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Abstract

Consider a pair of group divisible designs (GDD) with block size 3, index
λ = 1, and on the same points and groups. They are said to be orthogonal
(OGDD) if (i) whenever two blocks, one from each design, intersect in
two points, the third points are in different groups; and (ii) two disjoint
pairs of points defining intersecting triples in one GDD fail to do so in the
other. A question posed by Colbourn and Gibbons, in New Zealand J.
Math. 7 (1999), 431–440, asks whether there exists any OGDD with four
groups. Despite some nonexistence results, their question is answered in
the affirmative here with two computer constructions. Also, two algebraic
constructions of related structures help toward some asymptotic existence
results.

1 Introduction

A group divisible design (GDD) of index λ is a triple (X,G,A), with G a partition of
the set X into groups, A a collection of subsets (or blocks) of X , such that

• every pair of points from the same group is in no block;
• every pair of points from distinct groups meets exactly λ blocks.

Until section 4, λ = 1 will be assumed. To say the type of a GDD is gu1
1 · · · gus

s means
there are ui groups of size gi for each i, and these are all group sizes. A GDD is
uniform if all groups have the same size; that is, if it is of type gu with gu = |X |. If
all block sizes are in a set K, the notation K-GDD is used. In the case of a triple
system, K = {3}, and uniform group structure gu, there are the usual necessary
conditions:

g(u − 1) ≡ 0 (mod 2) and gu(u − 1) ≡ 0 (mod 3).

Let (X,G,A1) and (X,G,A2) be two {3}-GDDs on the same points and group par-
tition. They are said to be orthogonal (denoted OGDD) if
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(i) {u, v, a} ∈ A1 and {u, v, b} ∈ A2 implies a and b are in different groups;
(ii) {u, v, a}, {x, y, a} ∈ A1 and {u, v, w}, {x, y, z} ∈ A2 implies w �= z.

An OGDD of type 1v is equivalent to a pair of orthogonal Steiner triple systems
(OSTS) of order v. In [3] and [7], OGDDs were used with the standard “filling in
holes” construction to prove OSTS(v) exist if and only if v ≡ 1 or 3 (mod 6), v ≥ 7
and v �= 9. Since the solution of the OSTS problem, existence of OGDDs, particularly
those of uniform type, have generated some interest on their own. The recent paper
[2] goes a long way to determining which g and u admit OGDD of type gu. The
theme of that paper can be summarized as follows.

Theorem 1.1. ([2]) For every positive g, there exists OGDD of type gu for all
but finitely many admissible values of u. For each u �∈ {4, 6, 9, 14, 22, 26, 34, 38, 58,
94, 142}, u ≥ 4, there exist OGDD of type gu for all but finitely many admissible
values of g.

An easy consequence of condition (i) above is that an OGDD must have at least four
groups, for if u and v are chosen in different groups, then their unique third elements
in each GDD must lie in two more distinct groups. Similarly, N mutually orthogonal
{3}-GDDs require at least N + 2 groups. Here, the extreme case of OGDDs with
exactly four groups is investigated. It is evident from first principles that attention
may be restricted to uniform OGDDs.

Proposition 1.2. Every OGDD with four groups is uniform.

Proof: Let X be the pointset with group partition G = {G1, . . . , G4}. For i = 1, 2, let
Ai be the block set of each GDD, and Θi : ∪j �=k(Gj ×Gk) → X be the third element
relation defined by Θi(x, y) = z iff {x, y, z} ∈ Ai. Fix x ∈ G1 and define Ax = {y ∈
G2 : Θ1(x, y) ∈ G3}. Let y′ ∈ G2. By orthogonality condition (i), Θ2(x, y′) ∈ G3 iff
y′ �∈ Ax. There is now a well-defined map f : G2 → G3 given by f(y) = Θ1(x, y)
when y ∈ Ax and f(y) = Θ2(x, y) otherwise. Suppose f(y1) = f(y2). Then the G3

third elements of {x, y1} and {x, y2} (in the appropriate GDDs) are equal. Since y1

and y2 both belong to G2, it must be that y1 = y2 to avoid a contradiction to either
λ = 1 or condition (i). So the mapping f is injective. Therefore, |G2| ≤ |G3|. Since
the naming of groups is immaterial, all their sizes are equal. �

Remark. The groups must have even size by the necessary conditions with u = 4.
Also, it is reported in [2] that g ≥ 6 is necessary by exhaustive search.

