds on dominating functions in graphs, Ars Combin. 56 (2000), 121-128.
[7] C. Wang and J. Mao, Some more remarks on domination in cubic graphs, Discrete Math. 237 (2001), 193-197.
[8] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996), 249-255.
[9] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999), 295-298.

[^0]: * The project was partially supported by NNSFC 19871036.