2 Cyclic Automorphisms

A GDD (X,G,A) of type gu is m-cyclic if X can be written as Zgu/m × Zm, with
automorphism α : (x, i) �→ (x + 1, i) fixing both G and A. Usually, xi is written for
(x, i). An orthogonal pair of such {3}-GDDs is said to be an m-cyclic OGDD. In
order for such an object to exist, it is necessary that m|gu and 6|mg(u − 1). The
advantage of designs with automorphisms is that their block sets may be described
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merely by orbit representatives (or base blocks) for the automorphism. Normally,
1-cyclic designs are simply called cyclic, and the subscript 0 is omitted. The cosets of
{0, u, . . . , (g − 1)u} in Zgu define the unique group structure for a 1-cyclic {3}-GDD
of type gu. There are perhaps several distinct group structures possible when m > 1.
The next result concerns the case when the generating automorphism is transitive
(cyclic) within the groups.

Proposition 2.1. There does not exist m-cyclic OGDD of type g4 with automor-
phisms transitive on each group.

Proof: As in the proof of Proposition 1.2, fix a point x in one group and obtain a
bijective map f between the points of two other groups. Let a generating m-cyclic
automorphism be α, and suppose it acts transitively on each group. It cannot be
the case for αn �= identity that both f(y) = z and f(αny) = αnz. For otherwise,
{x, y, z} and {α−nx, y, z} are both blocks of the OGDD. This contradicts either λ = 1
or condition (i) for orthogonality, since x and α−nx are in the same group. View f as
a matching in Kg,g. Label the vertices of each partite set as {0, 1, . . . , g − 1} so that
the orbit of any point under {αn} in either of the two groups in question is labeled
in order (mod g) with increasing n. The matching, say {(i, ai) : 0 ≤ i < g}, has by
the argument above the property that ai − i achieves every residue (mod g) exactly
once. So since g is even,

∑
i(ai − i) ≡ g/2 (mod g). But

∑
i(ai − i) ≡ 0 because of

the matching. This is a contradiction. �

Note that the proof of the last two nonexistence claims uses only condition (i) on
orthogonality, generally viewed as the weaker constraint. However, it seems natural
that this condition is restrictive when there are exactly four groups. Proposition
2.1 really only applies to cyclic, and certain 2-cyclic and 4-cyclic OGDDs. Still, it
gives insight into why computational methods had previously failed to produce any
OGDD with four groups, as certain potentially helpful automorphisms reducing the
search space are lost.

It shall be shown now that specifying a 2-cyclic automorphism which is not transitive
on the groups can, however, produce successful searches. For an OGDD of type g4,
consider the set X = Z2g × {0, 1}, arranged into groups

Gj = {j, j + 4, j + 8, . . . , j + 4(g/2 − 1)} × {0, 1}, j = 0, 1, 2, 3.

The implied 2-cyclic automorphism acts in two orbits on each group. By hill-climbing
to find one set of base blocks, then backtracking to find a compatible second set of
base blocks (a method also used in [2]), the direct constructions below were found.

Example 2.2. Base blocks for OGDDs of type 84 and 124 with points and groups
as above, are given along with an orthogonality certificate. This is a list of third
elements in the second GDD of all pairs occurring with 00 and 01 in the first GDD.
Orthogonality amounts to each list consisting of distinct elements not from the first
group.

227



OGDD of type 84

{00, 21, 91}, {00, 20, 50}, {00, 31, 131}, {00, 151, 11}, {00, 100, 90}, {00, 71, 61},
{00, 101, 51}, {00, 111, 141};

{00, 60, 10}, {00, 140, 11}, {00, 61, 130}, {00, 141, 131}, {00, 71, 51}, {00, 111, 90},
{00, 151, 101}, {01, 61, 91}

orthogonality certificate:
00 : 151, 111, 130, 141, 61, 100, 150, 11, 20, 90, 110, 51

01 : 10, 140, 111, 50, 150, 91, 60, 151, 131, 101, 21, 110

OGDD of type 124

{00, 141, 170}, {00, 111, 91}, {00, 20, 171}, {00, 191, 130}, {00, 71, 181}, {00, 140, 90},
{00, 31, 10}, {00, 101, 131}, {00, 221, 210}, {00, 60, 51}, {01, 141, 51}, {01, 181, 11};

{00, 100, 130}, {00, 180, 211}, {00, 220, 91}, {00, 21, 11}, {00, 231, 90}, {00, 191, 101},
{00, 61, 10}, {00, 181, 50}, {00, 71, 171}, {00, 151, 170}, {01, 21, 211}, {01, 61, 171}

orthogonality certificate:
00 : 110, 220, 61, 190, 51, 140, 211, 11, 31, 91, 180, 21, 50, 151, 231, 100, 150, 170

01 : 11, 110, 170, 181, 150, 220, 231, 31, 90, 61, 130, 221, 190, 131, 20, 71, 50, 101

3 Recursive Methods and Modified GDDs

Let L be a Latin square with associated quasigroup (Q,⊗), (or simply Q) so that
x1 ⊗ x2 = x3 iff x3 is in entry (x1, x2) of L. The six conjugates of Q are Qσ for
σ ∈ S3, with operation given by xσ(1) ⊗σ xσ(2) = xσ(3) iff x1 ⊗ x2 = x3. Two
quasigroups (Latin squares) for which every conjugate of one is orthogonal to every
conjugate of the other form a pair of conjugate orthogonal quasigroups, or COQ. It
is well known that COQ exist for all but finitely many orders, yet the full spectrum
(denoted COQ) of those orders is still unknown. See [7], for example, for more on
this subject and the following construction.

Lemma 3.1. If there exists OGDD of type gu and COQ(m) then there exists OGDD
of type (mg)u.

The two computer findings in Example 2.2, together with Lemma 3.1, provide OGDD
of type g4 for almost all g divisible by 8 or 12. By using another type of design,
however, a stronger asymptotic result can be achieved.

A modified group divisible design (MGDD) of type (u, v) is a set X with two parti-
tions, G into v holes of size u, and H into u holes of size v, such that |G ∩ H| = 1
for all G ∈ G and H ∈ H. Additionally, there is a block set A so that every pair of
points occurs together in a block if and only if it does not appear in a hole of either
G or H. (The term “hole” will be used in place of “group” to avoid confusion later.)
Two {3}-MGDDs on the same points and holes are orthogonal (OMGDD) if: (i’)
{u, v, a} ∈ A1 and {u, v, b} ∈ A2 implies a and b are in different holes of G and of
H; as well as orthogonality condition (ii) hold. Loosely speaking, these approximate
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OGDDs with four groups. In [2], a useful construction with these designs is given,
and the existence of a few small OMGDDs with four holes of one kind is reported.

Lemma 3.2. ([2]) Suppose there is a K-GDD of order g and group sizes g1, . . . , gt.
If for some u ≤ t there is an OMGDD of type (k, u) for every k ∈ K and OGDD of
type gu

i for every i, then there is an OGDD of type gu.

Lemma 3.3. ([2]) There exist OMGDD of type (4, v) for v = 7, 11, 13, 15, 17, 19, 21.

An infinite family of OMGDD with four holes (of one kind) will now be constructed
from classical triple systems in the finite fields.

Proposition 3.4. For every prime power q ≡ 1 (mod 6), there exists OMGDD of
type (4, q).

Proof: Let X = Fq ×K, where Fq is a field of order q = 6t + 1 with generator ω and
K = {0, α, β, γ} is the Klein group on four elements. Write K∗ = K \ {0}. Define
the two sets of holes {{a}×K : a ∈ Fq} and {Fq ×{b} : b ∈ K}. Clearly, a first hole
and a second hole intersect in exactly one element of X . It is well-known (see [5] for
example) that the zero-sum base triples ωe{1, ω2t, ω4t}, 0 ≤ e < t, when developed
additively in the field, form a Steiner triple system. Fix an ordering on each base
block. Now for each of these t ordered triples (x, y, z), include

{(x, α), (y, β), (z, γ)}, {(x, β), (y, γ), (z, α)}, {(x, γ), (y, α), (z, β)} ∈ A1,

and generate these blocks additively over Fq × K. Define A2 = −A1 to be the
elementwise negative of these blocks. The differences among the zero-sum blocks of
each system are {±(x−y),±(y−z),±(x−z)}×{α, β, γ}, exhausting all elements of
F∗

q×K∗. This proves A1 and A2 each form a {3}-MGDD on the given hole partitions.
As before, let Θi(·, ·) be the third element function for Ai. It is enough to show Θ2

maps all pairs occurring with (0, 0) in A1 to distinct elements of F∗
q × K∗. Note

Θ2((y − x, γ), (z − x, β)) = (y + z − x, 0) + Θ2((−z, γ), (−y, β)) = (−3x, α),

since x + y + z = 0. The other pairs are similar. But the base triples of the original
STS have no repetition among their elements. So Θ2Θ

−1
1 (0, 0) = (−3H)×K∗, where

H is the half-set of (non-zero) field elements in the base triples of the STS. This
establishes orthogonality. �

Remark. This is a variant of opposite orthogonal STS, introduced in [6]. Such objects
enjoy the property that their zero-sum base blocks are disjoint. For this reason,
a concrete algebraic presentation was chosen here even though the proof can be
modified to use any OSTS pair, even of non-prime-power order.

Theorem 3.5. There exist OGDD of type g4 for all but finitely many g ≡ 0 (mod 4).
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Proof: This is similar to Corollary 8.2 of [2]. Let K denote the set of v for which
an OMGDD of type (4, v) exists. For a fixed u, the spectrum of OMGDD with type
(u, v) is PBD-closed in v. Let K ′ be the elements of K which are 1 greater than
COQ multiples of 8 or 12. Observe that from Lemma 3.3 (or for fewer exceptions,
Proposition 3.4) that the closure of K ′ contains all sufficiently large 1 (mod 4) inte-
gers. So there exists g0 such that g > g0 and g ≡ 0 (mod 4) implies the existence
of an OMGDD of type (4, g + 1). Delete one point from a nontrivial K ′-PBD on
g + 1 points. The result is a K ′-GDD having group sizes in 8 · COQ ∪ 12 · COQ.
Lemmas 3.1 and 3.2 applied with the OGDDs of type 84 and 124 given earlier yields
an OGDD of type g4. �

The existence problem remains open for type g4, where g ≡ 2 (mod 4), and also for
g among the possible exceptions from Theorem 3.5, the smallest being g = 16. A
single example of an OGDD with four groups of size g ≡ 2 (mod 4) would settle
asymptotic existence, however. A computer construction of this kind seems to be
difficult due to Proposition 2.1 and the fact that g/2 is odd. The author would like
to thank Peter Gibbons for attempting hill-climbs to types 104 and 184.

Conjecture 3.6. There exists OGDD of type g4 for all but finitely many even g.

4 Unseparated OGDDs

Here, asymptotic existence is established for a somewhat weaker structure with λ = 2.
To this end, a symmetrization of orthogonality condition (ii) must be introduced. An
OGDD with block sets A1 and A2 is skew-orthogonal (abbreviated SOGDD) if

(iii) {u, v, a}, {x, y, w} ∈ A1 and {u, v, z}, {x, y, a} ∈ A2 implies w �= z.
(Note u = x is a possibility.)

Consider now a {3}-GDD with λ = 2. Suppose whenever {u, v, a}, {u, v, b} are
blocks, a and b are in different groups. Also, suppose it avoids the configuration
of triples {u, v, a}, {u, v, b}, {x, y, a}, {x, y, b} for {u, v} �= {x, y}. The design will
then be called an unseparated OGDD. If an unseparated OGDD were decomposable
into a pair of GDDs with index λ = 1, that pair would be skew-orthogonal. See [4]
for more on skew-orthogonal triple systems. The following result sheds light on why
g ≡ 2 (mod 4) is the difficult case for existence of OGDDs with four groups of size
g.

Proposition 4.1. An unseparated OGDD of type g4 is equivalent to four quasigroups
(Latin squares) Qj, 1 ≤ j ≤ 4, of order g with the following orthogonality relations
on their conjugates:

Q1 ⊥ Q2, Q
(23)
1 ⊥ Q3, Q

(123)
1 ⊥ Q4,

Q
(23)
2 ⊥ Q

(23)
3 , Q

(123)
2 ⊥ Q

(23)
4 , Q

(123)
3 ⊥ Q

(123)
4 .
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Proof: Let X be a set with |X | = g. Represent points of the GDD as (x, i), x ∈ X ,
i = 1, 2, 3, 4 so that the groups are X × {i}. For any a, b ∈ X , there is a unique
c ∈ X such that {(a, 1), (b, 2), (c, 3)} is a triple. Define a quasigroup operation on X
by a⊕1 b = c. Similarly define ⊕2, ⊕3 and ⊕4 for triples (ordered by group number)
in X×{1, 2, 4}, X×{1, 3, 4} and X×{2, 3, 4}, respectively. Let Qj be the quasigroup
(X,⊕j). The avoided configuration for the unseparated OGDD translates precisely
into the required orthogonality relations. This construction is clearly reversible. �

Corollary 4.2. There does not exist SOGDD of type 64.

Proof: Such an SOGDD gives rise to an unseparated OGDD by uniting block sets.
By the proposition, this would result in a pair of orthogonal Latin squares of order
6, which is impossible. �

Theorem 4.3. Unseparated OGDD of type g4 exist for all but finitely many g.

Proof: Set Q2 = Q
(12)
1 and Q4 = Q

(12)
3 in Proposition 4.1. It is certainly sufficient

additionally that every conjugate of Q1 be orthogonal to every conjugate of Q3. So
it suffices to prove asymptotic existence of COQ(g) with the extra property that the
pair of quasigroups are each orthogonal to their own (12)-conjugates. Now if g is
a prime power, there exist idempotent quasigroups over the finite field of order g
given by the operations x ⊗λ y = λx + (1 − λ)y, λ �= 0, 1. It is routine to verify
that κ �= λ implies ⊗κ and ⊗λ are orthogonal. As with the work on COQs found in
[7], it follows easily that in any large enough finite field, idempotent COQs with the
desired extra property exist. The Bose-Parker-Shrikhande construction [1] preserves
the orthogonality of a Latin square with its transpose. Thus the theorem follows. �

Unfortunately, it is not clear when, for g even, such a design is decomposable. Using
a computer, the author generated many unseparated OGDDs as in Theorem 4.3 by
using different affine maps in finite fields of characteristic two. None were found to
decompose into an SOGDD pair, however. So there remain no examples known of
SOGDD with four groups. It should be noted that a “mostly” decomposable index
two design of this kind exists asymptotically for g odd. Simply combine block sets of
a skew OMGDD of type (4, g) from Proposition 3.4 and fill in all the size four holes
with complete (twofold) triple systems on four points.
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